DOI QR코드

DOI QR Code

Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages

  • Noh, Hye-Ji (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Park, Jung Min (R&D Center, Chong Kun Dang Healthcare (CKDHC)) ;
  • Kwon, Yoo Jin (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Kim, Kyunghwan (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Park, Sung Yurb (R&D Center, Chong Kun Dang Healthcare (CKDHC)) ;
  • Kim, Insu (R&D Center, Chong Kun Dang Healthcare (CKDHC)) ;
  • Lim, Jong Hyun (R&D Center, Chong Kun Dang Healthcare (CKDHC)) ;
  • Kim, Byoung Kook (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Kim, Byung-Yong (R&D Center, Chong Kun Dang Healthcare (CKDHC))
  • Received : 2022.01.14
  • Accepted : 2022.03.18
  • Published : 2022.05.28

Abstract

Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.

Keywords

References

  1. Marshall JS, Warrington R, Watson W, Kim HL. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14: 49. https://doi.org/10.1186/s13223-018-0278-1
  2. Hirayama D, Iida T, Nakase H. 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19: 92. https://doi.org/10.3390/ijms19010092
  3. Parkin J, Cohen B. 2001. An overview of the immune system. Lancet (London, England) 357: 1777-1789. https://doi.org/10.1016/S0140-6736(00)04904-7
  4. Yang F, Li X, Yang Y, Ayivi-Tosuh SM, Wang F, Li H, et al. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 140: 895-906. https://doi.org/10.1016/j.ijbiomac.2019.08.174
  5. Doyle SE, O'Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, et al. 2004. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199: 81-90. https://doi.org/10.1084/jem.20031237
  6. Ivec M, BotiB T, Koren S, Jakobsen M, Weingartl H, Cencic A. 2007. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus. Antiviral Res. 75: 266-274. https://doi.org/10.1016/j.antiviral.2007.03.013
  7. Erickson KL, Hubbard NE. 2000. Probiotic immunomodulation in health and disease. J. Nutr. 130: 403s-409s. https://doi.org/10.1093/jn/130.2.403S
  8. Gareau MG, Sherman PM, Walker WA. 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7: 503-514. https://doi.org/10.1038/nrgastro.2010.117
  9. Yan F, Polk DB. 2011. Probiotics and immune health. Curr. Opin. Gastroenterol. 27: 496-501. https://doi.org/10.1097/mog.0b013e32834baa4d
  10. Hemarajata P, Versalovic J. 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 6: 39-51. https://doi.org/10.1177/1756283X12459294
  11. Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506. https://doi.org/10.1038/s41422-020-0332-7
  12. Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL. 2018. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci. Rep. 8: 8283. https://doi.org/10.1038/s41598-018-26423-3
  13. Doron S, Snydman DR. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60: S129-134.
  14. Topcuoglu S, Gursoy T, OvalO F, Serce O, Karatekin G. 2015. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics. J. Matern. Fetal. Neonatal. Med. 28: 1491-1494. https://doi.org/10.3109/14767058.2014.958462
  15. Kataria J, Li N, Wynn JL, Neu J. 2009. Probiotic microbes: do they need to be alive to be beneficial?. Nutr. Rev. 67: 546-550. https://doi.org/10.1111/j.1753-4887.2009.00226.x
  16. Nataraj BH, Ali SA, Behare PV, Yadav H. 2020. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19: 168. https://doi.org/10.1186/s12934-020-01426-w
  17. Moradi M, Kousheh SA, Almasi H. 2020. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19: 3390-3415. https://doi.org/10.1111/1541-4337.12613
  18. Seong G, Lee S, Min YW, Jang YS, Kim HS, Kim EJ. 2021. Effect of heat-killed Lactobacillus casei DKGF7 on a rat model of irritable bowel syndrome. Nutrients 13: 568. https://doi.org/10.3390/nu13020568
  19. Tanaka Y, Hirose Y, Yamamoto Y, Yoshikai Y, Murosaki S. 2020. Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial. Eur. J. Nutr. 59: 2641-2649. https://doi.org/10.1007/s00394-019-02112-3
  20. Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274. https://doi.org/10.1007/s12263-011-0218-x
  21. Xiu L, Zhang H, Hu Z, Liang Y, Guo S, Yang M, et al. 2018. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food Agric. Immunol. 29: 1086-1105. https://doi.org/10.1080/09540105.2018.1513994
  22. Kwon M, Lee J, Park S, Kwon OH, Seo J. Roh S. 2020. Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the toll-like receptor 4 pathway in LPS-induced RAW 264.7 cells. Int. J. Mol. Sci. 21: 9283. https://doi.org/10.3390/ijms21239283
  23. Wu Z, Pan D, Guo Y, Sun Y, Zeng X. 2015. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr. Polym. 128: 130-137. https://doi.org/10.1016/j.carbpol.2015.04.026
  24. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  25. Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491. https://doi.org/10.3389/fimmu.2014.00491
  26. Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. 2020. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: a review. Front. Nutr. 7: 570344. https://doi.org/10.3389/fnut.2020.570344
  27. Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. 2018. Regulation of phagocytosis in macrophages by membrane ethanolamine plasmalogens. Front. Immunol. 9: 1723. https://doi.org/10.3389/fimmu.2018.01723
  28. Rocha-Ramirez LM, Hernandez-Ochoa B, Gomez-Manzo S, Marcial-Quino J, Cardenas-Rodriguez N, Centeno-Leija S, et al. 2020. Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms 8: 79. https://doi.org/10.3390/microorganisms8010079
  29. Jeong M, Kim JH, Lee JS, Kang SD, Shim S, Jung MY, et al. 2020. Heat-killed Lactobacillus brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the TAK1 pathway. J. Microbiol. Biotechnol. 30: 1395-1403. https://doi.org/10.4014/jmb.2002.02004
  30. Rubartelli A, Lotze MT. 2007. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28: 429-436. https://doi.org/10.1016/j.it.2007.08.004
  31. Tumer C, Bilgin HM, Obay BD, Diken H, Atmaca M, Kelle M. 2007. Effect of nitric oxide on phagocytic activity of lipopolysaccharide-induced macrophages: possible role of exogenous L-arginine. Cell Biol. Int. 31: 565-569. https://doi.org/10.1016/j.cellbi.2006.11.029
  32. Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 Cells and mouse splenocytes. J. Microbiol. Biotechnol. 26: 469-476. https://doi.org/10.4014/jmb.1511.11001