DOI QR코드

DOI QR Code

Non-conductive Film Effect on Ni-Sn Intermetallic Compounds Growth Kinetics of Cu/Ni/Sn-2.5Ag Microbump during Annealing and Current Stressing

열처리 및 전류인가 조건에서 Cu/Ni/Sn-2.5Ag 미세범프의 Ni-Sn 금속간화합물 성장 거동에 미치는 비전도성 필름의 영향 분석

  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Ryu, Hyodong (JCET STATS ChipPAC Korea LTD.) ;
  • Kwon, Woobin (School of Materials Science and Engineering, Andong National University) ;
  • Son, Kirak (DMC Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 류효동 (제이셋스테츠칩팩코리아(유)) ;
  • 권우빈 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 손기락 (한국전자통신연구원 DMC융합연구단) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2022.06.09
  • Accepted : 2022.06.30
  • Published : 2022.06.30

Abstract

The in-situ electromigration(EM) and annealing test were performed at 110, 130, and 150℃ with a current density of 1.3×105 A/cm2 conditions to investigate the effect of non-conductive film (NCF) on growth kinetics of intermetallic compound (IMC) in Cu/Ni/Sn-2.5Ag microbump. As a result, the activation energy of the Ni3Sn4 IMC growth in the annealing and EM conditions according to the NCF application was about 0.52 eV, and there was no significant difference. This is because the growth rate of Ni-Sn IMC is much slower than that of Cu-Sn IMC, and the growth behavior of Ni-Sn IMC increases linearly with the square root of time, so it has the same reaction mechanism dominated by diffusion. In addition, there is no difference in the activation energy of the Ni3Sn4 IMC growth because the EM resistance effect of the back stress according to the NCF application is not large.

비전도성 필름(non-conductive film, NCF)의 적용이 Cu/Ni/Sn-2.5Ag 미세범프의 금속간화합물(intermetallic compound, IMC) 성장 거동에 미치는 영향을 분석하기 위해 110, 130, 150℃의 온도 조건과 1.3×105 A/cm2의 전류밀도 조건에서 실시간 열처리 및 electromigration(EM) 실험을 진행하였다. 그 결과, NCF 적용 유무와 열처리 및 EM 실험과 관계없이 Ni3Sn4 IMC 성장에 필요한 활성화에너지는 약 0.52 eV로 큰 차이는 보이지 않았다. 이는 Ni-Sn IMC의 성장속도가 Cu-Sn IMC 성장 속도보다 매우 느리며, 또한 Ni-Sn IMC의 성장 거동은 시간의 제곱근에 선형적으로 증가하므로 확산이 지배하는 동일한 반응기구를 가지며 NCF 적용에 따른 역응력(back stress)의 EM 억제 효과가 크지 않기 때문에 Ni3Sn4 IMC 성장에 필요한 활성화에너지는 차이가 나지 않는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구(20016465와 20017189)와 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구(P0008458, 2022년 산업혁신인재성장지원사업) 결과로 수행되었습니다.

