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Introduction 

Frequent itemset (or pattern) mining (FPM) is now a well-established field with a rich 
literature and availability of software [1]. Here we loosely define a pattern as a sequence 
of specific items of interest with a specific frequency different from that expected by 
chance. Our primary interest, though not exclusively, is the pattern of DNA variants or 
genotypes associated with genetic diseases. Data mining is a broad field of research, and a 
major challenge in this field is pattern recognition or mining [2]. This introductory sec-
tion briefly reviews some advances in human disease genetics, then sets out specifically to 
pattern recognition methods. 

It has been known that many human traits follow Mendelian mode of inheritance and 
are passed from parent to offspring in a dominant or recessive manner [3]. However, 
most complex traits, such as diabetes, are influenced by multiple DNA mutations [4] and 
environmental factors. Various models for complex traits have been proposed [5], espe-
cially for epistatic interactions without major effects of individual loci [6]. 

It has been well recognized that DNA contains the information necessary for the devel-
opment and functioning of organisms, and this information is contained in the sequence 
of its building blocks, nucleotides. For example, transcription factors (TFs) are proteins 
that can modulate the activity of these genes by binding to specific nucleotide sequences 
(binding sites) in or near genes [7]. Some of the early approaches to the detection of 
these sequence motifs were based on discrete discriminant analysis and scan statistics 
[8,9]. A state-of-the-art method is based on the machine learning algorithms [10]. DNA 
sequencing has facilitated disease diagnosis and prenatal diagnosis of chromosomal triso-
mies and has implications for precision medicine [11]. 

Recently, the field of FPM is rapidly emerging [12]. Most FPM methods can be repre-
sented as unsupervised approaches [12]. That is, the data are not tagged or labeled to be-
long to different classes, whereas the FPM approach can also be represented in a super-
vised setting [13]. The simplest case is that of two classes, for example, cases and controls. 
A straightforward implementation considers class labels just as additional items in the da-

Overview of frequent pattern mining
Jurg Ott1*, Taesung Park2

1Laboratory of Statistical Genetics, Rockefeller University, New York, NY 10065, USA
2Department of Statistics, Seoul National University, Seoul 08826, Korea

Various methods of frequent pattern mining have been applied to genetic problems, specif-
ically, to the combined association of two genotypes (a genotype pattern, or diplotype) at 
different DNA variants with disease. These methods have the ability to come up with a se-
lection of genotype patterns that are more common in affected than unaffected individu-
als, and the assessment of statistical significance for these selected patterns poses some 
unique problems, which are briefly outlined here.  

Keywords: data mining, genotype pattern, machine learning, pattern recognition, statistical 
significanceReceived: December 12, 2022

Revised: December 12, 2022
Accepted: December 22, 2022

*Corresponding author: 
E-mail: ott@rockefeller.edu

Review article

eISSN 2234-0742
Genomics Inform 2022; 20(4):e39
https://doi.org/10.5808/gi.22074

https://doi.org/10.5808/gi.22074


tabase; in a resulting association rule, R: x→ y, the right-hand side 
y would then represent the class label while x is a pattern of interest 
[13]. The confidence of R is given by the conditional probability, 
P(y|x), and its support is defined as P(x), that is, the expected pro-
portion of the x pattern in the database. Based on the well-known 
Apriori algorithm [14,15], FPM seeks to find all patterns (sets) of 
items occurring with a minimum frequency (support) in a possibly 
large dataset. For example, supermarkets keep databases of items 
purchased by consumers. A set of items, X = “bread – butter – 
milk” represents such a pattern of groceries, and the number of in-
dividuals purchasing X is referred to as the support for X. Also, giv-
en a pattern, X, it is of interest to find an item (or another pattern), 
Y, with high conditional probability of occurrence. That is, the con-
fidence, k = P(Y|X), indicates the likelihood that consumers pur-
chasing X will also purchase Y. In many FPM implementations [1], 
searches are restricted to patterns with given minimum support 
and minimum confidence. 

