DOI QR코드

DOI QR Code

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder

저융점 Sn-Bi 솔더의 신뢰성 개선 연구

  • Jeong, Min-Seong (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Hyeon-Tae (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Yoon, Jeong-Won (Department of Advanced Materials Engineering, Chungbuk National University)
  • 정민성 (충북대학교 신소재공학과) ;
  • 김현태 (충북대학교 신소재공학과) ;
  • 윤정원 (충북대학교 신소재공학과)
  • Received : 2022.06.03
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

최근 반도체 소자는 모바일 전자제품과 wearable 및 flexible한 소자와 기판의 다양한 활용으로 많은 분야에서 폭넓게 사용되고 있다. 이들 반도체 칩 접합 공정 중 기판과 솔더의 열팽창 계수(CTE)의 차이와 기판 및 부품 전체에 인가되는 과도한 열 영향은 소자의 성능 및 신뢰성에 영향을 주며, 최종적으로 휨(warpage) 현상 및 장기 신뢰성 저하 등을 초래한다. 이러한 문제점을 개선하기 위해 저온에서 공정이 가능한 저융점 솔더에 대한 연구가 활발히 진행되고 있다. Sn-Bi, Sn-In 등 다양한 저융점 솔더 합금 중 Sn-Bi 솔더는 높은 항복 강도, 적절한 기계적 특성 및 저렴한 가격 등의 이점이 있어 유망한 저온 솔더로 각광받고 있다. 그러나 Bi의 높은 취성 특성 등 단점으로 인해 솔더 합금의 개선이 필요하다. 본 review 논문에서는 다양한 미량 원소와 입자를 첨가하여 Sn-Bi 소재의 기계적 특성 개선을 위한 연구 동향을 소개하며 이를 비교 분석하였다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2021)지원을 받아 작성되었습니다.