References

  1. J. W. Yoon, J. W. Kim, J. M. Koo, S. S. Ha, B. I. Noh, W. C. Moon, J. H. Moon, and S. B. Jung, "Flip-chip Bonding Technology and Reliability of Electronic Packaging (in Kor.)", J. Korean Weld. Join. Soc., 25(2), 6-15 (2007).
  2. G. Kim, K. Son, G. T. Park, and Y. B. Park, "Effect of Current Densities on the Electromigration Failure Mechanisms of Flip-Chip Sn-Ag Solder Bump (in Kor.)", Korean J. Met. Mater., 55(11), 798-805 (2017). https://doi.org/10.3365/KJMM.2017.55.11.798
  3. G. T. Park, B. R. Lee, J. B. Kim, K. Son and Y. B. Park, "Solder Volume Effect on Electromigration Failure Mechanism of Cu/Ni/Sn-Ag Microbumps", IEEE Trans. Comp. Packag. Manuf. Technol., 10(10), 1589-1593 (2020). https://doi.org/10.1109/tcpmt.2020.3005644
  4. Y. W. Chang, S.H. Chiu, and C. Chen, "Investigation of Void Nucleation and Propagation in the Joule Heating Effect During Electromigration in Flip-Chip Solder Joints", J. Electron. Mater., 39(11), 2489-2494 (2010). https://doi.org/10.1007/s11664-010-1361-7
  5. B. R. Lee, J. M. Park, Y. K. Ko, C. W. Lee, and Y. B. Park, "Effect of Solder Structure on the In-situ Intermetallic Compounds growth Characteristics of Cu/Sn-3.5Ag Microbump (in Kor.)", J. Microelectron. Packag. Soc., 20(3), 45-51 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.045
  6. H. H. Kim, D. H. Kim, J. B. Kim, H. J. Kim, J. U. Ahn, I. S. Kang, J. K. Lee, H. S. Ahn and S. Kim, "The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package (in Kor.)", J. Microelectron. Packag. Soc., 17(3), 65-69 (2010).
  7. M. Liebens, J. Slabbekoorn, A. Miller, E. Beyne, M. Stoerring, S. Hiebert, and A. Cross, "Defect earning methodology applied to microbump process at 20 ㎛ pitch and below", Proc. 29th Annual SEMI Advanced Semiconductor Manufacturing Conference, New York (2018).
  8. H. Ryu, B. R. Lee, J. B. Kim, and Y. B Park, "Effect of NCF Trap on Electromigration Characteristics of Cu/Ni/Sn-Ag Microbumps (in Kor.)", J. Microelectron. Packag. Soc., 25(4), 83-88 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.083
  9. B. H. Kwak, M. H. Jeong, and Y. B. Park, "Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package (in Kor.)", Korean J. Met. Mater., 50(10), 775-783 (2012). https://doi.org/10.3365/kjmm.2012.50.10.775
  10. H. H. Hsu, S. Y. Huang, T. C. Chang, and A. T. Wu, "Nucleation and Propagation of Voids in Microbumps for 3 Dimensional Integrated Circuits", Appl. Phys. Lett., 99(25), 251913 (2011). https://doi.org/10.1063/1.3671391
  11. J. B. Kim, B. R. Lee, S. H. Kim, J. M. Park, and Y. B. Park, "Interfacial Reaction Characteristics of Au stud/Sn/Cu Pillar Bump during Annealing and Current Stressing", J. Nanosci. Nanotechnol., 15(11), 8725-8230 (2015). https://doi.org/10.1166/jnn.2015.11503
  12. K. Sakuma, P. S. Andry, B. Dang, J. Maria, C. K. Tsang, C. Patel, S. L. Wright, B. Webb, E. Sprogis, S. K. Kang, R. Polastre, R. Horton, and J. U. Knickerbocker, "3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections", Proc. 57th Electronic Components and Technology Conference(ECTC), Nevada, IEEE (2007).
  13. Y. M. Kim, K. M. Harr, and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6(4), 151-154 (2010). https://doi.org/10.3365/eml.2010.12.151
  14. B. Lee, J. Park, S. J. Jeon, K. W. Kwon, and H. J. Lee, "A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications", J. Electrochem. Soc., 157(4), H420-H424 (2010). https://doi.org/10.1149/1.3301931
  15. Y. S. Lai, Y. T. Chiu, and J. Chen, "Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization", J. Electron. Mater., 37(10), 1624-1630 (2008). https://doi.org/10.1007/s11664-008-0515-3
  16. B. J. Kim, G. T. Lim, J. Kim, K. Lee, Y. B. Park, and Y. C. Joo, "Intermetallic Compound and Kirkendall Void Growth in Cu Pillar Bump During Annealing and Current Stressing", Proc. 58th Electronic Components and Technology Conference(ECTC), Florida, IEEE (2008).
  17. D. Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, and J. K. L. Lai, "Effects of Contents in Sn-Cu Solder on the Composition and Morphology of Intermetallic Compounds at Solder/ Ni interface", J. Mater. Res., 20(8), 2205-2212 (2005). https://doi.org/10.1557/jmr.2005.0275
  18. M. O. Alam and Y. C. Chan, "Solid-state Growth Kinetics of Ni3 Sn4 at the Sn-3.5Ag Solder/Ni interface", J. Appl. Phys., 98(12), 123527 (2005). https://doi.org/10.1063/1.2149487
  19. G. T. Park, B. R. Lee, K. Son, and Y. B. Park, "Ni Barrier Symmetry Effect on Electromigration Failure Mechanism of Cu/Sn-Ag Microbump", Electron. Mater. Lett., 15(2), 149-158 (2019). https://doi.org/10.1007/s13391-018-00108-5
