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Introduction 

Gallibacterium anatis (earlier known as Pasteurella anatis), which belongs to the family 
Pasteurellaceae, is an emerging disease-causing organism in poultry [1]. This bacterium 
has been isolated from various animals including chickens, turkeys, geese, ducks, pheas-
ants, partridges, budgerigars, peacocks, cage birds, and wild birds [1-3]. There have been 
debates about whether this bacterium is pathogenic or nonpathogenic since it is found as 
a common part of the microbiota in upper respiratory tract and lower reproductive tract 
of healthy chickens [2,4,5]. However, increasing evidence indicates that G. anatis is asso-
ciated with a wide range of pathological changes, leading to decreased egg production 
and lowered animal welfare in commercial poultry farms [6,7]. The disease is most likely 
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The pathogen Gallibacterium anatis has caused heavy economic losses for commercial 
poultry farms around the world. However, despite its importance, the functions of its hypo-
thetical proteins (HPs) have been poorly characterized. The present study analyzed the 
functions and structures of HPs obtained from Gallibacterium anatis (NCTC11413) using 
various bioinformatics tools. Initially, all the functions of HPs were predicted using the VIC-
Mpred tool, and the physicochemical properties of the identified virulence proteins were 
then analyzed using Expasy's ProtParam server. A virulence protein (WP_013745346.1) that 
can act as a potential drug target was further analyzed for its secondary structure, fol-
lowed by homology modeling and three-dimensional (3D) structure determination using 
the Swiss-Model and Phyre2 servers. The quality assessment and validation of the 3D mod-
el were conducted using ERRAT, Verify3D, and PROCHECK programs. The functional and 
phylogenetic analysis was conducted using ProFunc, STRING, KEGG servers, and MEGA 
software. The bioinformatics analysis revealed 201 HPs related to cellular processes (n = 
119), metabolism (n = 61), virulence (n = 11), and information/storage molecules (n = 10). 
Among the virulence proteins, three were detected as drug targets and six as vaccine tar-
gets. The characterized virulence protein WP_013745346.1 is proven to be stable, a drug 
target, and an enzyme related to the citrate cycle in the present pathogen. This enzyme 
was also found to facilitate other metabolic pathways, the biosynthesis of secondary me-
tabolites, and the biosynthesis of amino acids. 
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to occur in intensively reared poultry farms (such as those raising 
broiler chickens) and incurs a high rate of mortality unless treated 
[1]. Therefore, determining the virulence factors of G. anatis 
would play an important role in proposing better control and pre-
vention methods.  

In recent years, numerous genomes have been sequenced with 
the help of next-generation sequencing technology and are avail-
able in public databases, such as that operated by the National 
Center for Biotechnology Information (NCBI) [8]. As a result, 
genomes with hypothetical proteins (HPs) have been deposited in 
sequence databases instead of experimentally confirmed facts due 
to their functional importance. Moreover, in some circumstances, 
because of limitations in illustrations (experimental validation 
techniques), expenditures, and the time required for the corre-
sponding methodologies, whole-genome annotations have not 
been archived. Furthermore, the large amount of HPs in a genome 
naturally creates difficulties in data analysis [8]. This encourages in 
silico analysis, which utilizes and produces experimental informa-
tion on HPs [9]. Establishing a structural and functional annota-
tion for HPs may also play a significant role in elucidating protein 
pathways and cascades, helping to complete the currently approxi-
mate records on a variety of proteins [8,10]. Bioinformatics meth-
ods using discriminative algorithms and databases are the best ap-
proach to influence laboratory-based experimental procedures. 
Since these algorithms produce precise experimental results, they 
can be used to complete the functional and structural annotation 
of HPs [8]. 

The present study employed an in silico approach and predicted 
the functions of all HPs in the G. anatis reference genome 
(NCTC11413). Following identification, the physicochemical 
properties of the virulence-associated HPs were examined. Among 
them, a virulence protein within the pH range of 6–7 was identi-
fied as a drug target and analyzed for secondary structures, leading 
to the production of its first three-dimensional (3D) model by the 
ab initio method, and finally enabling the completion of its func-
tional annotation. We believe that the present study provides a 
convenient methodology to analyze HPs and their functions in 
prokaryotic genomes. 

Methods 

Sequence retrieval and selection of HPs 
The reference genome NCTC11413 was retrieved from the NCBI 
database. We observed that the genome consisted of 2,404 coding 
sequences. Upon analysis (https://www.ncbi.nlm.nih.gov/assem-
bly/GCF_900450735.1/), 201 HPs were identified. All 201 HPs 

were separated from the genome using Geneious Prime version 
2020.0.5. 

