DOI QR코드

DOI QR Code

Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition

산성 pH 조건에서 차아염소산나트륨의 항균 활성 향상

  • Son, Hyeon-Bin (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Bae, Won-Bin (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 손현빈 (금오공과대학교응용화학과) ;
  • 배원빈 (금오공과대학교응용화학과) ;
  • 지광환 (금오공과대학교응용화학과)
  • Received : 2022.04.28
  • Accepted : 2022.05.31
  • Published : 2022.06.28

Abstract

Sodium hypochlorite (NaClO) is a disinfectant widely used in hospitals and food industries because of its antimicrobial activity against not only bacteria but also fungi and virus. The antibacterial activity of NaClO lies in the maintenance of a stable hypochlorous acid (HClO) concentration, which is regulated by pH of the solution. HClO can easily penetrate bacterial cell membrane due to its chemical neutrality and the antibacterial activity of NaClO is thought to depend on the concentration of HClO in solution rather than hypochlorite ions (ClO-). In this study, we investigated the antibacterial activity of NaClO according to pH adjustment by means of time kill test and assays of Reactive Oxygen Species (ROS) and adenosine triphosphate (ATP) concentration changes before and after NaClO treatment. We also investigated that the degree of cell wall destruction through field emission scanning electron microscopy (FE-SEM). Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) exposed to 5 ppm NaClO at pH 5 exhibited 99.9% mortality. ROS production at pH 5 was 48% higher than that produced at pH 7. In addition, the ATP concentration in E. coli and S. aureus exposed to pH 5 decreased by 94% and 91%, respectively. As a result of FE-SEM, it was confirmed that the cell wall was destroyed in the bacteria by exposing to pH 5 NaClO. Taken together, our results indicate that the antibacterial activity of 5 ppm NaClO can be improved simply by adjusting the pH.

차아염소산나트륨(NaClO)은 병원 및 식품산업 분야에서 널리 사용되는 소독제로 세균, 곰팡이, 바이러스에 대해서도 항균 활성이 있다. 차아염소산나트륨의 항균 활성은 용액의 pH에 의해 조절되는 안정적인 HClO 농도의 유지에 있다. 차아염소산(HClO)은 화학적으로 중성이므로 세균의 막에 쉽게 침투할 수 있으며 차아염소산나트륨의 항균 활성은 차아염소산염 이온(ClO-)보다는 용액 내 HClO 농도에 의존하리라 사료된다. 본 연구에서 pH 조절에 따른 차아염소산나트륨의 항균 활성을 time kill test와 차아염소산나트륨 처리 전후의 활성산소종(ROS) 및 ATP 농도 변화로 조사하였다. 또한 전계방출형 주사 전자 현미경(FE-SEM)을 통하여 세포벽의 파괴정도를 확인하였다. pH 5 조건에서 5 ppm 차아염소산나트륨은 Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) 균에 대하여 99.9%의 항균 활성을 나타내었고, ROS 생성량은 pH 7 조건보다 48% 증가하였다. 또한, pH 5 조건의 차아염소산나트륨에 노출된 E. coli와 S. aureus의 ATP 농도가 각각 94%와 91% 감소하였다. FE-SEM 결과, pH 5 조건에 노출된 균의 세포벽이 파괴된 것을 확인하였다. 본 연구결과를 종합해보면, pH를 조절하는 것 만으로 5 ppm 농도의 차아염소산나트륨의 항균 활성을 향상시킬 수 있음을 시사한다.

Keywords

Acknowledgement

This work was supported by the Kumoh National Institute of Technology (202002250001).

