DOI QR코드

DOI QR Code

Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge

  • Sumon, Md Afsar Ahmed (Departmentof Marine Biology, King Abdulaziz University) ;
  • Sumon, Tofael Ahmed (Department of Fish Health Management, Sylhet Agricultural University) ;
  • Hussain, Md. Ashraf (Department of Fisheries Technology and Quality Control, Sylhet Agricultural University) ;
  • Lee, Su-Jeong (Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Jang, Won Je (Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Sharifuzzaman, S.M. (Institute of Marine Sciences, University of Chittagong) ;
  • Brown, Christopher L. (FAOWorld Fisheries University Pilot Programme, Pukyong National University) ;
  • Lee, Eun-Woo (Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Hasan, Md. Tawheed (Core-Facility Center for Tissue Regeneration, Dong-Eui University)
  • Received : 2022.02.21
  • Accepted : 2022.06.03
  • Published : 2022.06.28

Abstract

The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.

Keywords

Acknowledgement

This study was supported by Brain Pool Scholarship (Grant no.: 2021H1D3A2A01099381) funded by National Research Foundation of Korea (NRF) and NRF grant funded by Ministry of Education (Grant no.: 2021R1I1A1A01049238).

References

  1. FAO. 2018. Fisheries Department, Fishery Information, Data and Statistics Unit. FishStatJ, a tool for fishery statistics analysis. Global aquaculture production: Quantity 1950-2016; Value 1950-2016; Global capture production: 1950-2016; 2018-03-16. .
  2. Hoseinifar SH, Sun Y-Z, Wang A, Zhou Z. 2018. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9: 2429. https://doi.org/10.3389/fmicb.2018.02429
  3. Dawood MA, Koshio S, Abdel-Daim MM, Van Doan H. 2019. Probiotic application for sustainable aquaculture. Rev. Aquac. 11: 907-924. https://doi.org/10.1111/raq.12272
  4. Berg A, Rodseth OM, Hansen T. 2007. Fish size at vaccination influence the development of side-effects in Atlantic salmon (Salmo salar L.). Aquaculture 265: 9-15. https://doi.org/10.1016/j.aquaculture.2007.02.014
  5. Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, et al. 2019. Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunol. 86: 734-755. https://doi.org/10.1016/j.fsi.2018.12.026
  6. Hasan MT, Jang WJ, Lee S, Kim KW, Lee BJ, Han HS, et al. 2018a. Effect of β-glucooligosaccharides as a new prebiotic for dietary supplementation in olive flounder (Paralichthys olivaceus) aquaculture. Aquac. Res. 49: 1310-1319. https://doi.org/10.1111/are.13588
  7. Dawood MA, Koshio S. 2016. Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454: 243-251. https://doi.org/10.1016/j.aquaculture.2015.12.033
  8. Hasan MT, Je Jang W, Lee JM, Lee B-J, Hur SW, Gu Lim S, et al. 2019a. Effects of immunostimulants, prebiotics, probiotics, synbiotics, and potentially immunoreactive feed additives on olive flounder (Paralichthys olivaceus): a review. Rev. Fisheries Sci. Aquac. 27: 417-437. https://doi.org/10.1080/23308249.2019.1622510
  9. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399: 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  10. Sharifuzzaman S, Austin B. 2017. Probiotics for disease control in aquaculture. pp. 189-222. Diagnosis and control of diseases of fish and shellfish. Publisher: John Wiley & Sons, Inc.
  11. Hasan MT, Jang WJ, Kim H, Lee B-J, Kim KW, Hur SW, et al. 2018b. Synergistic effects of dietary Bacillus sp. SJ-10 plus β-glucooligosaccharides as a synbiotic on growth performance, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 82: 544-553. https://doi.org/10.1016/j.fsi.2018.09.002