In silico prediction of virulence factors, cellular processes, 
information/storage, and metabolism molecules 
Identifying the functions of HPs plays a vital role in understand-
ing a bacterium’s metabolic pathways and pathogenesis. The VIC-
Mpred tool (http://crdd.osdd.net/raghava/vicmpred/index.
html) was employed for the identification of possible virulence 
factors, cellular processes, information/storage, and metabolism 
molecules among HPs from the reference strain NCTC11413. 
The VICMpred server is a support vector machine (SVM)–based 
method with the amino acid and dipeptide composition patterns 
of bacterial protein sequences [11]. The server provides an over-
all detection accuracy of 70.75%. At the end of the selection pro-
cess, all virulence-associated HPs were selected for further char-
acterization. 

Physicochemical properties of virulence proteins 
The physicochemical parameters of all virulence proteins were 
studied using Expasy's ProtParam server (https:// web.expasy.org/
protparam/), which was then used for computed theoretical mea-
surements such as molecular weight, extinction coefficient, insta-
bility index, aliphatic index, and grand average of hydropathicity 
(GRAVY). The extinction coefficient measures the amount of 
light that a protein can absorb at a certain wavelength. The insta-
bility index provides an estimation of the stability of a protein in a 
test tube, with a value of 40 indicating instability. The aliphatic in-
dex of a protein is described as the relative volume occupied by ali-
phatic side-chain amino acids. The GRAVY value for a peptide 
and/or protein is calculated as the sum of the hydropathy values of 
all of the amino acids, divided by the number of residues in the 
query sequence [12].  

Subcellular localization and protein classification 
It is a well-known fact that proteins present in the cytoplasm can 
serve as possible drug targets, while membrane proteins found on 
the surface are considered as vaccine targets. Thus, the subcellular 
localization of virulence proteins was predicted using the PSLpred 
online web server [it is a hybrid approach-based method that inte-
grates PSI-BLAST and three SVM modules based on composi-
tions of residues, dipeptides, and physicochemical properties] 
(http://crdd.osdd.net/ raghava/pslpred/) and PSORT (a comput-
er program for the prediction of protein localization sites in cells) 
(https://www.psort.org/). Moreover, the SignalP server (http://
www.cbs.dtu.dk/services/SignalP/) was used to determine the 
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presence of transmembrane helices and signal peptides [13-15]. 
This information is important for determining whether a protein 
is a membrane protein, secretory protein, or cytoplasmic protein. 
Following this, a virulence protein within the pH range of 6–7 was 
subjected to further characterization. 

Functional domains, interaction network, and phylogenetic 
relationships of the protein 
A virulence protein (WP_013745346.1) was examined to identify 
its precise functional domains using Pfam [16], HmmScan [17], 
Scanprosite [18], InterProScan [19], and SMART [20]. Addition-
ally, the ProFunc server and STRING database were employed to 
understand possible functional interactions associated with the 
virulence protein [21,22]. Upon analysis, a phylogenetic tree was 
constructed using 14 other reference protein sequences in mega 
software version 7 [23] and the potential metabolic pathways were 
assessed using the Kyoto Encyclopedia of Genes and Genomes 
[24]. 

Secondary structure analysis 
The SOPMA server (https://npsa-prabi.ibcp.fr/NPSA/npsa_sop-
ma.html) was used to predict the secondary structure (helix, 
sheets, and coils) of the virulence protein WP_013745346.1 [25]. 
In addition, the PSIPRED server (http://bioinf.cs.ucl.ac.uk/ 
psipred/) was utilized to confirm the results achieved from SOP-
MA [26]. 

Homology modeling of the HP 
The possible 3D structure of the virulence protein (WP_01374 
5346.1) was created by an alignment approach on the SWISS- 
MODEL protein structure homology modeling server (https://
swissmodel.expasy.org/) and the Phyre2 server [12,25]. 

Quality assessment of the 3D model and visualization 
The early structural model of the achieved protein was checked for 
mistakes in the 3D structure using the ERRAT and Verify3D pro-
grams (https://servicesn.mbi.ucla.edu/) for structural examina-
tion and confirmation of protein modeling [26,27]. Finally, the 
PROCHECK structural evaluation server was used to assess the 
quality of the 3D structure [28]. The visualization of creating the 
model was accomplished by Geneious Prime version 2020.0.5. 

Submission of the model to a protein model database 
The protein model was created and successfully submitted to the 
Protein Model Database for the virulence protein (WP_01374 
5346.1).  