We previously exploited FPM methodology in genome-wide 
disease association testing [16,17], where each individual is as-
signed a genotype at each of a large number of DNA variants, and 
two classes of individuals exist; cases are those affected by a herita-
ble disease and controls are unaffected. Classically, we would test 
each variant to see whether a genotype at that variant is associated 
with disease, that is, shows higher frequency in cases than controls. 
For (digenic) traits under the influence of two variants, possibly 
located on different chromosomes, we would like to find pairs of 
genotypes, with each member of a pair being from different vari-
ants, that show high frequency in cases. In FPM terminology, we 
are looking for patterns X of genotypes with high confidence, k = 
P(Y = “case” | X). Clearly, the higher the confidence, the more pre-
dictive a pattern is for disease. If a pattern occurs only in cases and 
not in controls, then the observed confidence is equal to 100%. 

Many methods have been developed to make use of FPM ap-
proaches for detecting pairs of genotypes underlying digenic traits, 
or longer patterns of genotypes influencing polygenic traits. Here, 
we focus on practical ways of establishing whether genotype pat-
terns found by such methods are statistically reliable. 

Selected Special Aspects of FPM 

Most data contain errors and possibly missing data. Various ap-
proaches to handling the latter problem have been discussed [18], 
but in practice, it has been almost inevitable that some observa-
tions or variables must be deleted. For example, when patterns of 
genotypes are mined for their association with disease [17], pre-
processing the data may involve deleting either individuals or 

DNA variants with a proportion of missing genotypes exceeding 
some threshold, whichever is more tolerable. More sophisticated 
approaches have been proposed in the form of noise tolerant item 
sets called approximate frequent itemsets (AFIs) [19], which obviate 
the need for deleting data but are computationally more demand-
ing than frequent itemset mining (FIM) methods in error-free 
data. Newer methods for mining AFIs have been developed and 
show excellent computational properties [20]. 

Classical FIM methods are designed to find frequent patterns. 
However, patterns with properties other than being frequent may 
be more interesting. Various measures of interestingness have been 
discussed [21] and two will be mentioned here. (1) One specific 
property of patterns is their statistical significance—in general, it 
will be of interest to know whether a frequent pattern may be fre-
quent by chance or whether there is more to it than randomness. 
Thus, mining significant patterns is of importance [22]. This is of-
ten achieved with some form of permutation analysis [23-25]. (2) 
In microarray data, mining frequent gene regulation patterns is an 
important task, but resulting patterns should show high utility; a 
corresponding utility model has been proposed that considers 
both the gene-disease association and the degree of expression lev-
el [26]. A survey of high utility itemset mining has recently been 
published [27]. 

Last but not least, sets of genotypes from DNA variants can be 
used for individual identification. For example, support vector ma-
chines (SVM) and random forest (RF) methods have been ap-
plied to mitochondrial DNA for identifying relatives of individuals 
who died in accidents [28]. Specialized approaches have been de-
veloped for finding sets of DNA markers, so-called Ancestry Infor-
mative Marker (AIM) systems, that can identify ethnic origin of 
individuals [29,30]. The basic characteristic for a DNA variant to 
serve as an AIM is that it has very different allele frequencies in 
different populations. For example, a specific allele at marker 
rs1876482 on chromosome 2 has frequency of 0.83 in a sample of 
48 Japanese yet has not been observed in 34 Sardinians (Italy) and 
in 77 Yoruba individuals (West Africa) [29].  

A well-known example of individual identification is that of the 
Kennewick Man, a human skeleton discovered in the American 
state of Washington, dated to have lived 9,000 years ago [31]. 
Controversies ensued between native Americans and scientists as 
to the ethnic origin of Kennewick Man. As a native American, he 
should be properly buried but as a non-native individual he should 
be available to further scientific study. Sequencing his genome re-
vealed that he was indeed closely related to modern native Ameri-
cans [31]. 

A recent example of relationship identification refers to Sitting 

https://doi.org/10.5808/gi.220742 / 9

Ott J and Taesung Park T • Frequent pattern mining

https://doi.org/10.5808/gi.22074


Bull, the legendary Lakota Sioux leader [32]. Genomic analysis of 
a small piece of Sitting Bull’s hair confirmed that Ernie LaPointe of 
South Dakota USA is Sitting Bull’s great-grandson. It is also note-
worthy that this genomic analysis revealed that Ernie is pure native 
American, unadmixed with Western genes. 