References

  1. Periyasamy T, Asrafali S, Shanmugam M, Kim S-C. 2021. Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. Int. J. Biol. Macromol. 170: 664-673. https://doi.org/10.1016/j.ijbiomac.2020.12.087
  2. Song J-H. 2011. Antimicrobial resistance in Gram-positive cocci: Past 50 years, present and future. Infect. Chemother. 43: 443-449. https://doi.org/10.3947/ic.2011.43.6.443
  3. Kerkaert B, Mestdagh F, Cucu T, Aedo PR, Ling SY, De Meulenaer B. 2011. Hypochlorous and peracetic acid induced oxidation of dairy proteins. J. Agric. Food Chem. 59: 907-914. https://doi.org/10.1021/jf1037807
  4. Coates D. 1985. A comparison of sodium hypochlorite and sodium dichloroisocyanurate products. J. Hosp. Infect. 6: 31-40. https://doi.org/10.1016/S0195-6701(85)80015-3
  5. Topic F, Marrett JM, Borchers TH, Titi HM, Barrett CJ, Friscic T. 2021. After 200 years: The structure of bleach and characterization of hypohalite ions by single-crystal X-ray diffraction. Angew. Chem. Int. Ed. Engl. 60: 24400-24405. https://doi.org/10.1002/anie.202108843
  6. Lee D, Howlett J, Pratten J, Mordan N, McDonald A, Wilson M, et al. 2009. Susceptibility of MRSA biofilms to denture-cleansing agents. FEMS Microbiol. Lett. 291: 241-246. https://doi.org/10.1111/j.1574-6968.2008.01463.x
  7. Gerritsen CM, Margerum DW. 1990. Non-metal redox kinetics: hypochlorite and hypochlorous acid reactions with cyanide. Inorg. Chem. 29: 2757-2762. https://doi.org/10.1021/ic00340a010
  8. Wang TX, Margerum DW. 1994. Kinetics of reversible chlorine hydrolysis: temperature dependence and general-acid/base-assisted mechanisms. Inorg. Chem. 33: 1050-1055. https://doi.org/10.1021/ic00084a014
  9. Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. 2007. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J. Burns Wounds. 6: e5.
  10. Fukuzaki S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11: 147-157. https://doi.org/10.4265/bio.11.147
  11. Severing A-L, Rembe J-D, Koester V, Stuermer EK. 2018. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrob. Chemother. 74: 365-372. https://doi.org/10.1093/jac/dky432
  12. Dukan S, Belkin S, Touati D. 1999. Reactive oxygen species are partially involved in the bacteriocidal action of hypochlorous acid. Arch. Biochem. Biophys. 367: 311-316. https://doi.org/10.1006/abbi.1999.1265
  13. da Cruz Nizer WS, Inkovskiy V, Overhage J. 2020. Surviving reactive chlorine stress: responses of Gram-negative bacteria to hypochlorous acid. Microorganisms 8: 1220. https://doi.org/10.3390/microorganisms8081220
  14. Castillo DM, Castillo Y, Delgadillo NA, Neuta Y, Jola J, Calderon JL, et al. 2015. Viability and effects on bacterial proteins by oral rinses with hypochlorous acid as active ingredient. Braz. Dent. J. 26: 519-524. https://doi.org/10.1590/0103-6440201300388
  15. Spickett CM, Jerlich A, Panasenko OM, Arnhold J, Pitt AR, Stelmaszynska T, et al. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47: 889-899. https://doi.org/10.18388/abp.2000_3944
  16. Dever G, Wainwright CL, Kennedy S, Spickett CM. 2006. Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochim. Pol. 53: 761-768. https://doi.org/10.18388/abp.2006_3304
  17. Kim NH, Park TH, Rhee MS. 2014. Enhanced bactericidal action of acidified sodium chlorite caused by the saturation of reactants. J. Appl. Microbiol. 116: 1447-1457. https://doi.org/10.1111/jam.12484
  18. Feldman C, Anderson R, Kanthakumar K, Vargas A, Cole PJ, Wilson R. 1994. Oxidant-mediated ciliary dysfunction in human respiratory epithelium. Free Radic. Biol. Med. 17: 1-10. https://doi.org/10.1016/0891-5849(94)90002-7
  19. Kim HJ, Lee J-G, Kang JW, Cho H-J, Kim HS, Byeon HK, et al. 2008. Effects of a low Concentration hypochlorous acid nasal irrigation solution on bacteria, fungi, and virus. Laryngoscope 118: 1862-1867. https://doi.org/10.1097/MLG.0b013e31817f4d34