Results and Discussion  

In silico prediction of virulence factors, cellular processes, 
information/storage, and metabolism molecules 
Initially, by using the reference genome NCTC11413 we identi-
fied 201 uncharacterized HPs for G. anatis. These 201 HPs were 
analyzed using the VICMpred tool to understand their functional 
attributes. In return, the HPs were divided into four groups: 119 
for cellular processes, 61 for metabolism molecules, 11 for viru-
lence, and 10 for information/storage. The 11 virulence proteins 
identified in the present study were subjected to further character-
ization (Supplementary Tables 1 and 2). 

Physicochemical properties, subcellular localization, and 
protein classification of the virulence proteins 
The novel virulence proteins identified had 333–3,033 nucleotides 
and 111–1,011 amino acids (Table 1). Among the virulence pro-
teins, the highest extinction coefficient (1.4 × 105) was observed in 
the HP WP_043885272.1. The instability index indicated that 
WP_013745190.1, WP_013746187.1, and WP_013746977.1 
were unstable proteins, whereas the others were stable proteins 
(Table 2). Following this, the prediction of subcellular localization 
using PSORT indicated that 10 virulence proteins were cytoplas-
mic membrane proteins, whereas PSLpred showed three cytoplas-
mic proteins, two extracellular proteins, and six outer or inner 
membrane proteins. It is well known that proteins in the cyto-
plasm are possible drug targets, while membrane proteins are con-
sidered to be vaccine targets [29]. Cytoplasmic proteins play a 
crucial role in metabolic pathways that are critical to the survival of 
the pathogen inside the host organism [30]. Therefore, the three 
proteins detected in the cytoplasm (from both PSLpred and PSO-
RT servers) can be used as drug targets, whereas the six membrane 
proteins could be used as vaccine targets against the present patho-
gen (Table 3). Moreover, the virulence-associated HP named 
WP_013746977.1 was identified as a signal peptide, whereas 
WP_013745329.1 was identified as a lipoprotein signal peptide. 
The protein structure of WP_013745346.1 (protein in the pH 
range of 6–7 and a possible drug target). 

Functional annotation of the virulence protein 
WP_013745346.1 
All five employed tools indicated that the virulence protein 
WP_013745346.1 is an enzyme (known as methylcitrate syn-
thase) primarily associated with the citrate cycle (Supplementary 
Table 3). ProFunc analysis indicated it is related to both biological 
processes (cellular process [74.47], cellular metabolic process 
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Table 1. Novel virulence proteins identified in the Gallibacterium anatis NCTC11413 genome by the VCMPred online server

Protein name Sequence length (bp) Protein length (AA) VICM prediction Value
WP_013745190.1 333 111 Virulence factor 0.77
WP_013745886.1 492 164 Virulence factor 0.78
WP_013745329.1 519 173 Virulence factor 0.83
WP_013746187.1 555 185 Virulence factor 2.92
WP_013745598.1 711 237 Virulence factor 1.05
WP_013747269.1 753 251 Virulence factor 0.45
WP_013745861.1 831 277 Virulence factor 0.73
WP_013745346.1 1,110 370 Virulence factor 1.22
WP_013746977.1 1,116 372 Virulence factor 1.03
WP_013746705.1 1,260 420 Virulence factor 2.53
WP_043885272.1 3,033 1,011 Virulence factor 1.15

Table 2. Physicochemical properties of 11 virulence proteins of Gallibacterium anatis with the ProtParam online server

Molecular 
weight (Da)

Extinction 
coefficient

Instability 
index

Aliphatic 
index

Grand average of 
hydropathicity Theoretical pH Stability

WP_013745190.1 Virulence 13,148.94 25,900 56.76 100.09 –0.385 4.99 Unstable
WP_013745886.1 Virulence 17,489 18,450 26.69 81.23 –0.45 4.61 Stable
WP_013745329.1 Virulence 17,394.37 17,200 13.08 70.29 –0.473 4.93 Stable
WP_013746187.1 Virulence 20,970.83 13,410 84.02 91.68 –0.624 6.92 Unstable
WP_013745598.1 Virulence 27,340.22 27,975 30.81 86.82 –0.383 8.2 Stable
WP_013747269.1 Virulence 27,300 21,430 31.27 90.6 –0.244 9.54 Stable
WP_013745861.1 Virulence 31,472 37,360 30.65 83.01 –0.386 5.37 Stable
WP_013745346.1a Virulence 41,052 36,120a 31.37 95.04 –0.118 6.57 Stable
WP_013746977.1 Virulence 41,061 24,200 41.25 61.73 –0.814 4.88 Unstable
WP_013746705.1 Virulence 45,399 39,310 16.98 89.19 –0.284 5.55 Stable
WP_043885272.1 Virulence 108,467 149,910 21.7 66.4 –0.698 4.55 Stable

aNewly characterized proteins in the present study are indicated.

