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Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder as-
sociated with sudden death in young adults. Thailand has the highest prevalence of BS world-
wide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed 
a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome se-
quencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline 
was applied to identify viral integration positions from unmapped WGS data of Thai males, in-
cluding 100 BS patients (case) and 100 controls. Even though the sample preparation had no 
viral enrichment step, we can identify several virus genes from our analysis pipeline. The pre-
dominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and 
controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K 
assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint 
positions were validated and compared between the case and control datasets. Interestingly, 
Brugada cases contained HERV-K integration breakpoints at promoters five times more often 
than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions 
that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long 
non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been re-
ported to be associated with congenital heart and arterial diseases. These findings provide an-
other aspect of the BS etiology associated with viral genome integrations within the human 
genome. 

Keywords: Brugada syndrome, human endogenous retrovirus K, metagenome, VIRIN, virus inte-
gration breakpoint, whole genome sequencing
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Introduction 

Brugada syndrome is an inherited arrhythmogenic disease leading 
to a high risk of acute cardiac death. This syndrome has been con-
nected to a genetic variant with an autosomal dominant inheri-
tance pattern [1,2]. The highest prevalence is in Southeast Asia, 
especially in Thailand (6.8 per 1,000), where it is almost 15 times 
higher than worldwide [2-4]. Hundreds of gene variants have been 
associated with Brugada syndrome, of which the mutation in SC-
N5A or SCN10A genes of sodium channels has been commonly 
found with the disease (30%) [5,6]. While new findings, the MA-
PRE2 mechanism, and the microtubule-related trafficking effects 
on NaV1.5 expression have been explored in Brugada syndrome 
by genome-wide association analysis [5], for almost 60% of pa-
tients, etiologic causes are still unknown [7]. 

The whole genome sequencing (WGS) data have become high-
ly valuable information that can be used to screen all variants, allele 
assignment, insertion, and detection of structural variation [8,9]. 
Generally, after mapping WGS reads to the human reference ge-
nome, there remains 5%–10% unmapped reads [10]. The un-
mapped reads may contain microbial agents, especially viral ele-
ments, due to the integrative capacity of various viruses [11]. The 
metagenomics approach is suitable for identifying uncharacterized 
sequencing reads [12]. 

Approximately 8% of the human genome contains human en-
dogenous retroviruses. The human endogenous retrovirus 
(HERV)’s transcripts and regulatory functions have been identified 
in numerous diseases [13,14] including multiple sclerosis [15], dia-
betes [16], systemic lupus erythematosus [17], psoriasis [18], 
rheumatoid arthritis [19], and cancer [20]. Moreover, human pap-
illomavirus (HPV), hepatitis B virus (HBV), and Epstein-Barr vi-
rus (EBV) are exogenous viruses that are associated with diseases. 
They are well-known as insertion viruses commonly found in the 
human genome and can induce tumorigenesis and cancer (10%–
15% of all cancer) [21,22]. Local viral integrations may cause ge-
nomic instability followed by altered gene copy numbers and gene 
expression around the integration sites. Therefore, these inserted 
positions provide valuable information for understanding the 
mechanisms of virus-related diseases and the etiologic [23]. 

Additionally, the infections such as enteroviruses (coxsackievi-
rus, enterovirus, echovirus) and adenoviruses play an important 
role in sudden cardiac death [24,25]. The most common cardio-
tropic viruses are EBV, coxsackievirus, adenovirus, human herpes-
virus 6 (HHV6), cytomegalovirus, hepatitis C virus, and parvovi-
rus B19. Moreover, parvovirus B19 was also associated with Bru-
gada syndrome. They potentially trigger an autoimmune response 

against components of the heart or mediate direct cardiac injury 
[26]. Thus, viral genes and integration positions in Brugada syn-
drome patients are useful evidence that can be used to discover the 
disease's etiology and progression. 