  12. Parker R. 1974. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health 29: 4-8.
  13. Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RT, Bogwald J, et al. 2010a. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302: 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007
  14. Akbari Nargesi E, Falahatkar B, Sajjadi MM. 2020. Dietary supplementation of probiotics and influence on feed efficiency, growth parameters and reproductive performance in female rainbow trout (Oncorhynchus mykiss) broodstock. Aquac. Nutr. 26: 98-108. https://doi.org/10.1111/anu.12970
  15. Naderi Farsani M, Bahrami Gorji S, Hoseinifar SH, Rashidian G, Van Doan H. 2020. Combined and singular effects of dietary primalac® and potassium diformate (KDF) on growth performance and some physiological parameters of rainbow trout (Oncorhynchus mykiss). Probiotics Antimicrob. Proteins 12: 236-245. https://doi.org/10.1007/s12602-019-9523-2
  16. Makled SO, Hamdan AM, El-Sayed A-FM. 2020. Growth promotion and immune stimulation in nile tilapia, Oreochromis niloticus, fingerlings following dietary administration of a novel marine probiotic, Psychrobacter maritimus S. Probiotics Antimicrob. Proteins 12: 365-374. https://doi.org/10.1007/s12602-019-09575-0
  17. Beck BR, Song JH, Park BS, Kim D, Kwak J-H, Do HK, et al. 2016. Distinct immune tones are established by Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 in the gut of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol.55: 434-443. https://doi.org/10.1016/j.fsi.2016.06.022
  18. Park Y, Kim H, Won S, Hamidoghli A, Hasan MT, Kong IS, et al. 2020. Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese eel, Anguilla japonica. Aquac. Nutr. 26: 316-327. https://doi.org/10.1111/anu.12993
  19. Akter MN, Hashim R, Sutriana A, Siti Azizah MN, Asaduzzaman M. 2019. Effect of Lactobacillus acidophilus supplementation on growth performances, digestive enzyme activities and gut histomorphology of striped catfish (Pangasianodon hypophthalmusSauvage, 1878) juveniles. Aquac. Res. 50: 786-797. https://doi.org/10.1111/are.13938
  20. Ramesh D, Souissi S, Ahamed TS. 2017. Effects of the potential probiotics Bacillus aerophilus KADR3 in inducing immunity and disease resistance in Labeo rohita. Fish Shellfish Immunol. 70: 408-415. https://doi.org/10.1016/j.fsi.2017.09.037
  21. Hasan MT, Jang WJ, Kim H, Lee B-J, Kim KW, Hur SW, et al. 2018c. Synergistic effects of dietary Bacillus sp. SJ-10 plus β-glucooligosaccharides as a synbiotic on growth performance, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 82: 544-553. https://doi.org/10.1016/j.fsi.2018.09.002
  22. Cha J-H, Rahimnejad S, Yang S-Y, Kim K-W, Lee K-J. 2013. Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402: 50-57. https://doi.org/10.1016/j.aquaculture.2013.03.030
  23. Wang Y-B, Li J-R, Lin J. 2008a. Probiotics in aquaculture: challenges and outlook. Aquaculture 281: 1-4. https://doi.org/10.1016/j.aquaculture.2008.06.002
  24. Huang W, Chang J, Wang P, Liu C, Yin Q, Zhu Q, et al. 2018. Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B1 and zearalenone. J. Toxicol. Sci. 43: 377-385. https://doi.org/10.2131/jts.43.377
  25. Sugahara H, Odamaki T, Fukuda S, Kato T, Xiao J-z, Abe F, et al. 2015. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 5: 1-11.
  26. Jang WJ, Lee S-J, Jeon M-H, Kim T-Y, Lee JM, Hasan MT, et al. 2021a. Characterization of a Bacillus sp. KRF-7 isolated from the intestine of rockfish and effects of dietary supplementation with mannan oligosaccharide in rockfish aquaculture. Fish Shellfish Immunol. 119: 182-192. https://doi.org/10.1016/j.fsi.2021.09.039
  27. Nguafack TT, Jang WJ, Hasan MT, Choi YH, Bai SC, Lee E-W, et al. 2020. Effects of dietary non-viable Bacillus sp. SJ-10, Lactobacillus plantarum, and their combination on growth, humoral and cellular immunity, and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Res. Vet. Sci. 131: 177-185. https://doi.org/10.1016/j.rvsc.2020.04.026
  28. Jang WJ, Lee JM, Hasan MT, Lee B-J, Lim SG, Kong I-S. 2019a. Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 92: 719-727. https://doi.org/10.1016/j.fsi.2019.06.056
  29. Jang WJ, Hasan MT, Lee GH, Lee B-J, Hur SW, Lee S, et al. 2021b. Comparison of spore or vegetative Bacillus sp. supplementation on physiological changes and gut microbiota of the olive flounder (Paralichthys olivaceus). Aquaculture 535: 736355. https://doi.org/10.1016/j.aquaculture.2021.736355
  30. Sharifuzzaman S, Al-Harbi A, Austin B. 2014. Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture 418: 55-61. https://doi.org/10.1016/j.aquaculture.2013.10.006
  31. Dawood MA, Eweedah NM, Moustafa EM, Farahat EM. 2020a. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture 520: 734669. https://doi.org/10.1016/j.aquaculture.2019.734669
  32. Barroso C, Ozorio RO, Afonso A, Moraes JR, Costas B. 2016. Immune responses and gut morphology in Senegalese sole (Solea senegalensis) fed dietary probiotic supplementation and following exposure to Photobacterium damselae subsp. piscicida. Aquac. Res. 47: 951-960. https://doi.org/10.1111/are.12553
  33. Kashem MA, Uddin MN, Hossain MM, Hasan MT, Haque SA, Khan MNA, et al. 2014. Effect of oxytetracycline on bacterial load of Labeo rohita (Rohu) fish in culture pond. Glo. Adv. Res. J. Microbiol. 3: 018-024.
  34. Kordon AO, Karsi A, Pinchuk L. 2018. Innate immune responses in fish: Antigen presenting cells and professional phagocytes. Turkish J. Fish. Aquat. Sci. 18: 1123-1138.
  35. Beck BR, Kim D, Jeon J, Lee S-M, Kim HK, Kim O-J, et al. 2015. The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 42: 177-183. https://doi.org/10.1016/j.fsi.2014.10.035
  36. Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Srichaiyo S. 2018. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 491: 94-100. https://doi.org/10.1016/j.aquaculture.2018.03.019
  37. Dobano C, Moncunill G. 2018. Naturally acquired immunity (NAI). pp. 1-15. Encyclopedia of malaria. Springer New York, New York, NY.