Multifactor Dimensionality Reduction 

Among many FPM methods, multifactor dimensionality reduc-
tion (MDR) has been widely used for detecting epistasis [33]. For 
binary phenotypes of cases and controls, MDR finds the optimal 
interaction pattern that best predicts the disease status by dividing 
high-dimensional genotype combinations into a one-dimensional 
variable with high-risk and low-risk groups. The division is accord-
ing to whether the ratio of cases to controls exceeds a threshold. 
The k-fold cross-validation was adopted to avoid overfitting. As 
evaluation measures, balanced accuracy and cross-validation con-
sistency were used [34]. Since MDR is a kind of FPM model, it 
has several advantages compared to the conventional epistasis ap-
proach. MDR greatly reduces the dimensions of the data are effec-
tively reduced. MDR does not assume any specific genetic model. 
MDR can easily identify high-order interactions even without sig-
nificant main effects [35,36]. 

Since its introduction of MDR, many extensions of MDR have 
been proposed. For categorial traits, log-linear models MDR was 
proposed using log-linear models [37]. Robust MDR have been 
proposed to handle outlying observations [38]. Using the odds ra-
tio, OR-MDR was proposed, replacing the naïve classifier with a 
more quantitative measure [36] and optimal MDR replaced the 
fixed threshold with a data-driven threshold using an ordered 
combinatorial partitioning algorithm [39]. For dealing with co-
variates of interest, generalized MDR (GMDR) was proposed 
based on the generalized linear models (GLMs) [40]. Since it was 
based on GLMs, GMDR can handle both dichotomous and con-
tinuous phenotypes. For dealing with continuous traits, quantita-
tive MDR (QMDR) was proposed by comparing the sample 
mean of each genotype combination with the global mean [41]. 
To handle outliers and to make the distributional assumption free, 
cluster-based MDR has been proposed [42]. For survival time 
with censored data, Surv-MDR was proposed, which uses the log-
rank test statistic as a classifier [43]. Later, Cox-MDR and acceler-
ated failure time MDR were proposed for the survival phenotype 
based on Cox regression and the accelerated failure time model, 
respectively [44,45]. Recently, Kaplan-Meier MDR was also de-
veloped by using the Kaplan-Meier median survival time to define 
a classifier [46]. 

A multivariate version of MDR has been proposed to treat mul-
tiple phenotypes simultaneously. For example, obesity can be 
measured through body mass index, weight, and hip ratio. Multi-
variate generalized MDR (GEE-GMDR) can simultaneously ad-
dress these obesity-related phenotypes by constructing generalized 
estimating equation models [47]. Extended multivariate QMDR 
was proposed using principal component analysis scores and Ho-
telling's T2 statistic as classifier and evaluation measure [48]. More 
recently, multivariate cluster-based MDR (multi-CMDR) has 
been proposed [49]. Multi-CMDR applies fuzzy k-means cluster-
ing to separate high-risk from low-risk groups and uses Hotelling's 
T2 statistic for evaluation.  

More recently, multivariate rank-based MDR (MR-MDR) was 
proposed as a new non-parametric multivariate approach based on 
a rank statistic for identifying genetic interactions. As in 
multi-CMDR, MR-MDR utilizes the fuzzy k-means clustering 
analysis with a noise cluster [50]. 

Machine Learning Approaches 

Classical statistical methods like discriminant analysis can classify 
data into two or more groups based on a possibly large number of 
input variables but they do this in a predictable manner, that is, 
with the aid of a clearly defined model. Machine learning methods 
improve their performance with experience [10]; for example, 
they “learn” what DNA sequences represent binding sites for TFs 
[10]. Differentiating statistical from machine learning methods is 
somewhat arbitrary [18,51]. Typical examples of machine learning 
algorithms are artificial neural networks (ANNs) [10], SVMs, and 
random forests [52]. Okazaki and Ott [53] provided a good re-
view on machine learning approaches to digenic inherence. Here, 
some examples in genomics from each of these methods are cited. 