We identified the putative viral gene and protein in 200 Thai 
male WGS data. We further developed an analysis pipeline to 
identify virus integration positions in human genome sequencing 
data called "VIRIN". The human endogenous retrovirus K 
(HERV-K) genomes were assembled and explored in two poten-
tial integration loci of HERV-K, namely the "neuroblastoma break-
point genes family (NBPF)" gene family and long non-coding RNA 
(lncRNA) "PCAT14", which are related to Brugada syndrome 
from WGS data of an individual Thai patient with Brugada syn-
drome and a control volunteer. 

Methods 

Study cohort 
The study cohort was divided into two groups, the Brugada cases 
and controls. The cases consisted of 100 Thai male subjects with 
type I Brugada electrocardiogram (ECG) using the criteria of the 
2013 Heart Rhythm Society/European Heart Rhythm Associa-
tion/Asia Pacific Heart Rhythm Society Expert Consensus State-
ment. The training physicians read and confirmed all ECGs of cas-
es with a type I Brugada pattern. The 100 Thai male control sub-
jects comprised those who had a standard 12-lead ECG without 
type I Brugada. Both groups were representative of a wide age 
range (between 19 and 75 years, with medians of 50 years in the 
case group and 47 years in the control group). All subjects were of 
Thai ethnicity by self-report. The Ethics Review Committee of all 
the institutions approved the study (NCT04232787). 

All blood samples were collected, and DNA was extracted as de-
scribed in a previous report. The sequencing libraries were prepared 
with a polymerase chain reaction–free reaction [9]. Then, the human 
genomic DNA libraries were sequenced by Illumina HiseqX plat-
forms (Cambridge, UK) with a pair-end sequencing (2 × 150 bp) 
strategy [9]. 

Extraction of the unmapped and soft-clipped sequence 
First, the raw FASTQ reads were filtered with Trimmomatic ver-
sion 0.38 [27] by sliding window at mapping quality 30; all reads 
shorter than 50 nucleotides were removed. Second, the filtered 
reads were mapped to the NCBI Genome Reference Consortium 
Human Build 38 (GRCh38) with decoys reference using 
iSAAC-03.16.02.19 (version 0.7.16a) with a default setting. An 
unmapped read whose mate is mapped was extracted using the 
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SAMtools 1.15 "view -f 4 -F 264" command [28]. Furthermore, 
the soft-clipped reads with GRCh38 were extracted using the 
modified extractSoftclipped function of the SE-MEI tools 
(https://github.com/dpryan79/SE-MEI). 

Identification of the viral sequences 
The viral sequence identification was performed on the NCBI 
13,434 complete reference viral database (https://ftp.ncbi.nlm.nih.
gov/refseq/release/viral/, downloaded on January 7, 2021) by the 
Bowtie2 aligner version 2.3.5.1 [29]. Next, the identified viral se-
quence was merged by de novo assembly approach utilizing SPAdes 
v3.13.0 with the "-k 33" option [30]. Then, to identify the viral inte-
gration site, the contigs were validated with the blastn in NCBI 
BLAST+ [31] and Diamond blastx v2.0.15.153 [32], respectively. 

The original extracted single-mate unmapped and soft-clipped 
reads were re-aligned with the selected virus reference genome. 
The reads mapped with the virus reference genome were extracted 
from the original GRCh38 human alignment bam file. The posi-
tion of the virus integration was reported by the in-house bash 
script and BEDtools v2.27.1 command [33]. The virus integration 
positions (breakpoints) were annotated with DNase I hypersensi-
tivity regions, Repeatmasker, and GencodeV.40 [34-36]. The 
whole sequence of steps of the analytical source code is available 
on GitHub (https:// gist.github.com/Suwalak-Chit/VIRIN). 

Data interpterion and statistical analysis 
Statistical analysis and visualization were performed using Graph-
Pad Prism 8.0.1 software. The descriptive statistics and continuous 
variables consistent with a normal distribution were represented 
by means and standard deviations; non-parametric tests were per-
formed with t-tests or the Mann-Whitney U test. p < 0.05 was con-
sidered statistically significant. 