  38. Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MA. 2015. Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol. 45: 27-32. https://doi.org/10.1016/j.fsi.2015.03.029
  39. Akhter N, Wu B, Memon AM, Mohsin M. 2015. Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol. 45: 733-741. https://doi.org/10.1016/j.fsi.2015.05.038
  40. Kim Y-R, Kim E-Y, Choi S-y, Hossain MT, Oh R-K, Heo W-S, et al. 2012. Effect of a probiotic strain, Enterococcus faecium, on the immune responses of olive flounder (Paralichthys olivaceus). J. Microbiol. Biotechnol. 22: 526-529. https://doi.org/10.4014/jmb.1108.08047
  41. Kono T, Ponpornpisit A, Sakai M. 2004. The analysis of expressed genes in head kidney of common carp Cyprinus carpio L. stimulated with peptidoglycan. Aquaculture 235: 37-52. https://doi.org/10.1016/S0044-8486(03)00447-2
  42. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813: 878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034
  43. Hasan MT, Jang WJ, Lee B-J, Hur SW, Lim SG, Kim KW, et al. 2021. Dietary supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 combinations enhance growth and cellular and humoral immunity in olive flounder (Paralichthys olivaceus). Probiotics Antimicrob. Proteins 13: 1277-1291. https://doi.org/10.1007/s12602-021-09749-9
  44. Brunt J, Hansen R, Jamieson DJ, Austin B. 2008. Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Vet. Immunol Immunopathol. 121: 199-205. https://doi.org/10.1016/j.vetimm.2007.09.010
  45. Galdeano CM, Cazorla SI, Dumit JML, Velez E, Perdigon G. 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 74: 115-124. https://doi.org/10.1159/000496426
  46. Link-Amster H, Rochat F, Saudan K, Mignot O, Aeschlimann J. 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10: 55-63. https://doi.org/10.1016/0928-8244(94)90015-9
  47. Fang H, Elina T, Heikki A, Seppo S. 2000. Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 29: 47-52. https://doi.org/10.1016/S0928-8244(00)00187-5
  48. Sankaran-Walters S, Hart R, Dills C. 2017. Guardians of the gut: enteric defensins. Front. Microbiol. 8: 647.
  49. Cazorla SI, Maldonado-Galdeano C, Weill R, De Paula J, Perdigon GD. 2018. Oral administration of probiotics increases paneth cells and intestinal antimicrobial activity. Front. Microbiol. 9: 736. https://doi.org/10.3389/fmicb.2018.00736
  50. Pridgeon JW, Klesius PH. 2011. Development and efficacy of a novobiocin-resistant Streptococcus iniae as a novel vaccine in Nile tilapia (Oreochromis niloticus). Vaccine 29: 5986-5993. https://doi.org/10.1016/j.vaccine.2011.06.036
  51. Rinkinen M, Jalava K, Westermarck E, Salminen S, Ouwehand AC. 2003. Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization? Vet. Microbiol. 92: 111-119. https://doi.org/10.1016/S0378-1135(02)00356-5
  52. Abou-El-Atta ME, Abdel-Tawwab M, Abdel-Razek N, Abdelhakim TM. 2019. Effects of dietary probiotic Lactobacillus plantarum and whey protein concentrate on the productive parameters, immunity response and susceptibility of Nile tilapia, Oreochromis niloticus (L.), to Aeromonas sobria infection. Aquac. Nutr. 25: 1367-1377. https://doi.org/10.1111/anu.12957
  53. Yu L, Zhai Q, Zhu J, Zhang C, Li T, Liu X, et al. 2017. Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicol. Environ. Safety 143: 307-314. https://doi.org/10.1016/j.ecoenv.2017.05.023
  54. Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W. 2017. Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquac. Res. 48: 5094-5103. https://doi.org/10.1111/are.13326
  55. Van Doan H, Hoseinifar SH, Tapingkae W, Tongsiri S, Khamtavee P. 2016. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 58: 678-685. https://doi.org/10.1016/j.fsi.2016.10.013
  56. Poolsawat L, Li X, He M, Ji D, Leng X. 2020. Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus× O. aureus). Aquac. Nutr. 26: 657-670. https://doi.org/10.1111/anu.13025
  57. Li H, Zhou Y, Ling H, Luo L, Qi D, Feng L. 2019. The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One 14: e0223428. https://doi.org/10.1371/journal.pone.0223428
  58. Liu H, Wang S, Cai Y, Guo X, Cao Z, Zhang Y, et al. 2017. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 60: 326-333. https://doi.org/10.1016/j.fsi.2016.12.003
  59. Gobi N, Vaseeharan B, Chen J-C, Rekha R, Vijayakumar S, Anjugam M, et al. 2018. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol. 74: 501-508. https://doi.org/10.1016/j.fsi.2017.12.066
  60. Abarike ED, Jian J, Tang J, Cai J, Yu H, Lihua C, et al. 2018. Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac. Res. 49: 2366-2375. https://doi.org/10.1111/are.13691