One of the earliest applications of ANNs in human genetics was 
to find patterns of genetic loci that would discriminate between 
two phenotypes, affected versus unaffected with a complex genetic 
trait [54]. An ANN consists of “neurons” organized into layers 
connected with each other by various links. Signals received at the 
input layer will be transmitted to a hidden layer and eventually 
reach the output layer. Based on a dataset with known outcomes, 
the ANN “learns” through repeated training how best to predict 
outcomes. The simplest ANNs are equivalent to discriminant 
analysis models, but newer ANNs consist of multiple hidden layers 
of neurons resulting in “deep” learning [10]. Analysis of the DNA 
sequence provides many opportunities for the application of 
ANNs. For example, modern ANNs are much better at recogniz-
ing transcription factor binding sites than the earlier approaches 
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mentioned above [10]. As another recent example, based on chest 
X-ray images, deep learning methods were successfully applied to 
classify individuals into one of three groups: coronavirus disease 
2019 patients, healthy controls, and individuals with pneumonia 
[55]. 

An SVM is another machine learning algorithm that is generally 
applied for separating data into two groups based on input data re-
lated to these groups. This is accomplished by the construction of 
a hyperplane that best separates the two groups [56]. For example, 
SVMs were applied for finding DNA variants and their interac-
tions that discriminate between cases and controls in Parkinson 
disease [57]. More recently, the SVM approach was considered 
the best method for diagnosing coronary diseases [58]. 

In the RF method, multiple classification trees are grown, which 
then “vote” on the best classification or prediction. An interesting 
comparison between the logistic regression and RF method was 
carried out in a retrospective study on 505 children receiving che-
motherapy and had developed febrile neutropenia [59]. The two 
methods were applied to predict, which of these children would 
develop blood stream infection, which had occurred in 106 of the 
505 children. Predictor variables included demographics and clini-
cal and laboratory measures on initial presentation. As assessed by 
the receiver operating characteristic area under the curve, the RF 
model did better (0.79) than logistic regression (0.65). While the 
latter method models the dependency between predictor variables 
and outcome in a linear fashion, RFs allow for complex non-linear 
relationships [59]. 

Another, much larger study applied RF analysis to compare 56 
risk/protective factors for depression in a sample of 67,603 Euro-
pean older adults [60]. Social isolation and poor health turned out 
to be the strongest risk factors, accounting for 22% of variability in 
depression. 

Statistical Significance and Discovery 

Consider a number N of individuals, each genotyped at a possibly 
large number of DNA variants. For each variant, a given individual 
has two alleles numbered 1 and 2 (or 0 for unknown), which are 
conveniently translated into three genotypes numbered 1 = (1, 1), 
2 = (1, 2), and 3 = (2, 2), where (i, j) refers to the set of two alleles. 
For two variants, possibly located on different chromosomes, there 
will be nine possible genotype patterns (pairs of genotypes). For 
example, the pattern (3, 2) refers to genotype 3 at variant 1 and 
genotype 2 at variant 2. 

Any method for finding genotype patterns associated with dis-
ease will furnish a list of patterns, each with observed values for 

support s and confidence k. For a given pattern, X, the number of 
individuals may be displayed in a 2 × 2 table as shown in Table 1. A 
common statistic to measure association of X and Y is Pearson’s 
chi-square, X2, and its associated nominal empirical significance 
level, p, where p is the probability that chi-square is as large as X2 or 
larger just by chance, that is, assuming no association between X 
and Y. We generally want to find results with an associated very 
small p-value such that we are confident that the result could not 
have been obtained by chance alone and is in fact due to an effect 
of X on disease. 

Here we want to shed light on questions on multiple testing in 
genotype pattern mining (GPM) for case-control association anal-
ysis of digenic traits. For statistical details, the reader is referred to 
published reviews [61,62]. 

Bonferroni Correction 

Assume now that we have obtained a number, m, of chi-square re-
sults and associated nominal (raw) p-values, pi, i = 1…, m, each 
obtained for a suitable genotype pattern (support and confidence 
larger than specified minimum values), where m can range from a 
few dozen to many millions. Because they are based on pairs of 
variants with a given variant possibly participating in multiple 
pairs, these p-values are likely correlated. 