  20. K. Yamanaka, T. Nejime, and T. Ooyoshi "Effect of Underfill on Electromigration Lifetime in Flip Chip Joints", J. Alloy. Compd. 481(1-2), 659-669 (2009). https://doi.org/10.1016/j.jallcom.2009.03.063
  21. B. I. Noh, J. B. Lee, and S. B. Jung, "Characteristic of Underfill with Various Epoxy Resin (in Kor.)", J. Microelectron. Packag. Soc., 13(3), 39-45 (2006).
  22. K. Yamanaka, Y. Tsukada, and K. Suganuma, "Solder electromigration in Cu/In/Cu flip chip joint system", J. Alloy. Compd., 437(1), 186-190 (2007). https://doi.org/10.1016/j.jallcom.2006.07.125
  23. H. Peng and R. W. Johnson, "Underfilling Fine Pitch BGAs", IEEE Trans. Electron. Packag. Manuf., 24(4), 293-299 (2001). https://doi.org/10.1109/6104.980038
  24. M. J. Yim and K. W. Paik, "Design and understanding of anisotropic conductive films (ACFs) for LCD packaging", IEEE Trans. Compon. Packag. Manuf. Technol., A, 21(2), 233-242 (1998). https://doi.org/10.1109/3476.720422
  25. S. T. Lu, Y. M. Lin, C. C. Chuang, T. H. Chen, and W. H. Chen, "Development of a Novel Compliant-Bump Structure for ACA-Bonded Chip-on-Flex (COF) Interconnects with Ultra-Fine Pitch", IEEE Trans. Compon. Packag. Manuf. Technol., 1(1), 33-42 (2011). https://doi.org/10.1109/TCPMT.2010.2101431
  26. K. Honda, A. Nagai, M. Satou, S. Hagiwara, S. Tuchida, and H. Abe, "NCF for pre-applied process in higher density electronic package including 3D-package", Proc. 62th Electronic Components and Technology Conference (ECTC), San Diego, 385-392 (2012).
  27. B. G. Kim, S. C. Kim, W. G. Dong, and Y. H. Kim, "The effect of fillers in nonconductive adhesive on the reliability of chip-on-glass bonding with Sn/Cu bumps", Mater. Trans., 52(11), 2106-2110 (2011). https://doi.org/10.2320/matertrans.M2011207
  28. S. M. Lee, B. G. Kim, and Y. H. Kim, "Non-conductive adhesive (NCA) trapping study in chip on glass joints fabricated using Sn bumps and NCA", Mater. Trans., 49(9) 2100-2106 (2008). https://doi.org/10.2320/matertrans.MRA2008071
  29. S. C. Kim and Y. H. Kim, "Low temperature chip on film bonding technology for 20 ㎛ pitch applications", J. Mater. Sci. Mater. Electron., 27(4), 3658-3667 (2016). https://doi.org/10.1007/s10854-015-4205-7
  30. H. Ryu, K. Son, J. S. Han, T. K. Lee, and Y. B. Park "The role of a nonconductive film(NCF) on Cu/Ni/Sn-Ag micro-bump interconnect reliability", J. Mater. Sci. Mater. Electron., 31(18), 15530-15538 (2020). https://doi.org/10.1007/s10854-020-04115-x
  31. J. B. Kim, S.H. Kim, and Y. B. Park, "Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-Bump for 3-D IC Packages (in Kor.)", J. Microelectron. Packag. Soc., 20(2), 59-64 (2013). https://doi.org/10.6117/KMEPS.2013.20.2.059
  32. C. W. Chang, C. E. Ho, S. C. Yang, and C. R. Kao, "Kinetics of AuSn4 Migration in Lead-Free Solders", J. Electron. Mater., 35(11) 1948-1954 (2006). https://doi.org/10.1007/s11664-006-0298-3
  33. E. C. C. Yeh, W. J. Choi, and K. N. Tu, "Current-crowding-induced electromigration failure in flip chip solder joints", Appl. Phys. Lett., 80(4), 580-582 (2002). https://doi.org/10.1063/1.1432443
  34. D. H. Eaton, J. D. Rowatt, and W. J. Dauksher, "Geometry effects on the electromigration of eutectic Sn/Pb flip-chip solder bump", Proc. IEEE Int. Reliab. Phys. Symp., San Jose, 243-249 (2006).
  35. M. H. Jeong, J. W. Kim, B. H. Kwak, and Y. B. Park, "Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump", Microelectronic Engineering 89(1), 50-54 (2012). https://doi.org/10.1016/j.mee.2011.04.025
  36. M. H. Jeong, J. M. Kim, S. Yoo, C. W. Lee, and Y. B. Park, "Effect of PCB Surface Finish Intermetallic Compound Growth Kinetics of Sn-3.0Ag-0.5Cu solder bump (in Kor.)", J. Microelectron. Packag. Soc., 17(1), 88-88 (2010).
  37. H. Yun Chen and C. Chen, "Kinetic study of the intermetallic compound formation between eutectic Sn-3.5Ag alloys and electroplated Ni metallization in flip-chip solder joints", J. Mater. Res., 27(8) 1169-1177 (2012). https://doi.org/10.1557/jmr.2012.22
  38. G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo, and Y. B. Park, "Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps", J. Electron. Mater., 38(11) 2228-2233 (2009). https://doi.org/10.1007/s11664-009-0922-0
  39. S. H. Kim, B. R Lee, J. M. Kim, S. Yoo, and Y. B. Park, "Effects of PCB ENIG and OSP Surface Finishes on the Electromigration Reliability and Shear Strength of Sn-3.5Ag PB-Free Solder Bump (in Kor.)", Kor. J. Mater. Res., 24(3) 166-173 (2014). https://doi.org/10.3740/MRSK.2014.24.3.166