DOI QR코드

DOI QR Code

Antibiofilm Activity of a Curcuma zedoaria Rosc Rhizome Extract against Methicillin-Resistant and Susceptible Staphylococcus aureus

  • Received : 2022.01.18
  • Accepted : 2022.04.19
  • Published : 2022.06.28

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are major causes of hospital- and community-acquired infections. The treatment of biofilm-related infections caused by these bacteria is a global healthcare challenge. Therefore, the development of alternative therapeutics is required. An essential oil extracted from Curcuma zedoaria (CZ) Rosc, also known as white turmeric, has been reported to possess various antimicrobial activities. In the present study, we evaluated the antibiofilm activities of an ethanolic extract of the CZ rhizome against MRSA and MSSA. The results showed that the CZ extract with the highest sub-minimum inhibitory concentration (sub-MIC), 1/2 MIC (0.312 mg/ml), significantly inhibited biofilm production by up to 80-90% in both tested strains. Subsequently, we evaluated the ability of the CZ extract to prevent cell-surface attachment to a 96-well plate and extracellular DNA (eDNA) release from the biofilm. The CZ extract demonstrated an inhibitory effect on bacterial attachment and eDNA release from the biofilm biomass. The CZ extract may inhibit biofilm formation by preventing eDNA release and cell-surface attachment. Therefore, this CZ extract is a potential candidate for the development of alternative treatments for biofilm-associated MRSA and MSSA infections.

Keywords

Acknowledgement

This study was supported by Thammasat University Research Fund, Contract No. TUGR 2/59/2562. The authors express their gratitude to Bangkok Drug Co., Ltd. for providing the HPLC standard compounds.