The Bonferroni method controls the so-called family-wise error 
rate (FWER) by declaring p-values significant only if pi < α/m, 
where α is the overall rate of false positive results. This result can 
be rephrased in terms of Bonferroni-adjusted p-values, pi

B = min(m 
pi, 1) that are valid for any dependence among p-values, although 
the Bonferroni correction tends to be conservative for strongly 
correlated p-values [61]. 

Researchers often search for patterns with high confidence, and 
such patterns are highly likely to furnish large chi-squares. In other 
words, results are biased in favor of large chi-square values. The 
best remedy is to relax the selection procedure as follows. Ob-
served confidence without any disease association is given by the 
proportion of cases in the data, that is, by k0 = N2/(N1 + N2), 
where N1 and N2 are the numbers of controls and cases, respective-

Table 1. Layout of individuals for a given genotype pattern, X

No. of individuals
Phenotype, Y With X Without X Sum
Affected, “case” a b N2

Unaffected, “control” c d N1

Observed support is given by s = a + c, and confidence is k = a/(a + c).
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ly. Thus, our search criteria should impose a minimum confidence 
of k0 rather than the usual 80% or 90%, which will guarantee that 
the full range of p-values from 0 through 1 will be exhibited. In 
practice, this will often lead to very large numbers of patterns, 
which is the price we pay for applying a Bonferroni-type multi-
ple-testing correction. As will be seen in our practical examples, we 
may not need to rigorously apply a minimum confidence of k0 and 
working with the Bonferroni correction turns out to be rather rea-
sonable. 

Various approaches have been taken to improve on the basic 
Bonferroni approach. For highly interrelated tests, an early sugges-
tion by Tukey [63] is to use m´ = √m instead of m in the Bonfer-
roni correction. Depending on the specific data analyzed, it may 
be possible to identify some patterns as being unobservable, which 
can lead to a number m´ of tests considerably smaller than m, that 
is, the multiple testing burden is alleviated to some degree [64]. A 
method directly estimating the correlation between tests and thus 
deriving a number m´ of effectively independent test was devel-
oped some 20 years ago [65] but, despite its elegance, it does not 
seem to have been applied very often. 

At this point it is worth mentioning that the practice of working 
with a minimum confidence will lead to one-sided statistical tests, 
that is, we only consider patterns more common in cases than con-
trols. We may reverse the pattern search by looking for patterns 
more common in controls than cases, or apply other criteria for se-
lecting patterns. But here we focus on the common practice of re-
stricting patterns to those with high confidence.  

Permutation Testing 

As we have seen, for the Bonferroni method to provide valid re-
sults, we should consider the whole range of p-values from small to 
large, effectively comparing frequencies of small and large p-values. 
For example, without any effect of genotype patterns on disease 
(called null hypothesis), the proportion of patterns with p < 0.10 
should be the same as those with p > 0.90, namely, 10%. Another 
type of comparison may be performed by creating null data on the 
computer, that is, data known not to contain disease association, 
and comparing these with the observed data. Null data may be ob-
tained by randomly scrambling labels “case” and “control”, which 
clearly gets rid of any association between genotypes and pheno-
types, whereas the genotype data are left untouched. A large num-
ber Np of permutation datasets are created on the computer, with 
each being subjected to the same analysis as done on the observed 
data, and the largest test statistic, Ti (here, chi-square), obtained for 
each such null dataset is recorded. Then, for each chi-square ob-

tained in the observed data, the proportion of Ti values larger than 
or equal to the observed chi-square is an estimate for the p-value 
associated with that observed chi-square [66]. Permutation testing 
has been carried out in many areas of research [67]; specific im-
provements in the data mining area have recently been described 
[24]. 

The main advantage of permutation testing is that a potentially 
small number of highly selected genotype patterns (high values for 
minimum confidence) may be considered and their permuta-
tion-based p-values obtained. On the other hand, for each null per-
mutation, the whole process of searching for genotype patterns 
must be repeated and this should be done at least 1,000 times. 