Data availability 
The data in this study were available from the National Research 
Council of Thailand under license for the current study and were 
not publicly available. The data were available from the authors 
upon a reasonable request and with the permission of the National 
Research Council of Thailand.  

Results  

The characterization of unmapped reads 
The WGS data from both case (n = 100) and control (n = 100) 
datasets are 929,286,470 and 935,775,065 pair-end read, respec-
tively. Most reads were aligned with the human reference genome 

96.48% (case) and 96.62% (control). The average unmapped 
reads which remained amounted to 44,548,377 reads (case) and 
44,784,395 reads (control). Among the mapped reads, the soft-
clipped reads were 9,009,042 in the case group and 8,860,802 in 
the control group (Fig. 1). The number of unmapped reads be-
tween groups did not significantly differ in the t-test (p = 0.172). 

Viral gene or/and genome identification 
The unmapped and soft-clipped reads were aligned against the 
NCBI viral genome using Bowtie2. With a cut-off of at least 1,000 
reads containing 90 viruses in each sample, 291,126,786 reads were 
assigned to the 285 viral references. The SPAdes assembly tools 
[37] were used for de novo assembly of the virus mappable read in 
each sample. The whole contigs were hit with eight virus genomes 
(the contig length >5% of each virus genome) by Blastn. Three vi-
ruses (Torque teno virus 10 [TTV 10], human endogenous retro-
virus K, and Bat associated circovirus 4) were found in both data-
sets. Five viruses (Torque teno virus 19, Torque teno virus 3, 
Torque teno virus 8, Aeribacillus virus AP45, and Gemykibivirus 
humas3) were found only in the case dataset. Seven of the eight 
identified are DNA viruses (Supplementary Table 1). Interestingly, 
the HERV-K and Bat-associated circovirus four genome complete-
ness significantly differed between the cases and controls (p < 
0.001) (Fig. 2). Almost full-length genome of human endogenous 
retrovirus K was observed for the datasets (the largest contig in 
case, 86.54%; control, 84.74% genome completeness) (Fig. 2). 

The translated nucleotide blast on protein database (blastx) re-
sult showed 13 viral proteins positive in more than ten samples in 
each group. The human endogenous retrovirus K putative envelope 
protein was detected in all subjects from the blastx results (Supple-
mentary Table 2). The HERV-K genome was assembled and the 
genome coverage was visualized. For the case subject data, the ge-
nome depth coverages on each HERV-K gene were gag gene 
(194.44x), pro gene (410.79x), pol gene (203.53x), and env gene 
(189.76x), respectively. In contrast, the genome coverage of 
HERV-K genes in the control subject data included the gag gene 
(199.44x), pro gene (610.79x), pol gene (243.53x), and env gene 
(129.76x) (Fig. 3). We also detected the A55 protein of the BeAn 
virus genome in 61 cases and 70 control data. Moreover, 11 form 13 
(84.61%) of the identified viral proteins were retrovirus proteins. 

VIRIN analysis pipeline validation 
The viral breakpoint integration position was identified with the 
VIRIN analysis pipeline. The pipeline was validated with the cer-
vical cancer cells (HeLa cells) and hepatocellular carcinoma 
(HCC) tissue WGS data, in which well-known HPV-18 and HBV 
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Fig. 1. Distribution number of mapped and unmapped reads with GRCh38.

