DOI QR코드

DOI QR Code

Dual-mode control strategy based on DC-bus voltage for dual-active bridge converter in marine electromagnetic transmitter system

  • Tao, Haijun (College of Electrical Engineering and Automation, Henan Polytechnic University) ;
  • Du, Changshun (College of Electrical Engineering and Automation, Henan Polytechnic University) ;
  • Zhang, Guopeng (College of Electrical Engineering and Automation, Henan Polytechnic University) ;
  • Zheng, Zheng (College of Electrical Engineering and Automation, Henan Polytechnic University)
  • Received : 2021.06.08
  • Accepted : 2021.10.26
  • Published : 2022.02.20

Abstract

The marine electromagnetic detection method is the main method for the exploration of marine oil and gas resources. At present, the controlled source circuit of the electromagnetic transmitter is a unidirectional flow of electric energy. When the emission electrodes release the stored energy, the energy cannot be fed back, resulting in an increased DC bus and switch device voltages. The stress increases and the filter capacitors and switch devices are burned, which cannot guarantee the long-term reliable operation of the underwater devices body in the deep sea. A dual-active bridge converter is presented for the controlled source circuit of the electromagnetic transmitter. First, the topology, operating principle, and soft-switching constraints are introduced in detail. Then, a dual-mode control strategy is designed. The inductor current stress optimization control is adopted to ensure a steady-state operation, and the univariate extended phase-shifting sliding mode control is applied to achieve fast energy feedback of the inductive load. Simulation and experimental results show that the proposed circuit significantly reduces the bus voltage effect and switch device voltage stress, improves the efficiency and dynamic performance of the system, and satisfies the needs of deep-sea oil and gas resource exploration.