References

  1. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658. https://doi.org/10.2147/IDR.S173867
  2. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
  3. Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist. Infect. Control 8: 76. https://doi.org/10.1186/s13756-019-0533-3
  4. Trastoy R, Manso T, Fernandez-Garcia L, Blasco L, Ambroa A, Perez Del Molino ML, et al. 2018. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin. Microbiol. Rev. 31: e00023-18.
  5. Figueiredo AMS, Ferreira FA, Beltrame CO, Cortes MF. 2017. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit. Rev. Microbiol. 43: 602-620. https://doi.org/10.1080/1040841X.2017.1282941
  6. Hassoun A, Linden PK, Friedman B. 2017. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit. Care 21: 211. https://doi.org/10.1186/s13054-017-1801-3
  7. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. 2018. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 4: 18034. https://doi.org/10.1038/nrdp.2018.34
  8. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis. 36: 53-59. https://doi.org/10.1086/345476
  9. Nelson RE, Slayton RB, Stevens VW, Jones MM, Khader K, Rubin MA, et al. 2017. Attributable mortality of healthcare-associated infections due to multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 38: 848-856. https://doi.org/10.1017/ice.2017.83
  10. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18: 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
  11. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2: 445-459. https://doi.org/10.4161/viru.2.5.17724
  12. del Pozo JL, Patel R. 2007. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther. 82: 204-209. https://doi.org/10.1038/sj.clpt.6100247
  13. Dosoky NS, Setzer WN. 2018. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 10: 1196. https://doi.org/10.3390/nu10091196
  14. CLSI. 2021. Performance standards for antimicrobial susceptibility testing, 31st edition. CLSI supplement M100. Clin. Lab. Standards Institute 41: 64-74.
  15. Santiago C, Lim KH, Loh HS, Ting KN. 2015. Inhibitory effect of Duabanga grandiflora on MRSA biofilm formation via prevention of cell-surface attachment and PBP2a production. Molecules 20: 4473-4482. https://doi.org/10.3390/molecules20034473
  16. Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. 2019. Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation. PLoS One 14: e0213288. https://doi.org/10.1371/journal.pone.0213288
  17. Bhattacharya S, Bir R, Majumdar T. 2015. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a tertiary care hospital, Tripura, Northeast India. J. Clin. Diagn. Res. 9: DC01-04.
  18. Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control 8: 118. https://doi.org/10.1186/s13756-019-0559-6
  19. Lai EY, Chyau CC, Mau JL, Chen CC, Lai YJ, Shih CF, et al. 2004. Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. Am. J. Chin. Med. 32: 281-290. https://doi.org/10.1142/S0192415X0400193X
  20. Wilson B, Abraham G, Manju VS, Mathew M, Vimala B, Sundaresan S, et al. 2005. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J. Ethnopharmacol. 99: 147-151. https://doi.org/10.1016/j.jep.2005.02.004
  21. Koshy P, Sri Nurestri Abd M, Wirakarnain S, Sim Kae S, Saravana K, Hong Sok L, et al. 2009. Antimicrobial activity of some medicinal plants from Malaysia. Am. J. Appl. Sci. 6: 1613-1617. https://doi.org/10.3844/ajassp.2009.1613.1617
  22. Chachad DP, Talpade MB, Jagdale SP. 2016. Antimicrobial activity of rhizomes of Curcuma zedoaria Rosc. Int. J. Sci. Res. (IJSR). 5: 938-940. https://doi.org/10.21275/v5i1.NOV152878
  23. Panphut W, Budsabun T, Jengcharoen T, Sangsuriya P. 2018. Antimicrobial metabolite of Zingiberaceae essential oils using resazurin a rapid colorimetric detection. Eur. J. Anal. Chem. 13: 488-496.
  24. Huang Y, Xue C, He W, Zhao X. 2019. Inhibition effect of Zedoary turmeric oil on Listeria monocytogenes and Staphylococcus aureus growth and exotoxin proteins production. J. Med. Microbiol. 68: 657-666. https://doi.org/10.1099/jmm.0.000949
  25. Bowler PG. 2018. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J. Wound Care 27: 273-277. https://doi.org/10.12968/jowc.2018.27.5.273
  26. Craft KM, Nguyen JM, Berg LJ, Townsend SD. 2019. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 10: 1231-1241. https://doi.org/10.1039/c9md00044e
  27. McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. 2015. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front. Cell Infect. Microbiol. 5: 1. https://doi.org/10.3389/fcimb.2015.00001
  28. Moghadam SO, Pourmand MR, Aminharati F. 2014. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J. Infect. Dev. Ctries 8: 1511-1517. https://doi.org/10.3855/jidc.5514
  29. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. 2015. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev. Anti-Infect. Ther. 13: 1499-1516. https://doi.org/10.1586/14787210.2015.1100533
  30. Suwal N, Subba RK, Paudyal P, Khanal D, Panthi M, Suwal N, et al. 2021. Antimicrobial and antibiofilm potential of Curcuma longa Linn. rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates. Cell. Mol. Biol. 67: 17-23. https://doi.org/10.14715/cmb/2021.67.1.3
  31. Hayat S, Sabri AN, McHugh TD. 2018. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J. Gen. Appl. Microbiol. 63: 325-338. https://doi.org/10.2323/jgam.2017.01.004
  32. Loo C-Y, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, et al. 2016. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem. 64: 2513-2522. https://doi.org/10.1021/acs.jafc.5b04559
  33. Shukla A, Parmar P, Rao P, Goswami D, Saraf M. 2020. Twin peaks: presenting the antagonistic molecular interplay of curcumin with LasR and LuxR quorum sensing pathways. Curr. Microbiol. 77: 1800-1810. https://doi.org/10.1007/s00284-020-01997-2
  34. Packiavathy IA, Sasikumar P, Pandian SK, Veera Ravi A. 2013. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl. Microbiol. Biotechnol. 97: 10177-10187. https://doi.org/10.1007/s00253-013-4704-5
  35. Li B, Pan T, Lin H, Zhou Y. 2020. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries. BMC Microbiol. 20: 286. https://doi.org/10.1186/s12866-020-01975-5
  36. Song J, Choi B, Jin EJ, Yoon Y, Choi KH. 2011. Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. Infect. Dis. 31: 1347-1352.
  37. Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sa L, Ramos da Silva A, et al. 2021. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 155: 104892. https://doi.org/10.1016/j.micpath.2021.104892
  38. Moshe M, Lellouche J, Banin E. 2011. Curcumin: a natural antibiofilm agent, pp. 89-93. Sci Technol against Microb Pathog, Ed. World Scientific Publishing Co., Valladilid, Spain.
  39. Hertiani T, Pratiwi S, Nuryastuti T, Murti Y, Hamzah H. 2020. The inhibition and degradation activity of demethoxycurcumin as antibiofilm on C. albicans ATCC 10231. Res. J. Pharm. Technol. 13: 377-382. https://doi.org/10.5958/0974-360x.2020.00075.x
  40. Wang S, Kang OH, Kwon DY. 2021. Bisdemethoxycurcumin reduces methicillin-resistant Staphylococcus aureus expression of virulence-related exoproteins and inhibits the biofilm formation. Toxins (Basel). 13: 804. https://doi.org/10.3390/toxins13110804
  41. Santiago C, Lim KH, Loh HS, Ting KN. 2015. Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Complement. Altern. Med. 15: 79. https://doi.org/10.1186/s12906-015-0615-6
  42. Armbruster CR, Parsek MR. 2018. New insight into the early stages of biofilm formation. Proc. Natl. Acad. Sci. USA 115: 4317-4319. https://doi.org/10.1073/pnas.1804084115
  43. Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4: 178. https://doi.org/10.3389/fcimb.2014.00178
  44. Ng M, Epstein SB, Callahan MT, Piotrowski BO, Simon GL, Roberts AD, et al. 2014. Induction of MRSA biofilm by low-dose beta-lactam antibiotics: specificity, prevalence and dose-response effects. Dose Response 12: 152-161. https://doi.org/10.2203/dose-response.13-021.Kaplan
  45. Pazlarova J, Purkrtova S, Babulikova J, Demnerova K. 2014. Effects of ampicillin and vancomycin on Staphylococcus aureus biofilms. Czech J. Food Sci. 32: 137-144. https://doi.org/10.17221/156/2013-cjfs
  46. Liu J, Yang L, Hou Y, Soteyome T, Zeng B, Su J, et al. 2018. Transcriptomics study on Staphylococcus aureus biofilm under low concentration of ampicillin. Front. Microbiol. 9: 2413. https://doi.org/10.3389/fmicb.2018.02413
  47. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822. https://doi.org/10.1371/journal.pone.0005822
  48. Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, et al. 2018. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci. Rep. 8: 2254. https://doi.org/10.1038/s41598-018-20485-z
  49. Kavanaugh JS, Flack CE, Lister J, Ricker EB, Ibberson CB, Jenul C, et al. 2019. Identification of extracellular DNA-binding proteins in the biofilm matrix. mBio 10: e01137-19.
  50. Cortes MF, Beltrame CO, Ramundo MS, Ferreira FA, Figueiredo AM. 2015. The influence of different factors including fnbA and mecA expression on biofilm formed by MRSA clinical isolates with different genetic backgrounds. Int. J. Med. Microbiol. 305: 140-147. https://doi.org/10.1016/j.ijmm.2014.11.011