Fig. 2. The longest contigs size of each identified virus by nucleotide blast from individual sample.
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are integrated into the cellular genome, respectively [38]. The re-
sult from VIRIN showed HPV-18 was integrated into the three 
breakpoints of locus 8q24.21 (Chr8:127,222,011, Chr8:127, 
218,387 and Chr8: 127,229,303) of HeLa cell WGS data 
(SRR5009881) [39]. Moreover, the analysis pipeline identified 

two HBV breakpoints at locus 17p13.1 (Chr17:10,110,360 and 
Chr17:10,366,141) from HCC tissue WGS data (ERR173408 
and ERR181167) [40] (Supplementary Table 3). This evidence 
suggests that VIRIN is effective for the identification of virus inte-
gration breakpoints. 
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HERV-K breakpoint position identification 
We validated the HERV-K breakpoints in the human genome. The 
total breakpoints were 952 in the case group and 814 in the con-
trol group datasets. The number of breakpoints was significantly 
different between the two datasets (Mann-Whitney U test, p = 
0.0028) (Fig. 4A). Chromosome 1 had the highest HERV-K 
breakpoints in both datasets (case, 38; control, 20), while chromo-
somes 13, 15, and 20 had no HERV-K breakpoint position. Chro-
mosomes 2, 12, 16, and X contained the HERV-K breakpoints 
only in the case dataset (4, 3, 8, and 7, respectively). However, 
there were no significant differences (t-test, p < 0.05) in HERV-K 
insertion in any chromosomes between the case and control (Sup-
plementary Table 4). Moreover, the number of HERV-K break-

Fig. 3. The genome depth coverage of human endogenous retrovirus K (HERV-K) in representative case and control.

points in DNase I hypersensitivity regions were significantly dif-
ferent between case group (81 breakpoints) and control group (40 
breakpoints) (Mann-Whitney U test, p = 0.012) (Fig. 4B). More 
than 60% of HERV-K breakpoints were located in the intergenic 
region (case, 63.89%; control, 69.15%). The breakpoint in case 
datasets was more often in promoter than control datasets 
(15.28% and 1.06%, respectively) (Fig. 4C). The HERV-K break-
points at the repeat region include 54 and 26 breakpoints from 30 
cases and 20 controls, respectively. HERV-K breakpoints in the 
case group (32 breakpoints) were located mostly on the long ter-
minal repeat (LTR), while most HERV-K breakpoints from the 
control group (12 breakpoints) were located on the long inter-
spersed nuclear element (LINE) (Table 1). 
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Fig. 4. The number of human endogenous retrovirus K (HERV-K) breakpoints in the human genome individual case (n = 100) and control 
group (n = 100) HERV-K breakpoints (A), the total distribution of HERV-K breakpoints in the genomic region (B), and the individual HERV-K 
breakpoints in DNase I hyposensitivity regions (C). UTR, untranslated region.

Table 1. The number of breakpoints in four types of repeat regions 
from each dataset

Repeat region Case (n =  32) Control (n =  20)
LTR 32 6
LINE 15 12
Simple repeat 3 0
Retroposon 3 7
SINE 1 1
Total 54 26

LTR, long terminal repeat; LINE, long interspersed nuclear element; SINE, 
short interspersed nuclear element.

All HERV-K breakpoints were annotated on the gene (gen-
codeV.40), including 27 positions from 27 cases and 29 positions 
from 18 controls. The HERV-K breakpoints were located in pro-
tein-coding (case, 17; control, 20), lncRNA (case, 8; control, 7) 
and a small number of pseudogene (case, 2; control, 3) (Supple-
mentary Table 5). An individual unique HERV-K breakpoint was 
also found in 16 cases and 21 controls. Importantly, 25 HERV-K 
breakpoints from nine Brugada syndrome cases were located in a 
NBPF. Additionally, the HERV-K breakpoint from four Brugada 
syndrome samples was located on the lncRNA name PCAT14 
(prostate cancer-associated transcript 14). Even though the 
HERV-K breakpoint in the nicotinamide nucleotide transhydroge-
nase function (NNT) gene was found in many samples, more were 
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detected in the control dataset (n = 10) than in the case dataset (n 
= 5). Meanwhile the NBPF11, NBPF12, and PCAT14 were found 
only in the case group, and not detected in the control dataset (Ta-
bles 2 and 3). 