  20. Moberg L, Karlberg B. 2000. An improved N,N'-diethyl-p-phenylenediamine (DPD) method for the determination of free chlorine based on multiple wavelength detection. Anal. Chim. Acta 407: 127-133. https://doi.org/10.1016/S0003-2670(99)00780-1
  21. Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL. 2016. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 16: 216. https://doi.org/10.1186/s12866-016-0838-9
  22. Castro-Alferez M, Polo-Lopez MI, Fernandez-Ibanez P. 2016. Intracellular mechanisms of solar water disinfection. Sci. Rep. 6: 38145. https://doi.org/10.1038/srep38145
  23. Dasgupta N, Ramalingam C. 2016. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ. Chem. Lett. 14: 477-485. https://doi.org/10.1007/s10311-016-0583-1
  24. Hong Y, Zeng J, Wang X, Drlica K, Zhao X. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 116: 10064-10071. https://doi.org/10.1073/pnas.1901730116
  25. Rajneesh JP, Chatterjee A, Singh SP, Sinha RP. 2017. Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing Probe 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA). Bio Protoc. 7: e2545.
  26. Gomes A, Fernandes E, Lima JL. 2005. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65: 45-80. https://doi.org/10.1016/j.jbbm.2005.10.003
  27. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. 2014. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9: e111289. https://doi.org/10.1371/journal.pone.0111289
  28. Solana C, Ruiz-Linares M, Baca P, Valderrama MJ, Arias-Moliz MT, Ferrer-Luque CM. 2017. Antibiofilm activity of sodium hypochlorite and alkaline tetrasodium EDTA solutions. J. Endod. 43: 2093-2096. https://doi.org/10.1016/j.joen.2017.06.038
  29. Lara HH, Ayala-Nunez NV, Turrent LdCI, Padilla CR. 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26: 615-621. https://doi.org/10.1007/s11274-009-0211-3
  30. Bhattacharya R, Saha S, Kostina O, Muravnik L, Mitra A. 2020. Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph. Appl. Microsc. 50: 15. https://doi.org/10.1186/s42649-020-00035-6
  31. Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. 2012. Scanning electron microscopy. Curr. Protoc. Microbiol. 25: 2B.2.1-2B.2.47.
  32. Al Shehadat S, Gorduysus MO, Hamid SSA, Abdullah NA, Samsudin AR, Ahmad A. 2018. Optimization of scanning electron microscope technique for amniotic membrane investigation: A preliminary study. Eur. J. Dent. 12: 574-578. https://doi.org/10.4103/ejd.ejd_401_17
  33. Romanova N, Brovko LY, Moore L, Pometun E, Savitsky A, Ugarova N, et al. 2003. Assessment of photodynamic destruction of Escherichia coli O157: H7 and Listeria monocytogenes by using ATP bioluminescence. Appl. Environ. Microbiol. 69: 6393-6398. https://doi.org/10.1128/AEM.69.11.6393-6398.2003
  34. Sanchez MC, Llama-Palacios A, Marin MJ, Figuero E, Leon R, Blanc V, et al. 2013. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med. Oral Patol. Oral Cir. Bucal. 18: e86.
  35. Afri M, Frimer AA, Cohen Y. 2004. Active oxygen chemistry within the liposomal bilayer: Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem. Phys. Lipids 131: 123-133. https://doi.org/10.1016/j.chemphyslip.2004.04.006
  36. Daghastanli NA, Itri R, Baptista MS. 2008. Singlet oxygen reacts with 2',7'-dichlorodihydrofluorescein and contributes to the formation of 2,7'-dichlorofluorescein. Photochem. Photobiol. 84: 1238-1243. https://doi.org/10.1111/j.1751-1097.2008.00345.x
  37. Kim H, Xue X. 2020. Detection of total reactive oxygen species in adherent cells by 2',7'-Dichlorodihydrofluorescein diacetate staining. J. Vis. Exp. doi: 10.3791/60682.
  38. Borisov VB, Siletsky SA, Nastasi MR, Forte E. 2021. ROS Defense systems and terminal oxidases in bacteria. Antioxidants 10: 839. https://doi.org/10.3390/antiox10060839