False Discovery Rate 

The methods discussed so far control the so-called FWER [61] by 
determining the probability p that a result as extreme or extremer 
than the one observed could have been obtained by chance alone. 
If a p-value is smaller than a limit like 0.01, then a result is called 
statistically significant. A different approach to this situation is to fo-
cus on significant results and ask, what proportion of them is false? 
This proportion is called the false discovery rate [68], false discov-
ery rate (FDR), and results with FDR smaller than some limit like 
0.01 are called discovered. Several methods for determining the 
FDR have been described; the most reliable, and most conserva-
tive, of these is the Benjamini-Yekutieli method [69]. As with the 
Bonferroni correction, we need to consider the whole range of 
p-values, that is, a potentially very large number m of genotype 
patterns with minimum confidence of k0 = N2/(N1 + N2). The 
p-values are ranked from small (p1) to large (pm), and the largest pr 
< r × α/[m × c( m)] is determined, where r is the rank and c(m) = 
1 + 1/2 + 1/3 + … + 1/m is the harmonic series. All values of p < 
pr are considered discovered [61]. 

The idea underlying the FDR has been formulated as a partition 
test [70] and may lead to more discoveries than FDR [71], but 
this approach has not been pursued further. In our experience, the 
number of discovered patterns is often similar to the number of 
patterns deemed significant after Bonferroni correction. In fact, if 
the smallest p-value is significant then it is also discovered [68]. 

Results 

For some datasets, the total number of variants may be too large 
for pattern mining approaches. Some authors then select a subset 
of variants, often those N variants with the largest single-locus dis-
ease association [72]. However, this practice is fallacious as a 
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strong disease association of a variant has the effect that it will 
show up in many genotype patterns. In other words, a genotype 
pattern may show a strong disease association mostly because of 
main effects of one or the other of the two participating variants 
rather than an interaction effect [17]. If the aim is to uncover inter-
action effects, the recommended approach is to first remove indi-
vidually significant variants and only then proceed to genotype 
pattern analysis.  

As a case in point, we apply our GPM approach [17] to a pub-
lished dataset on wet age-related macular degeneration collected 
in Hong Kong [73] and analyze results for significance and discov-
ery. This dataset contained 96 cases and 127 controls, each geno-
typed for 81,934 variants genome-wide. Single-variant analysis 
with the trend test as implemented in plink indicated two variants 
with permutation-based p < 0.05. A total of four variants had per-
mutation-based p < 0.60 and were removed for digenic analysis so 
that virtually no variants with appreciable main effects were left. 

GPM analysis was carried out with minimum support of 40 di-
genic genotype patterns. The “null” confidence was 96/223 = 
43%, but to keep the number of patterns to a manageable level, we 
were working with a minimum confidence of 60%, which resulted 
in a total of 18,044,794 genotype patterns. Permutation analysis 
was carried out with 1,000 replicates. Table 2 shows the number of 
significant or discovered patterns as determined by methods dis-
cussed above. 

Results for the Bonferroni correction are comparable to those 
for FDR-BY and furnished more patterns than permutation analy-
sis. Thus, at least on the basis of this example, the Bonferroni cor-
rection is a reasonable way to go although, to be valid, it requires a 
rather low minimum confidence with resulting large number of 
patterns. Despite the rather large total number of genotype pat-
terns and resulting strong penalty, the Bonferroni correction ex-
hibited multiple significant genotype patterns. Permutation analy-
sis provided much smaller number of significant results. However, 
it is not generally true for most cases. Depending on the number 
of replicates, the permutation analysis may provide slightly differ-
ent results. 

Discussion 

Pairwise analyses may be carried out at the level of genotype, vari-
ant [74], or gene [75], with respective decreases in granularity and 
total numbers of pairs. Genotype pairs (patterns) offer the greatest 
precision as signals of a single genotype pair may be hidden among 
the nine genotype pairs in a pair of variants [17]. On the other 
hand, searching among very large numbers of genotype pairs re-

quires good computer resources. It is hoped that developments in 
search methodology and computer programming will improve 
FPM methods in genotype patterns mining and allow for permu-
tation analysis with suitable numbers of replicates. 

As seen in the results displayed in Table 2, a small number of 
genotype patterns are significant even in the absence of significant 
single variants with strong main effects (the significant ones were 
removed prior to analysis). This phenomenon can be expected to 
be encountered more often in the future when FPM methods be-
come more powerful and more generally available even on smaller 
computers. 
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