Discussion 

Viral gene/genome detection 
A viral metagenome analysis was performed on the Brugada syn-
drome cases and control WGS data, to investigate the viral genome 
integration from the WGS unmapped read in each sample. Our 
data analysis found the genes of 90 integrated viruses from both 
human and non-human viruses. The human viruses in this study 
were members of the Herpesviridae family and HERV, the same as 
in previous reports [12,41]. Almost 80% of virus-aligned reads 
were assigned as dsDNA virus because the library preparation kit 
was appropriated for DNA source, which similar to the result of vi-

rome in human WGS from the previous study [42]. According to 
the library preparation approach, giant viruses (large genome vi-
ruses) such as the Pandoravirus (2 Mbp genome size) were ob-
served in our study as well as in the previous report [43]. 

The de novo assembled contigs were aligned with the virus refer-
ence genomes (NCBI). Eight viruses were kept after excluding the 
virus contigs that contained less than 5% of their genome. TTV, a 
dsDNA virus belonging to the Anelloviridae family, had consider-
able genetic variability and extreme diversity [44]. In previous re-
ports, the TTV DNA was detected in secretions of healthy hu-
mans, such as blood, saliva, breast milk, tears, bile, and urine 
[45,46]. The TTVs DNA level was also considered the marker of 
the immunological status, hepatitis, gastroenteritis, periodontitis, 
multiple sclerosis, and cancer [47,48]. In this study, we have found 
a unique TTV19, TTV8 in a specific case, TTV3 in two cases, and 
TTV10 in both groups (case, 3; control, 1). Nevertheless, several 
virome studies of human blood frequently found TTV in the sam-

Table 2. Gene annotation list in breakpoints of HERV-K integration in case dataset

No. Gene name Gene type Chr Position Frequency
1 NBPF12 Protein coding 1 146948791 8

146949149
146949314

2 NBPF11 Protein coding 1 148137980 9
3 SIL1 Protein coding 5 139112931 1
4 NNT Protein coding 5 43665587 5

43665608
43665610
43665611

5 PDE10A Protein coding 6 165500565 1
6 SSBP1 Protein coding 7 141752231 1
7 TCP11L1 Protein coding 11 33049984 1
8 ASRGL1 Protein coding 11 62378218 2

62378902
9 PPTC7 Protein coding 12 110571019 1
10 ZNF140 Protein coding 12 133093110 1
11 MAPK1 Protein coding 22 21848137 1
12 TMEM51-AS1 lncRNA 1 15135632 1
13 NEPRO-AS1 lncRNA 3 113025862 1
14 LINC02614 lncRNA 3 125896808 1
15 ENSG00000272462 lncRNA 6 25999489 1
16 ENSG00000285784 lncRNA 9 11895136 1
17 PCAT14 lncRNA 22 23541467 4

23541739
23541740

18 PDCL3P4 Pseudogene 3 101695806 4
19 ENPP7P15 Pseudogene 11 3451290 1

HERV-K, human endogenous retrovirus K.
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ples [49], while we reported only eight samples in total. Indeed, 
we found TTV reads in a total of 20 samples; however, some TTV 
contigs' number, coverage and length are too low. Since the human 
WGS library preparation has a virus enrichment step, we found 
TTV in a few samples. However, according to our findings, we 
could not confirm that TTV integration could be related to Bruga-
da syndrome. On the other hand, the non-human viruses were 
known as the contaminant DNA from the reagents or sequencing 
process, including bacteriophage (Aeribacillus virus AP45) and 
mammalian virus (Bat associated circovirus four and Gemykibivi-
rus humas3) [50]. The previously frequently found viruses associ-
ated with a cardiac infection, such as HHV6, EBV, and hepatitis C 
virus were also detected but could not be assembled to the large 
contigs [26]. Even though Parvoviruses B19 was reported as being 
associated with Brugada syndrome, it was not found in our data. 