References

  1. F. Wang, D. Li, Z. Zhang, M. Wu, and C. Yan, "Improvement on interfacial structure and properties of Sn-58Bi/Cu joint using Sn-3.0Ag-0.5Cu solder as barrier", J. Mater. Sci.: Mater. Electron., 28(24), 19051-19060 (2017). https://doi.org/10.1007/s10854-017-7859-5
  2. K. Suganuma, "Advances in lead-free electronics soldering", Curr. Opin. Solid State Mater. Sci., 5(1), 55-64 (2001). https://doi.org/10.1016/S1359-0286(00)00036-X
  3. H. Ma, and J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging, J. Mater. Sci., 44(5), 1141-1158 (2009). https://doi.org/10.1007/s10853-008-3125-9
  4. C. Zhang, S. D. Liu, G. T. Qian, Z. H. O. U. Jian, and X. U. E. Feng, "Effect of Sb content on properties of Sn-Bi solders", Trans. Nonferrous Met. Soc. China, 24(1), 184-191 (2014). https://doi.org/10.1016/s1003-6326(14)63046-6
  5. O. Mokhtari, and H. Nishikawa, "Effects of In and Ni addition on microstructure of Sn-58Bi solder joint", J. Electron. Mater., 43(11), 4158-4170 (2014). https://doi.org/10.1007/s11664-014-3359-z
  6. R. S. Sidhu, R. Aspandiar, S. Vandervoort, D. Amir, and G. Murtagian, "Impact of processing conditions and solder materials on surface mount assembly defects", JOM., 63(10), 47-51 (2011). https://doi.org/10.1007/s11837-011-0174-3
  7. Z. Zhao, C. Chen, C. Y. Park, Y. Wang, L. Liu, G. Zou, and Q. Wang, "Effects of package warpage on head-in-pillow defect", Mater. Trans., 56(7), 1037-1042 (2015). https://doi.org/10.2320/matertrans.MI201404
  8. Z. Zhu, Y. C. Chan, and F. Wu, "Failure mechanisms of solder interconnects under current stressing in advanced electronic packages: An update on the effect of alternating current (AC) stressing", Microelectron. Reliab., 91, 179-182 (2018).
  9. K. N. Tu, Y. Liu, and M. Li, "Effect of Joule heating and current crowding on electromigration in mobile technology", Appl. Phys. Rev., 4(1), 011101 (2017). https://doi.org/10.1063/1.4974168
  10. D. Xie, D. Shangguan, D. Geiger, D. Gill, V. Vellppan, and K. Chinniah, "Head in pillow (HIP) and yield study on SIP and PoP assembly", Proc. 2009 59th IEEE Electronic Components and Technology Conference (ECTC), California, 752, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  11. L. T. Chen, and C. M. Chen, "Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization", J. Mater. Res., 21(4), 962-969 (2006). https://doi.org/10.1557/jmr.2006.0113
  12. H. W. Miao, J. G. Duh, and B. S. Chiou, "Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints", J. Mater. Sci.: Mater. Electron., 11(8), 609-618 (2000). https://doi.org/10.1023/a:1008928729212
  13. F. Wang, H. Chen, Y. Huang, L. Liu, and Z. Zhang, "Recent progress on the development of Sn-Bi based low-temperature Pb-free solders", J. Mater. Sci.: Mater. Electron., 30(4), 3222-3243 (2019). https://doi.org/10.1007/s10854-019-00701-w
  14. J. E. Lee, K. S. Kim, and S. H. Huh, "Development of SnZn Based Low Temperature Lead-Free Solder for Improvement of Oxidation Resistance (in Kor.)", JWJ, 29(5), 16-23 (2011).
  15. R. Raj, P. Shrivastava, N. Jindal, S. N. Alam, N. Naithani, M. Padhy, and M. M. Abbas, "Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu solder alloys", J. Mater. Res., 110(12), 1150-1159 (2019). https://doi.org/10.3139/146.111851
  16. L. Pu, Y. Huo, X. Zhao, K. N. Tu, and Y. Liu, "Undercooling and microstructure analysis for the design of low melting point solder", Proc. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, 1, IEEE Electronic Devices Society (EDS) (2021).
  17. S. Cheng, C. M. Huang, and M. Pecht, "A review of lead-free solders for electronics applications", Microelectron. Reliab., 75, 77-95 (2017). https://doi.org/10.1016/j.microrel.2017.06.016
  18. J. H. Park, J. C. Park, S. Shin, and K. W. Paik, "Low-Temperature Bonding of PZT (PbZrTiO3) and Flexible Printed Circuits Using Sn52In Solder Anisotropic Conductive Films for Flexible Ultrasonic Transducers", IEEE Trans. Compon. Packaging Manuf. Technol., 9(11), 2152-2159 (2019). https://doi.org/10.1109/tcpmt.2019.2945016