  61. Samson JS, Choresca CH, Quiazon KMA. 2022. Probiotic effect of Bacillus spp. isolated from African nightcrawler (Eudrilus eugeniae) on the performance of Nile Tilapia (Oreochromis niloticus L.). Arch. Microbiol. 204: 235. https://doi.org/10.1007/s00203-022-02856-3
  62. Wang M, Liu G, Lu M, Ke X, Liu Z, Gao F, et al. 2017. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac. Res. 48: 3163-3173. https://doi.org/10.1111/are.13146
  63. Ramos MA, Goncalves JF, Costas B, Batista S, Lochmann R, Pires MA, et al. 2017. Commercial Bacillus probiotic supplementation of rainbow trout (Oncorhynchys mykiss) and brown trout (Salmo trutta): growth, immune responses and intestinal morphology. Aquac. Res. 48: 2538-2549. https://doi.org/10.1111/are.13090
  64. Docando F, Nunez-Ortiz N, Serra C, Arense P, Enes P, Oliva-Teles A, et al. 2022. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 124: 142-155. https://doi.org/10.1016/j.fsi.2022.03.040
  65. Chen S-W, Liu C-H, Hu S-Y. 2019. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 84: 695-703. https://doi.org/10.1016/j.fsi.2018.10.059
  66. Dawood MA, Moustafa EM, Gewaily MS, Abdo SE, AbdEl-Kader MF, SaadAllah MS, et al. 2020b. Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol. 219: 105377. https://doi.org/10.1016/j.aquatox.2019.105377
  67. Tan HY, Chen S-W, Hu S-Y. 2019. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 92: 265-275. https://doi.org/10.1016/j.fsi.2019.06.027
  68. Makled SO, Hamdan AM, El-Sayed A-FM, Hafez EE. 2017. Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immunol. 61: 194-200. https://doi.org/10.1016/j.fsi.2017.01.001
  69. Maas RM, Verdegem MC, Debnath S, Marchal L, Schrama JW. 2021. Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilisation in Nile tilapia. Aquaculture 533: 736226. https://doi.org/10.1016/j.aquaculture.2020.736226
  70. Kuebutornye FK, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, et al. 2020. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol. 97: 83-95. https://doi.org/10.1016/j.fsi.2019.12.046
  71. Sookchaiyaporn N, Srisapoome P, Unajak S, Areechon N. 2020. Efficacy of Bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. on its growth and immunity, and control of pathogenic bacteria. Fish. Sci. 86: 353-365. https://doi.org/10.1007/s12562-019-01394-0
  72. Won S, Hamidoghli A, Choi W, Park Y, Jang WJ, Kong I-S, et al. 2020. Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus. Microorganisms 8: doi: 10.3390/microorganisms8010067.
  73. Dawood MA, Moustafa EM, Gewaily MS, Abdo SE, AbdEl-Kader MF, SaadAllah MS, et al. 2020c. Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol. 219: 105377. https://doi.org/10.1016/j.aquatox.2019.105377
  74. Foysal MJ, Alam M, Kawser AR, Hasan F, Rahman MM, Tay C-Y, et al. 2020. Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 520: 734974. https://doi.org/10.1016/j.aquaculture.2020.734974
  75. Dowidar M, Abd ElAzeem S, Khater A, Awad Somayah M, Metwally S. 2018. Improvement of growth performance, immunity and disease resistance in Nile tilapia, Oreochromis niloticus, by using dietary probiotics supplementation. J. Anim. Sci. Vet. Med. 3: 35-46. https://doi.org/10.31248/JASVM2018.076
  76. El-Kady AA, Magouz FI, Mahmoud SA, Abdel-Rahim MM. 2022. The effects of some commercial probiotics as water additive on water quality, fish performance, blood biochemical parameters, expression of growth and immune-related genes, and histology of Nile tilapia (Oreochromis niloticus). Aquaculture 546: 737249. https://doi.org/10.1016/j.aquaculture.2021.737249
  77. Han B, Long W-Q, He J-Y, Liu Y-J, Si Y-Q, Tian L-X. 2015. Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 46: 225-231. https://doi.org/10.1016/j.fsi.2015.06.018
  78. He S, Zhou Z, Liu Y, Shi P, Yao B, Ringo E, et al. 2009. Effects of dietary Saccharomyces cerevisiae fermentation product (DVAQUA®) on growth performance, intestinal autochthonous bacterial community and non-specific immunity of hybrid tilapia (Oreochromis niloticus♀ × O. aureus♂ ) cultured in cages. Aquaculture 294: 99-107. https://doi.org/10.1016/j.aquaculture.2009.04.043
  79. Aly SM, Mohamed MF, John G. 2008. Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac. Res. 39: 647-656. https://doi.org/10.1111/j.1365-2109.2008.01932.x
  80. Wang C, Liu Y, Sun G, Li X, Liu Z. 2019. Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound. Aquaculture 500: 65-74. https://doi.org/10.1016/j.aquaculture.2018.09.052
  81. Jaramillo-Torres A, Rawling MD, Rodiles A, Mikalsen HE, Johansen L-H, Tinsley J, et al. 2019. Influence of dietary supplementation of probiotic Pediococcus acidilactici MA18/5M during the transition from freshwater to seawater on intestinal health and microbiota of Atlantic salmon (Salmo salar L.). Front. Microbiol. doi.org/10.3389/fmicb.2019.02243.