VIRIN validation 
Previous research has reported that three virus segments of 
HPV18 are integrated into the HeLa genome on chromosome 8 
(locus 8q23-24) upstream of the myc gene [51]. The result of VI-
RIN analysis pipelines was found in three HPV-18 integrated posi-
tions in the locus 8q23.21 of HeLa cell line WGS data. Generally, 
the HBV integration breakpoints in HCC are various. Most HBV 
breakpoints are near coding genes, including the TERT, MLL4, 
CCNE1, SENP5, and ROCK1. Recurrent HBV breakpoints occur 
within or close to repetitive, non-coding sequences, such as 
LINEs, Alu short interspersed elements, and LTR [52]. Our result 
also showed HBV integrated into the coding region of the MYH13 
gene at 17p13.1 in HCC tissue WGS data, similar to a previous re-
port [53]. Thus, the VIRIN analysis pipeline can identify virus in-
tegration in human WGS data. 

Table 3. Gene annotation list in breakpoints of HERV-K integration in control dataset

No. Gene name Gene type Chr Position Frequency
1 PRDX1 Protein coding 1 45514062 1
2 IPP Protein coding 1 45739955 1
3 MPZL1 Protein coding 1 167771343 1
4 CR1 Protein coding 1 207636105 1
5 CR1 Protein coding 1 207637031 1
6 NNT Protein coding 5 43665299 10

43665592
43665597
43665598
43665601
43665607
43665608
43665612
43665614

7 IQGAP2 Protein coding 5 76550644 1
8 ARMT1 Protein coding 6 151456042 1
9 LHFPL3 Protein coding 7 104750438 1
10 ABCC2 Protein coding 10 99827666 1
11 TTC5 Protein coding 14 20269289 1
12 SLC47A1 Protein coding 17 19505358 1
13 ENSG00000285988 lncRNA 10 6830418 1
14 ENSG00000255947 lncRNA 11 61655408 1
15 ENSG00000259048 lncRNA 14 38118365 1
16 ENSG00000287879 lncRNA 18 79960352 1
17 ENSG00000283907 lncRNA 19 35575243 1
18 ENSG00000286667 lncRNA 19 386213 1
19 MIR548XHG lncRNA 21 18568413 1
20 SEC22B4P Pseudogene 1 146381378 1
21 PDCL3P4 Pseudogene 3 101693108 1

HERV-K, human endogenous retrovirus K; lncRNA, long non-coding RNA.
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HERV-K breakpoint positions 
In addition, we can assemble the full-length HERV-K genome in 
all datasets. The translated nucleotide blast on protein databases 
(blastx) result showed that the envelope proteins (env) of 
HERV-K were found in all datasets. In our data analysis, we also 
detected known DNA proviruses, including gag, pro, pol, and env, 
of HERV-K [54]. Since we utilized the WGS data for the blast, our 
data were not a direct viral protein identification. This is the first 
study demonstrating the HERV-K breakpoints in the WGS data of 
the Thai population. The polymorphic integration position of 
HERV-K could influence both viral protein production and host 
gene regulation. The specific HERV-K breakpoints might be asso-
ciated with the potential pathogenicity in different individuals, for 
example, neurologic and immunologic diseases [54]. 