  19. W. R. Osorio, L. C. Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys", J. Alloys Compd., 572, 97-106 (2013). https://doi.org/10.1016/j.jallcom.2013.03.234
  20. S. Liu, Z. Liu, L. Liu, T. Song, W. Liu, Y. Tan, Z. San, and S. Huang, "Electromigration behavior of Cu/Sn-58Bi-1Ag/Cu solder Joints by ultrasonic soldering process", J. Mater. Sci.: Mater. Electron., 31(15), 11997-12003 (2020). https://doi.org/10.1007/s10854-020-03817-6
  21. Z. Mei, and J. W. Morris, "Characterization of eutectic SnBi solder joints", J. Electron. Mater., 21(6), 599-607 (1992). https://doi.org/10.1007/BF02655427
  22. S. Liu, T. Song, W. Xiong, L. Liu, and S. Huang, "Effects of Ag on the microstructure and shear strength of rapidly solidified Sn-58Bi solder", J. Mater. Sci.: Mater. Electron., 30(7), 6701-6707 (2019). https://doi.org/10.1007/s10854-019-00981-2
  23. H. E. Peng, X. C. Lu, T. S. Lin, H. X. Li, A. N. Jing, M. A. Xin, and Y. Y. Qian, "Improvement of mechanical properties of Sn-58Bi alloy with multi-walled carbon nanotubes", Trans. Nonferrous Met. Soc. China, 22, 692-696 (2012).
  24. L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, and P. Wu, "Effects of Ni addition on mechanical properties of Sn58Bi solder alloy during solid-state aging", Mater. Sci. Eng. A, 667, 368-375 (2016). https://doi.org/10.1016/j.msea.2016.05.015
  25. Y. Wei, Y. Liu, L. Zhang, and X. Zhao, "Effects of endogenous Al and Zn phases on mechanical properties of Sn58Bi eutectic alloy", Mater. Charact., 175, 111089 (2021). https://doi.org/10.1016/j.matchar.2021.111089
  26. D. P. Jiang, Z. X. Yao, L. M. Yin, G. Wang, D. Li, and X. K. Tian, "Effect of minor Ag and Cu additions on melting characteristics, wettability and microstructures of Sn58Bi solder", Proc. 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, 1098, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2017).
  27. C. J. Lee, K. D. Min, H. J. Park, and S. B. Jung, "Mechanical properties of Sn-58wt% Bi solder containing Ag-decorated MWCNT with thermal aging tests", J. Alloys Compd., 820, 153077 (2020). https://doi.org/10.1016/j.jallcom.2019.153077
  28. X. Liu, M. Huang, C. M. L. Wu, and L. Wang, "Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder", J. Mater. Sci.: Mater. Electron., 21(10), 1046-1054 (2010). https://doi.org/10.1007/s10854-009-0025-y
  29. R. M. Shalaby, "Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys", Mater. Sci. Eng. A, 560, 86-95 (2013). https://doi.org/10.1016/j.msea.2012.09.038
  30. H. Kang, B. Baek, and J. P. Jung, "Recent Low Temperature Solder of SnBi and Its Bonding Characteristics (in Kor.)", JWJ, 38(6), 576-583 (2020).
  31. Y. Maruya, H. Hata, I. Shohji, and S. Koyama, "Bonding characteristics of Sn-57Bi-1Ag low temperature lead-free solder to gold-plated copper", Procedia Eng., 184, 223-230 (2017). https://doi.org/10.1016/j.proeng.2017.04.089
  32. M. McCormack, H. S. Chen, G. W. Kammlott, and S. Jin, "Significantly improved of Bi-Sn solder alloys mechanical properties by Ag-doping", J. Electron. Mater., 26(8), 954-958 (1997). https://doi.org/10.1007/s11664-997-0281-7
  33. Z. Wang, Q. K. Zhang, Y. X. Chen, and Z. L. Song, "Influences of Ag and In alloying on Sn- Bi eutectic solder and SnBi/Cu solder joints", J. Mater. Sci.: Mater. Electron., 30(20), 18524-18538 (2019). https://doi.org/10.1007/s10854-019-02206-y
  34. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", J. Electron. Mater., 37(7), 982-991 (2008). https://doi.org/10.1007/s11664-008-0458-8
  35. M. Li, Y. Tang, Z. Li, M. Zhu, and W. Wang, "Microstructure and mechanical properties of Sn-58Bi eutectic alloy with Cu/P addition", Mater. Res. Express., 7(11), 116502 (2020). https://doi.org/10.1088/2053-1591/abc4f8