  82. Kiron V, Kulkarni A, Dahle D, Lokesh J, Kitani Y. 2015. A microbial feed additive abates intestinal inflammation in Atlantic salmon. Front. Immunol. 6: 409. https://doi.org/10.3389/fimmu.2015.00409
  83. Gupta S, Feckaninova A, Lokesh J, Koscova J, Sorensen M, Fernandes J, et al. 2019. Lactobacillus dominate in the intestine of Atlantic salmon fed dietary probiotics. Front. Microbiol. 9: 3247. https://doi.org/10.3389/fmicb.2018.03247
  84. Nimalan N, Sorensen SL, Feckaninova A, Koscova J, Mudronova D, Gancarcikova S, et al. 2022. Mucosal barrier status in Atlantic salmon fed marine or plant-based diets supplemented with probiotics. Aquaculture 547: 737516. https://doi.org/10.1016/j.aquaculture.2021.737516
  85. Salinas I, Myklebust R, Esteban MA, Olsen RE, Meseguer J, Ringo E. 2008. In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage. Vet. Microbiol. 128: 167-177. https://doi.org/10.1016/j.vetmic.2007.10.011
  86. Kristiansen M, Ringo E. 2011. Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of Atlantic salmon (Salmo salar L.). J. Aquac. Res. Development S1: 009.
  87. Ringo E, Salinas I, Olsen R, Nyhaug A, Myklebust R, Mayhew T. 2007. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res. 328: 109-116. https://doi.org/10.1007/s00441-006-0323-0
  88. Soltani M, Kane A, Taheri-Mirghaed A, Pakzad K, Hosseini-Shekarabi P. 2019a. Effect of the probiotic, Lactobacillus plantarum on growth performance and haematological indices of rainbow trout (Oncorhynchus mykiss) immunized with bivalent streptococcosis/lactococcosis vaccine. Iran. J. Fish. Sci. 18: 283-295.
  89. Soltani M, Pakzad K, Taheri-Mirghaed A, Mirzargar S, Shekarabi SPH, Yosefi P, et al. 2019b. Dietary application of the probiotic Lactobacillus plantarum 426951 enhances immune status and growth of rainbow trout (Oncorhynchus mykiss) vaccinated against Yersinia ruckeri. Probiotics Antimicrob. Proteins 11: 207-219. https://doi.org/10.1007/s12602-017-9376-5
  90. Panigrahi A, Kiron V, Satoh S, Watanabe T. 2010. Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish. Physiol. Biochem. 36: 969-977. https://doi.org/10.1007/s10695-009-9375-x
  91. Vazirzadeh A, Roosta H, Masoumi H, Farhadi A, Jeffs A. 2020. Long-term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow-out. Fish Shellfish Immunol. 98: 748-757. https://doi.org/10.1016/j.fsi.2019.11.023
  92. Mohammadian T, Ghanei-Motlagh R, Jalali M, Nasirpour M, Mohtashamipour H, Osroush E, et al. 2022. Protective effects of non-encapsulated and microencapsulated Lactobacillus delbrueckii subsp. bulgaricus in rainbow trout (Oncorhynchus mykiss) exposed to lead (Pb) via diet. Ann. Anim. Sci. 22: 325-348. https://doi.org/10.2478/aoas-2021-0026
  93. Mohammadian T, Nasirpour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS. 2019. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol. 86: 269-279. https://doi.org/10.1016/j.fsi.2018.11.052
  94. Perez-Sanchez T, Balcazar JL, Merrifield DL, Carnevali O, Gioacchini G, de Blas I, et al. 2011. Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol. 31: 196-201. https://doi.org/10.1016/j.fsi.2011.05.005
  95. Ramos M, Goncalves J, Batista S, Costas B, Pires M, Rema P, et al. 2015. Growth, immune responses and intestinal morphology of rainbow trout (Oncorhynchus mykiss) supplemented with commercial probiotics. Fish Shellfish Immunol. 45: 19-26. https://doi.org/10.1016/j.fsi.2015.04.001
  96. Park Y, Lee S, Hong J, Kim D, Moniruzzaman M, Bai SC. 2017. Use of probiotics to enhance growth, stimulate immunity and confer disease resistance to Aeromonas salmonicida in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 48: 2672-2682. https://doi.org/10.1111/are.13099
  97. Merrifield D, Bradley G, Baker R, Davies S. 2010b. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr. 16: 496-503. https://doi.org/10.1111/j.1365-2095.2009.00688.x
  98. Sharifuzzaman S, Austin B. 2010. Development of protection in rainbow trout (Oncorhynchus mykiss, Walbaum) to Vibrio anguillarum following use of the probiotic Kocuria SM1. Fish Shellfish Immunol. 29: 212-216. https://doi.org/10.1016/j.fsi.2010.03.008
  99. Capkin E, Altinok I. 2009. Effects of dietary probiotic supplementations on prevention/treatment of yersiniosis disease. J. Appl. Microbiol. 106: 1147-1153. https://doi.org/10.1111/j.1365-2672.2008.04080.x
  100. Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M. 2016. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol. 52: 198-205. https://doi.org/10.1016/j.fsi.2016.03.020
  101. Sahandi J, Jafaryan H, Soltani M, Ebrahimi P. 2019. The use of two Bifidobacterium strains enhanced growth performance and nutrient utilization of Rainbow Trout (Oncorhynchus mykiss) fry. Probiotics Antimicrob. Proteins 11: 966-972. https://doi.org/10.1007/s12602-018-9455-2
  102. Adel M, Lazado CC, Safari R, Yeganeh S, Zorriehzahra MJ. 2017. Aqualase®, a yeast-based in-feed probiotic, modulates intestinal microbiota, immunity and growth of rainbow trout Oncorhynchus mykiss. Aquac. Res. 48: 1815-1826. https://doi.org/10.1111/are.13019
  103. Kurdomanov A, Sirakov I, Stoyanova S, Velichkova K, Nedeva I, Staykov Y. 2019. The effect of diet supplemented with Proviotic® on growth, blood biochemical parameters and meat quality in rainbow trout (Oncorhynchus mykiss) cultivated in recirculation system. Aquaculture, Aquarium, Conservation Legislation 12: 404-412.