DNase I hypersensitivity regions are the important genomic 
landmarks for functionally active open chromatin. A previous re-
port also showed that 15% of HERVs inserts are in the DNase I 
hypersensitivity region [55-57]. Interestingly, our results showed 
higher HERV-K breakpoints at DNase I hypersensitivity regions in 
the case group compared to the control group. Moreover, the 
breakpoints of HERV-K were located at the promoter regions 15 
times more often in the case group compared to the control group, 
and this might be linked to the gene regulation process of Brugada 
syndrome pathogenesis. Moreover, Brugada syndrome is 8-10 
times more prevalent in men than women [58], and our result 
showed HERV-K was integrated at chrX only in the case group (7 
cases and 0 control). The previous studies also found a variant on 
the KCNJ5 (potassium voltage-gated channel subfamily E regula-
tory subunit 5) gene located on chromosome X in Japanese pa-
tients with Brugada syndrome [59,60]. However, our result did 
not find HERV-K breakpoints in any gene regions. The potential 
of sex hormones for cardiac regulation is through the ion channel 
because the cardiac muscle found the main gonadal steroid recep-
tors. Moreover, many ion channels, such as CACNA1C and SC-
N5A, are very sensitive to testosterone, and this could explain the 
gender difference in the prevalence of Brugada syndrome [61,62]. 
The highest number of HERV-K breakpoints is in the LTR from 
all the repeated regions in both groups. Although the HERV-K 
were generally integrated into the LTR regions, the number of the 
HERV-K breakpoints in the case group LTR region was five times 
higher than in the control group [63]. 

Importantly, our data found that the HERV-K breakpoints were 
in the protein-coding and lncRNA region. HERV-K breakpoints 
within the NNT gene were found in many samples (control, 10; 
case, 5). NNT is a proton pump in the inner mitochondrial mem-
brane found throughout the human body. It is highly expressed in 

the adrenals, bladder, kidneys, thyroid, adipose tissue, and espe-
cially in the heart [64,65]. Several reports showed that the lack of 
the NNT gene triggers the down-regulation of glucocorticoid lev-
els, inhibiting cardiovascular conditions. This finding is linked to 
our study that found more HERV-K breakpoints in the NNT gene 
in the control group than in the Brugada syndrome patient group 
[66,67]. However, the gene expression level of NNT protein in the 
heart plays an important role in the pathogenesis; thus, NNT pro-
tein levels in Brugada syndrome are interesting and need further 
investigation. 

Most of the HERV-K breakpoints in the gene region were the 
NBPF genes, which were implicated in several developmental and 
neurogenetic diseases and congenital heart disease [17,68]. Fur-
thermore, the NBPF family, such as NBPF1 and NBPF11, were 
reported as the translocation disrupts a sodium channels gene on 
chromosome 17 called ACCN1 (amiloride-sensitive cation chan-
nel 1) [69,70]. Even if the mechanism of the NBPF gene family to 
electrophysiology is still unknown, it is possible that the HERV-K 
breakpoints on NBPF genes are related to Brugada syndrome 
pathogenesis. However, the underlying mechanism needs to be 
further investigated. 

Several lncRNAs play an important role in cardiovascular diseases, 
such as lncRNA LIPCAR dysreglulation in heart failure and lncRNA 
MIAT upregulations in myocardial infarction [71-73]. A lncRNA 
gene, PCAT14, plays an important role in tumorigenesis in HCC and 
prostate cancer [74,75]. PCAT14 expression is also an important 
prognostic for predicting metastatic disease. Furthermore, PCAT14 
contains the single nucleotide variants of SNP rs73155085-A and 
rs131408-C. The rs73155085-A and rs131408-C have been reported 
to be associated with coronary artery disease and peripheral arterial 
disease, respectively [17,76]. Thus, the breakpoint at the PCAT14 
gene is potentially involved with the Brugada syndrome pathogene-
sis. Moreover, PCAT14 has been associated with the hormone testos-
terone in prostate cancer [77]. 

In conclusion, some key findings have emerged from this work. 
The HERV-K genome and their breakpoints in the Thai popula-
tion genome have been reported, and the HERV-K breakpoint po-
sitions have been found in the data. Two (NBPF gene and 
PCAT14 lncRNA) of these breakpoints have a reasonable poten-
tial to be key pathogenesis features of Brugada syndrome. Hence, 
these findings provide a new viewpoint on the etiology of Brugada 
syndrome, including the association with viruses and virus integra-
tion positions, and not limited to purely human genetics. 
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