Keywords

References

  1. Song, H., Zhang, Y., Gao, J., et al.: Clamping-diode circuit for marine controlled-source electromagnetic transmitters. J. Power Electron. 18(2), 395-406 (2018) https://doi.org/10.6113/JPE.2018.18.2.395
  2. Yu, F., Zhang, Y.: Modeling and control method for high-power electromagnetic transmitter power supplies. J. Power Electron. 13(4), 679-691 (2013) https://doi.org/10.6113/JPE.2013.13.4.679
  3. Di, Q., Zhu, R., Xue, G., et al.: New development of the electromagnetic methods for deep exploration. Proc. Chin. J. Geophys. 62(06), 2128-2138 (2019)
  4. Xue, K., Wang, S., Lin, J., et al.: Loss analysis and air-cooled design for a cascaded electrical source transmitter. J. Power Electron. 15(2), 530-543 (2015) https://doi.org/10.6113/JPE.2015.15.2.530
  5. Wang, X., Zhang, Y., Liu, W.: A new dual-active soft-switching converter for an MTEM electromagnetic transmitter. J. Power Electron. 17(6), 1454-1468 (2017) https://doi.org/10.6113/JPE.2017.17.6.1454
  6. Jun, L.I.N., Yu, Y.A.N.G., Xue-yan, H.U., et al.: Transmitting waveform control technology for transient electromagnetic method based on inductive load. J. Jilin Univ. (Eng. Technol. Ed.). 46(05), 1718-1724 (2016)
  7. Song, H., Zeng, Y., Zhang, W.: Snubber circuit for marine controlled-source electromagnetic transmitter. J. Shanghai Jiaotong Univ. (Sci.) 1-12 (2021)
  8. Qin, Z., Shen, Y., Loh, P.C., et al.: A dual active bridge converter with an extended high-efficiency range by DC blocking capacitor voltage control. IEEE Trans. Power Electron. 33(7), 5949-5966 (2017) https://doi.org/10.1109/tpel.2017.2746518
  9. Cao, X., Zhong, Q.C., Ming, W.L.: Ripple eliminator to smooth DC-bus voltage and reduce the total capacitance required. IEEE Trans. Ind. Electron. 62(4), 2224-2235 (2014) https://doi.org/10.1109/TIE.2014.2353016
  10. Mueller, J.A., Kimball, J.W.: An improved generalized average model of DC-DC dual active bridge converters. IEEE Trans. Power Electron. 33(11), 9975-9988 (2018) https://doi.org/10.1109/tpel.2018.2797966
  11. Zumel, P., Ortega, L., Lazaro, A., et al.: Modular dual-active bridge converter architecture. IEEE Trans. Ind. Appl. 52(3), 2444-2455 (2016) https://doi.org/10.1109/TIA.2016.2527723
  12. Qin, H., Kimball, J.W.: Generalized average modeling of dual active bridge DC-DC converter. IEEE Trans. Power Electron. 27(4), 2078-2084 (2011) https://doi.org/10.1109/TPEL.2011.2165734
  13. Maharana, S., Mukherjee, S., De, D., et al.: Study of dual active bridge with modified modulation techniques for reduced link current peak stress and harmonics losses in magnetics. IEEE Trans. Ind. Electron. 56(5), 5035-5045 (2020)
  14. Xiong, F., Wu, J., Liu, Z., et al.: Current sensorless control for dual active bridge DC-DC converter with estimated load-current feedforward. IEEE Trans. Power Electron. 33(4), 3552-3566 (2017) https://doi.org/10.1109/tpel.2017.2705344
  15. Wang, X., Lin, H.: DC-link current estimation for load-side converter of brushless doubly fed generator in the current feed-for-ward control. IET Power Electron. 9(8), 1703-1710 (2016) https://doi.org/10.1049/iet-pel.2015.0910
  16. Zhao, T., She, X., Bhattacharya, S., et al.: Power synchronization control for capacitor minimization in solid state transformers (SST). In: Proc. IEEE Energy Conversion Congress and Exposition, pp. 2812-2818 (2011)
  17. Bhattacharjee, A.K., Batarseh, I.: Optimum hybrid modulation for improvement of efficiency over wide operating range for triple-phase-shift dual-active-bridge converter. IEEE Trans. Power Electron. 35(5), 4804-4818 (2020) https://doi.org/10.1109/tpel.2019.2943392
  18. Meng, L., Shu, Z., Lei, Y., et al.: Optimal input and output power quality control of single-phase AC-DC-DC converter with significant DC-link voltage ripple. IEEE Trans. Ind. Electron. 67(12), 10366-10376 (2020) https://doi.org/10.1109/tie.2019.2958310
  19. Cardozo, D.D.M., Balda, J.C., Trowler, D., et al.: Novel nonlinear control of dual active bridge using simplified converter model. In: Proc. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 321-327 (2010)
  20. Sun, Y., Zhu, J., Fu, C., et al.: Decoupling control of cascaded power electronic transformer based on feedback exact linearization. IEEE J. Emerg. Sel. Top. Power Electron. (2021)
  21. Yang, S., Wang, P., Tang, Y.: Feedback linearization-based current control strategy for modular multilevel converters. IEEE Trans. Power Electron. 33(1), 161-174 (2018) https://doi.org/10.1109/TPEL.2017.2662062
  22. Jeung, Y., Lee, D.: Sliding mode control of bi-directional dual active bridge DC/DC converters for battery energy storage systems. In: Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3385-3390 (2017)
  23. Feng, A.N., Song, W., Yang, K.: Model predictive control and power balance scheme of dual-active-bridge DC-DC converters in power electronic transformer. Chin. Soc. Electr. Eng. 38(13), 3921-3929 (2018)
  24. Liu, J., Xiao, F., Ma, W., et al.: PWM-based sliding mode controller for three-level full-bridge DC-DC converter that eliminates static output voltage error. J. Power Electron. 15(2), 378-388 (2015) https://doi.org/10.6113/JPE.2015.15.2.378
  25. Tao H, Zhang Y, Ren X.: Small-Signal modeling of marine electromagnetic detection transmitter controlled-source circuit. Math Probl Eng. 1-9 (2015)
  26. Tao, H.-J., Zhang, Y.-M., Ren, X.-G.: Characteristics analysis of high power marine electromagnetic transmitter DC-DC controlled source circuit. Trans. China Electrotech. Soc. 32(16), 233-244 (2017)
  27. Xu, G., Sha, D., Xu, Y., et al.: Dual-transformer-based DAB converter with wide ZVS range for wide voltage conversion gain application. IEEE Trans. Power Electron. 65(4), 3306-3316 (2017)
  28. Guo, H.-Y., Zhang, X., Zhao, W.G., et al.: Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control. Chin. Soc. Electr. Eng. 39(13), 3889-3899 (2019)
  29. Zhao, B., Song, Q., Liu, W., et al.: Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control. IEEE Trans. Ind. Electron. 60(10), 4458-4467 (2012) https://doi.org/10.1109/TIE.2012.2210374
  30. Xu, G., Li L, Chen, X., et al.: Optimized EPS control to achieve full load range ZVS with seamless transition for dual active bridge converters. IEEE Trans Ind Electron. 68(9), 8379-8390 (2020)
  31. Jeung, Y., Lee, D.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937-6946 (2019) https://doi.org/10.1109/tpel.2018.2873834
  32. Han, M., Liu, X., Pu, H., et al.: Real-time online optimal control of current-fed dual active bridges based on machine learning. J. Power Electron. 20(1), 43-52 (2020) https://doi.org/10.1007/s43236-019-00013-6