  36. Q. S. Zhu, H. Y. Song, H. Y. Liu, Z. G. Wang, and J. K. Shang, "Effect of Zn addition on microstructure of Sn-Bi joint", Proc. 2009 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPTHDP), Beijing, 1043, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  37. S. Zhou, C. H. Yang, S. K. Lin, A. N. AlHazaa, O. Mokhtari, X. Liu, and H. Nishikawa, "Effects of Ti addition on the microstructure, mechanical properties and electrical resistivity of eutectic Sn58Bi alloy", Mater. Sci. Eng. A, 744, 560-569 (2019). https://doi.org/10.1016/j.msea.2018.12.012
  38. A. T. Tan, A. W. Tan, and F. Yusof, "Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions", Sci. Technol. Adv. Mater., (2015).
  39. L. Yang, J. Dai, Y. Zhang, Y. Jing, J. Ge, and H. Liu, "Influence of BaTiO3 nanoparticle addition on microstructure and mechanical properties of Sn-58Bi solder", J. Electron. Mater., 44(7), 2473-2478, (2015). https://doi.org/10.1007/s11664-015-3796-3
  40. N. Hansen, "Hall-Petch relation and boundary strengthening", Scr. Mater., 51(8), 801-806 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002
  41. S. Tikale, and K. Narayan Prabhu, "Bond shear strength of Al2O3 nanoparticles reinforced 2220-capacitor/SAC305 solder interconnects reflowed on bare and Ni-coated copper substrate", J. Mater. Sci., 32(3), 2865-2886 (2021).
  42. N. Jiang, L. Zhang, Z. Q. Liu, L. Sun, M. Y. Xiong, M. Zhao, and K. K. Xu, "Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder", J. Mater. Sci.: Mater. Electron., 30(19), 17583-17590 (2019). https://doi.org/10.1007/s10854-019-02107-0
  43. A. Singh, R. Durairaj, and K. S. How, "Effect Of 3% Molybdenum (Mo) Nanoparticles on The Melting, Microstructure and Hardness Properties of As-Reflowed Low Mass Sn-58Bi (SB) Solder Alloy", J. Adv. Res. Fluid Mech. Therm. Sci., 77(1), 69-87 (2021) https://doi.org/10.37934/arfmts.77.1.6987
  44. B. Kim, H. Choi, H. Jeon, D. Lee, and Y. Sohn, "Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (in Kor.)", J. Microelectron. Packag. Soc. 28(2), 95-103 (2021). https://doi.org/10.6117/KMEPS.2021.28.2.095
  45. Y. Li, and Y. C. Chan, "Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58BiAg composite solders", J. Alloys Compd., 645, 566-576 (2015). https://doi.org/10.1016/j.jallcom.2015.05.023
  46. T. Nishizawa, I. Ohnuma, and K. Ishida, "Examination of the Znenr relationship between grain size and particle dispersion", Mater. Trans. JIM, 38(11), 950-956 (1997). https://doi.org/10.2320/matertrans1989.38.950
  47. X. Li, Y. Ma, W. Zhou, and P. Wu, "Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys", Mater. Sci. Eng. A, 684, 328-334 (2017). https://doi.org/10.1016/j.msea.2016.12.089
  48. L. Shen, P. Septiwerdani, and Z. Chen, "Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation", Mater. Sci. Eng. A, 558, 253-258 (2012). https://doi.org/10.1016/j.msea.2012.07.120
  49. D. Grivas, K. L. Murty, and J. W. Morris Jr, "Deformation of Pb Sn eutectic alloys at relatively high strain rates", Acta Metall., 27(5), 731-737 (1979). https://doi.org/10.1016/0001-6160(79)90106-8
  50. L. Yang, C. Du, J. Dai, N. Zhang, and Y. Jing, "Effect of nanosized graphite on properties of Sn-Bi solder" J. Mater. Sci.: Mater. Electron., 24(11), 4180-4185 (2013). https://doi.org/10.1007/s10854-013-1380-2
  51. L. Yang, W. Zhou, Y. Liang, W. Cui, and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes", Mater. Sci. Eng. A, 642, 7-15 (2015). https://doi.org/10.1016/j.msea.2015.06.080
  52. S. Amares, R. Durairaj, and S. H. Kuan, "Experimental Study on the Melting Temperature, Microstructural and Improved Mechanical Properties of Sn58Bi/Cu Solder Alloy Reinforced with 1%, 2% and 3% Zirconia (ZrO2) Nanoparticles", Arch. Metall. Mater., 66, 407-418 (2021).
  53. W. Zhu, Y. Ma, X. Li, W. Zhou, and P. Wu, "Effects of Al2O3 nanoparticles on the microstructure and properties of Sn58Bi solder alloys", J. Mater. Sci.: Mater. Electron., 29(9), 7575-7585 (2018). https://doi.org/10.1007/s10854-018-8749-1