  104. Zhang C, Zhang J, Fan W, Huang M, Liu M. 2019. Effects of dietary Lactobacillus delbrueckii on growth performance, body composition, digestive and absorptive capacity, and gene expression of common carp (Cyprinus carpio Huanghe var). Aquac. Nutr. 25: 166-175. https://doi.org/10.1111/anu.12840
  105. Zhang C-N, Zhang J-L, Guan W-C, Zhang X-F, Guan S-H, Zeng Q-H, et al. 2017. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish Shellfish Immunol. 68: 84-91. https://doi.org/10.1016/j.fsi.2017.07.012
  106. Yanuhar U, Caesar NR, Junirahma NS, Soelistyoadi RN. 2022. Immunomolecular response of CD4+, CD8+, TNF-α and IFN-γ in Myxobolus-infected koi (Cyprinus carpio) treated with probiotics. Aquac. Fish. doi.org/10.1016/j.aaf.2022.01.004.
  107. Valiallahi J, Pourabasali M, Janalizadeh E, Bucio A. 2018. Use of Lactobacillus for improved growth and enhanced biochemical, hematological, and digestive enzyme activity in common carp at Mazandaran, Iran. North Am. J. Aquac. 80: 206-215. https://doi.org/10.1002/naaq.10027
  108. Kazun B, Malaczewska J, Kazun K, Zylinska-Urban J, Siwicki AK. 2018. Immune-enhancing activity of potential probiotic strains of Lactobacillus plantarum in the common carp (Cyprinus carpio) fingerling. J. Vet. Res. 62: 485. https://doi.org/10.2478/jvetres-2018-0062
  109. Xu Y, Wang Y, Lin J. 2014. Use of Bacillus coagulans as a dietary probiotic for the common carp, Cyprinus carpio. J. World Aquac. Soc. 45: 403-411. https://doi.org/10.1111/jwas.12139
  110. Gupta A, Gupta P, Dhawan A. 2014. Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol. 41: 113-119. https://doi.org/10.1016/j.fsi.2014.08.023
  111. Rostika R, Azhima MF, Ihsan YN, Andriani Y, Suryadi IBB, Dewanti LP. 2020. The use of solid probiotics in feed to growth and survival rate of mantap common carp (Cyprinus carpio). Aquac. Aquar. Conserv. Legis. 13: 199-206.
  112. Hoseinifar SH, Hosseini M, Paknejad H, Safari R, Jafar A, Yousefi M, et al. 2019. Enhanced mucosal immune responses, immune related genes and growth performance in common carp (Cyprinus carpio) juveniles fed dietary Pediococcus acidilactici MA18/5M and raffinose. Dev. Comp. Immunol. 94: 59-65. https://doi.org/10.1016/j.dci.2019.01.009
  113. Ahmadifar E, Sadegh TH, Dawood MA, Dadar M, Sheikhzadeh N. 2020. The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture 516: 734656. https://doi.org/10.1016/j.aquaculture.2019.734656
  114. Ajdari A, Ghafarifarsani H, Hoseinifar SH, Javahery S, Narimanizad F, Gatphayak K, et al. 2022. Effects of dietary supplementation of primaLac, inulin, and biomin imbo on growth performance, antioxidant, and innate immune responses of common carp (Cyprinus carpio). Aquac. Nutr. doi.org/10.1155/2022/8297479.
  115. Mehrabi F, Khalesi M, Hazaie K. 2018. Effects of pre-and probiotics on growth, survival, body composition, and hematology of common carp (Cyprinus carpio L.) fry from the Caspian Sea. Turkish J. Fish. Aquat. Sci. 18: 597-602.