[74.47], metabolic process [74.47], cofactor metabolic process 
[56.61]) and biochemical processes (catalytic activity [74.47], 
transferase activity [73.74], transferase activity/transferring acyl 
groups [47.82], transferase activity/transferring acyl groups/acyl 
groups converted into alkyl on transfer [41.91]). The STRING 
protein network analysis suggested that the virulence protein 
WP_013745346.1 is associated with other functional proteins 
such as acsA and prpB (Fig. 1). The phylogenetic analysis with 
other reference sequences revealed that WP_013745346.1 is simi-
lar to other bacterial methylcitrate synthases (Supplementary Fig. 
1). Moreover, this virulence protein was related to the biosynthesis 
of secondary metabolites, microbial metabolism in diverse envi-
ronments, carbon metabolism, the biosynthesis of amino acids, 
and glyoxylate and dicarboxylate metabolism (Supplementary Fig. 
2). This enzyme is a key determinant of propanoate degradation in 
micro-organisms [31]. Previous studies also suggested that the 

presence of methylcitrate synthase, malate synthase, and methylci-
trate dehydrate is essential to the intercellular growth, metabolism, 
and virulence of bacteria, such as Mycobacterium tuberculosis [32]. 
Moreover, methylcitrate synthase in fungi, such as Aspergillus fumi-
gatus, has the potential to detoxify propionyl-CoA, which is a by-
product of protein utilization; therefore, it can be used as a novel 
drug target [33].  

Secondary structure of the virulence protein 
WP_013745346.1  
The secondary structure of the protein WP_013745346.1 was 
predicted using the SOPMA server. Alpha helices were found to 
be the most predominant (53.93%), followed by random coils 
(32.25%) and extended strands (8.40%). Beta-turns accounted for 
5.42% of the structure of this protein. The predicted secondary 
structure for the virulence protein WP_013745346.1 from the 
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Table 3. Subcellular localization and classification of 11 virulence proteins of Gallibacterium anatis with PSORT, PSLpred, and SignalP-5.0 online 
servers. (unknown: the PSORT server predicted the same values for all the functional categories)

Protein
Protein 
length 
(AA)

PSORT PSL Pred (Property-based) SignalP-5.0

Localization Value Internal 
helices Value Subcellular 

localization
Signal 
peptide

TAT signal 
peptide

Lipoprotein 
signal peptide Other

WP_013745190.1 111 Cytoplasmic 
membrane

9.5 8 –0.11 Cytoplasmic  
proteina

0.0032 0.001 0.0007 0.9951

WP_013745886.1 164 Cytoplasmic 
membrane

9.5 16 0.43 Extracellular 
protein

0.0135 0.0007 0.0036 0.9822

WP_013745329.1 173 Cytoplasmic 
membrane

9.5 18 –0.54 Inner membrane 
proteinb

0.0012 0.0001 0.9985 0.0002

WP_013746187.1 185 Unknown Inconclusive Inconclusive –0.47 Outer membrane 
proteinb

0.0267 0.0034 0.0083 0.9616

WP_013745598.1 237 Cytoplasmic 
membrane

9.5 18 –0.07 Cytoplasmic  
proteina

0.0074 0.0001 0.991 0.0015

WP_013747269.1 251 Cytoplasmic 
membrane

9.5 15 0.54 Outer membrane 
proteinb

0.0182 0.0053 0.0034 0.9731

WP_013745861.1 277 Cytoplasmic 
membrane

9.5 8 1.10 Outer membrane 
proteinb

0.0095 0.0049 0.0021 0.9835

WP_013745346.1 370 Cytoplasmic 
membrane

9.46 4 1.43 Cytoplasmic  
proteina

0.0749 0.0013 0.33 0.5938

WP_013746977.1 372 Cytoplasmic 
membrane

9.46 27 –0.48 Extracellular 
protein

0.9814 0.0001 0.018 0.0004

WP_013746705.1 420 Cytoplasmic 
membrane

9.5 15 1.07 Outer membrane 
proteinb

0.0077 0.0012 0.001 0.9901

WP_043885272.1 1011 Cytoplasmic 
membrane

9.46 55 –0.18 Outer membrane 
proteinb

0.1173 0.065 0.0057 0.8119

aPossible drug targets are indicated.
bVaccine targets are indicated.