  116. Lee JM, Jang WJ, Hasan MT, Lee B-J, Kim KW, Lim SG, et al. 2019. Characterization of a Bacillus sp. isolated from fermented food and its synbiotic effect with barley β-glucan as a biocontrol agent in the aquaculture industry. Appl. Microbiol. Biotechnol. 103: 1429-1439. https://doi.org/10.1007/s00253-018-9480-9
  117. Kim D, Beck BR, Lee SM, Jeon J, Lee DW, Lee JI, et al. 2016. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 55: 374-383. https://doi.org/10.1016/j.fsi.2016.06.010
  118. Beck BR, Lee SH, Kim D, Park JH, Lee HK, Kwon S-S, et al. 2017. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines. Fish Shellfish Immunol. 68: 19-28. https://doi.org/10.1016/j.fsi.2017.07.004
  119. Harikrishnan R, Kim M-C, Kim J-S, Balasundaram C, Heo M-S. 2011a. Probiotics and herbal mixtures enhance the growth, blood constituents, and nonspecific immune response in Paralichthys olivaceus against Streptococcus parauberis. Fish Shellfish Immunol. 31: 310-317. https://doi.org/10.1016/j.fsi.2011.05.020
  120. Harikrishnan R, Kim M-C, Kim J-S, Balasundaram C, Heo M-S. 2011b. Immunomodulatory effect of probiotics enriched diets on Uronema marinum infected olive flounder. Fish Shellfish Immunol. 30: 964-971. https://doi.org/10.1016/j.fsi.2011.01.030
  121. Kim J, Lee KW, Jeong HS, Ansary MWR, Kim HS, Kim T, et al. 2019. Oral administration effect of yacon, ginger and blueberry on the growth, body composition and plasma chemistry of juvenile olive flounder (Paralichthys olivaceus) and immunity test against Streptococcus iniae compared to a commercial probiotic, Lactobacillus fermentum. Aquac. Rep. 15: 100212. https://doi.org/10.1016/j.aqrep.2019.100212
  122. Jang WJ, Choi S-Y, Lee JM, Lee GH, Hasan MT, Kong I-S. 2019b. Viability of Lactobacillus plantarum encapsulated with poly-γ-glutamic acid produced by Bacillus sp. SJ-10 during freeze-drying and in an in vitro gastrointestinal model. LWT 112: 108222. https://doi.org/10.1016/j.lwt.2019.05.120
  123. Jang WJ, Lee JM, Kim Y-R, Hasan MT, Kong I-S. 2018. Complete genome sequence of Bacillus sp. SJ-10 (KCCM 90078) producing 400-kDa poly-γ-glutamic acid. Curr. Microbiol. 75: 1378-1383. https://doi.org/10.1007/s00284-018-1533-x
  124. Jang WJ, Lee JM, Hasan MT, Kong I-S. 2019c. Fusion of the N-terminal domain of Pseudomonas sp. phytase with Bacillus sp. phytase and its effects on optimal temperature and catalytic efficiency. Enzyme Microb. Technol. 126: 69-76. https://doi.org/10.1016/j.enzmictec.2019.04.002
  125. Hasan MT, Jang WJ, Lee B-J, Kim KW, Hur SW, Lim SG, et al. 2019b. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 88: 424-431. https://doi.org/10.1016/j.fsi.2019.03.018
  126. Niu K-M, Khosravi S, Kothari D, Lee W-D, Lim J-M, Lee B-J, et al. 2019. Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 93: 258-268. https://doi.org/10.1016/j.fsi.2019.07.056
  127. FAO. 2020. Sustainability in action. State of World Fisheries and Aquaculture. Rome 200.
  128. Qin L, Xiang J, Xiong F, Wang G, Zou H, Li W, et al. 2020. Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 97: 344-350. https://doi.org/10.1016/j.fsi.2019.12.040
  129. Tang Y, Han L, Chen X, Xie M, Kong W, Wu Z. 2019. Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge. Probiotics Antimicrob. Proteins 11: 545-558. https://doi.org/10.1007/s12602-018-9409-8
  130. Guo D, Xie M, Xiao H, Xu L, Zhang S, Chen X, et al. 2022. Bacillus subtilis supplementation in a high-fat diet modulates the gut microbiota and ameliorates hepatic lipid accumulation in grass carp (Ctenopharyngodon idella). Fishes 7: 94. https://doi.org/10.3390/fishes7030094
  131. Li Y, Luo L, Yang Q, Zhang W, Tang X, Yu X, et al. 2022. Bacillus methylotrophicus WM-1 enhances the immunity of grass carp against Aeromonas hydrophila. Aquac. Res. 53: 2464-2471. https://doi.org/10.1111/are.15764
  132. Li Y, Hu S, Gong L, Pan L, Li D, Cao L, et al. 2020. Isolating a new Streptomyces amritsarensis N1-32 against fish pathogens and determining its effects on disease resistance of grass carp. Fish Shellfish Immunol. 98: 632-640. https://doi.org/10.1016/j.fsi.2019.10.038
  133. Wu Z-Q, Jiang C, Ling F, Wang G-X. 2015. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus). Aquaculture 438: 105-114. https://doi.org/10.1016/j.aquaculture.2014.12.041
  134. Hao K, Wu Z-Q, Li D-L, Yu X-B, Wang G-X, Ling F. 2017. Effects of dietary administration of Shewanella xiamenensis A-1, Aeromonas veronii A-7, and Bacillus subtilis, single or combined, on the grass carp (Ctenopharyngodon idella) intestinal microbiota. Probiotics Antimicrob. Proteins 9: 386-396. https://doi.org/10.1007/s12602-017-9269-7
  135. Fu L, Zhang X, Wang Y, Peng L, Li W. 2017. Nitrogen removal characteristics of Pseudomonas stutzeri F11 and its application in grass carp culture. Fish. Sci. 83: 89-98. https://doi.org/10.1007/s12562-016-1038-0
  136. Liang Q, Zhang X, Lee KH, Wang Y, Yu K, Shen W, et al. 2015. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4. World J. Microbiol. Biotechnol. 31: 1711-1718. https://doi.org/10.1007/s11274-015-1921-3
  137. Deng B, Fu L, Zhang X, Zheng J, Peng L, Sun J, et al. 2014. The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture. PLoS One 9: e114886. https://doi.org/10.1371/journal.pone.0114886
  138. Amir I, Zuberi A, Imran M, Ullah S. 2018. Evaluation of yeast and bacterial based probiotics for early rearing of Labeo rohita (Hamilton, 1822). Aquac. Res. 49: 3856-3863. https://doi.org/10.1111/are.13852
  139. Hussain S, Afzal M, Salim M, Javid A, Khichi T, Hussain M, et al. 2011. Apparent digestibility of fish meal, blood meal and meat meal for Labeo rohita fingerlings. J. Anim. Plant Sci. 21: 807-811.