Fig. 1. A STRING database search was carried out to identify a 
possible functional interaction network of the virulence protein 
WP_013745346.1 (AEC16559.1). The identified functional protein 
partners with the corresponding scores were as follows: AEC16558.1 
(0.997), AEC18484.1 (0.966), acsA (0.962), AEC16561.1 (0.952), 
prpB (0.948), AEC17475.1 (0.920), AEC17206.1 (0.908), AEC17928.1 
(0.907), AEC17490.1(0.877), and AEC17673.1 (0.841).

PSIPRED server was also similar (Fig. 2). 

Homology modeling of the virulence protein 
WP_013745346.1 
G. anatis infections have been reported in recent years at intensive-
ly reared poultry farms. However, its virulence-related factors have 
not been fully elucidated so far. Previous studies have demonstrat-
ed that the identification of virulence proteins from HPs plays a 
significant role in understanding its pathogenesis [28,29]. In silico 
analysis can help determine the biological functions of virulence 
proteins [8]. These predictions can be further strengthened by de-
termining the 3D structures of virulence proteins using homology 
modeling. Homology modeling identifies the 3D structure of a se-
lected protein sequence through alignment to one or more pro-
teins of other known structures [34]. To perform homology mod-
eling, the query sequence of virulence protein WP_013745346.1 
was submitted to the SWISS-MODEL server. The server per-
formed a BLASTP search for the respective protein sequence to 
identify templates associated with homology modeling. The high-
est identity of 36% observed for this virulence protein indicated 
that WP_013745346.1 is novel and no similar template structure 
is currently present in other databases. Following this, we deter-
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Fig. 2. The secondary structure of the virulence protein WP_013745346.1 was predicted using the PSIPRED server.
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Fig. 3. Three-dimensional structural analysis and visualization of the 
virulence protein WP_013745346.1 with Geneious Prime version 
2020.0.5.

Table 4. Ramachandran plot statistics of the virulence protein 
WP_013745346.1 predicted by the PROCHECK server

Ramachandran plot statistics No. (%)
Residues in the most favored regions [A, B, L] 295 (90.2)
Residues in the additional allowed regions [a, b, l, p] 15 (4.6)
Residues in the generously allowed regions [a, b, l, p] 8 (2.4)
Residues in the disallowed regions 9 (2.8)
No. of non-glycine and non-proline residues 327
No. of end-residues (excl. Gly and Pro) 2
No. of glycine residues (shown in triangles) 24
No. of proline residues 16
Total no. of residues 369

Fig. 4. Ramachandran plot of the modeled structure for the virulence protein WP_013745346.1 validated by the PROCHECK program.

mined the 3D structure of the virulence protein WP_013745 
346.1 by the ab initio method through the Phyre2 server, which 
gave 99.8% confidence in the model (Fig. 3). A comparative analy-
sis of C. burnetii and M. tuberculosis methylcitrate synthases to 
WP_013745346.1, showed a common structural domain (citrate 
synthase, C-terminal domain), cellular location (cytoplasm), and 
molecular functions (Supplementary Fig. 3). 

180

135

90

45

0

–45

–90

–135

18013590450–45–90–135180

Ps
i (

de
gr

ee
s)

Phi (degrees)

7 / 9https://doi.org/10.5808/gi.22006

Genomics & Informatics 2022;20(4):e41

https://doi.org/10.5808/gi.22006


Quality assessment and visualization 
The reliability of the created protein model was assessed using the 
ERRAT server, which analyzes the statistics of non-bonding inter-
actions between diverse atom types, based on characteristic atomic 
interactions. The overall quality factor was found as 96.096%, 
which was sufficient to use this model. As shown by the Verify3D 
program, the results indicated 86.60% of residues had an average 
3D (atomic model) – 1D (amino acid) score ≥0.2, meaning that 
this structure was compatible and genuinely good. Next, validation 
through a Ramachandran plot analysis showed that the distribution 
of φ and ψ angles in the model were within the limits (Table 4), and 
90.2% of the residues are in the most favored region of the plot, in-
dicating that the model was valid (Fig. 4). 

Data availability 
The model created for the virulence protein WP_013745346.1 is 
currently available in the protein model database under reference 
number-PM0083267. 

Summary 
The present study aimed to characterize the HP functions of the 
emerging poultry pathogen G. anatis, as well as to create the first 
3D structure and propose possible functions of the virulence pro-
tein WP_013745346.1. We observed that this novel protein is a 
stable cytoplasmic protein and functions as an enzyme in the ci-
trate cycle. This protein was observed to be central to several other 
metabolic pathways. Therefore, the novel virulence protein stud-
ied here may have a significant impact on the pathogenesis of G. 
anatis.  
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