  140. Ibrar M, Zuberi A, Amir I, Imran M, Noor Z. 2017. Effect of probiotic Geotrichum candidum on early rearing of Labeo rohita (Hamilton, 1822). Turkish J. Fish. Aquat. Sci. 17: 1263-1270.
  141. Giri S, Sukumaran V, Sen S, Jena P. 2014. Effects of dietary supplementation of potential probiotic Bacillus subtilis VSG 1 singularly or in combination with Lactobacillus plantarum VSG 3 or/and Pseudomonas aeruginosa VSG 2 on the growth, immunity and disease resistance of Labeo rohita. Aquac. Nutr. 20: 163-171. https://doi.org/10.1111/anu.12062
  142. Mohapatra S, Chakraborty T, Prusty AK, PaniPrasad K, Mohanta KN. 2014. Beneficial effects of dietary probiotics mixture on hemato-immunology and cell apoptosis of Labeo rohita fingerlings reared at higher water temperatures. PLoS One 9: e100929. https://doi.org/10.1371/journal.pone.0100929
  143. Mukherjee A, Chandra G, Ghosh K. 2019. Single or conjoint application of autochthonous Bacillus strains as potential probiotics: Effects on growth, feed utilization, immunity and disease resistance in Rohu, Labeo rohita (Hamilton). Aquaculture 512: 734302. https://doi.org/10.1016/j.aquaculture.2019.734302
  144. Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK. 2018. Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicrob. Proteins 10: 391-398. https://doi.org/10.1007/s12602-017-9310-x
  145. Khan MIR, Kamilya D, Choudhury TG, Rathore G. 2022. Dietary administration of a host-gut derived probiotic Bacillus amyloliquefaciens COFCAU_P1 modulates immune-biochemical response, immune-related gene expression, and resistance of Labeo rohita to Aeromonas hydrophila infection. Aquaculture 546: 737390. https://doi.org/10.1016/j.aquaculture.2021.737390
  146. Ghori I, Tabassum M, Ahmad T, Zuberi A, Imran M. 2018. Geotrichum candidum enhanced the Enterococcus faecium impact in improving physiology, and health of Labeo rohita (Hamilton, 1822) by modulating gut microbiome under mimic aquaculture conditions. Turkish J. Fish. Aquat. Sci. 18: 1255-1267.
  147. Bandyopadhyay P, Mishra S, Sarkar B, Swain SK, Pal A, Tripathy PP, et al. 2015. Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles. Indian J. Microbiol. 55: 81-87. https://doi.org/10.1007/s12088-014-0500-x
  148. Brown C, Power D, Nunez J. 2010. Disorders of development in fish. Fish diseases and disorders, Volume 2. pp. 166-181.
  149. Padeniya U, Larson ET, Septriani S, Pataueg A, Kafui AR, Hasan E, et al. 2022. Probiotic treatment enhances pre-feeding larval development and early survival in zebrafish Danio rerio. J. Aquat. Anim. Health 34: 3-11. https://doi.org/10.1002/aah.10148
  150. Ozorio RO, Kopecka-Pilarczyk J, Peixoto MJ, Lochmann R, Santos RJ, Santos G, et al. 2016. Dietary probiotic supplementation in juvenile rainbow trout (Oncorhynchus mykiss) reared under cage culture production: effects on growth, fish welfare, flesh quality and intestinal microbiota. Aquac. Res. 47: 2732-2747. https://doi.org/10.1111/are.12724
  151. Bisht A, Singh UP, Pandey N. 2012. Bacillus subtilis as a potent probiotic for enhancing growth in fingerlings of common carp (Cyprinus carpio Linnaeus). Ind. J. Fish. 59: 103-107.
  152. Kim D, Beck BR, Heo S-B, Kim J, Kim HD, Lee S-M, et al. 2013. Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish Shellfish Immunol. 35: 1585-1590. https://doi.org/10.1016/j.fsi.2013.09.008
  153. Li Z, Chen Y, Zhang J, Zhu X, Zhang J, Chen D, et al. 2017. Effects of dietary Bacillus natto supplementation on growth performance and the growth-related gene/micro RNA expression in the skeletal muscle of grass carp (Ctenopharyngodon idella). Aquac. Nutr. 23: 46-53. https://doi.org/10.1111/anu.12357
  154. Amir I, Zuberi A, Kamran M, Imran M. 2019. Evaluation of commercial application of dietary encapsulated probiotic (Geotrichum candidum QAUGC01): Effect on growth and immunological indices of rohu (Labeo rohita, Hamilton 1822) in semi-intensive culture system. Fish Shellfish Immunol. 95: 464-472. https://doi.org/10.1016/j.fsi.2019.11.011
  155. Jha DK, Bhujel RC, Anal AK. 2015. Dietary supplementation of probiotics improves survival and growth of Rohu (Labeo rohita Ham.) hatchlings and fry in outdoor tanks. Aquaculture 435: 475-479. https://doi.org/10.1016/j.aquaculture.2014.10.026