DOI QR코드

DOI QR Code

Three-dimensional geometric optimization of WPT coils for coupling coefficient maximization

  • Gao, Weipeng (School of Electrical Engineering, Xinjiang University) ;
  • Li, Hongchang (School of Electrical Engineering, Xinjiang University) ;
  • Tang, Yi (School of Electrical and Electronic Engineering, Nanyang Technological University)
  • Received : 2021.09.16
  • Accepted : 2022.02.03
  • Published : 2022.05.20

Abstract

High-power transfer capacity is a major design objective of wireless power transfer (WPT) systems. For magnetic coupling-based WPT systems, increasing the coupling coefficient of power transceiver coils is the key to improving the power transfer capacity under specified limits on resonant current and voltage stresses. An effective method to increase the coupling coefficient is to optimize the geometric distributions of the coil wire loops. The obstacle of the optimization is the high computational complexity caused by the high geometric degrees of freedom, especially for multiturn coils. This paper proposes a 3D optimization method to reduce the computational complexity and give the optimal wire loop distributions for the maximum coupling coefficient. Design examples show that the optimal wire loop distribution is nonuniform. The smallest loop-to-loop spacing occurs near the front outer circumferences of the coils. Compared with common spiral and helix coils, the optimization can achieve 20% increase in coupling coefficient. The increase in coupling coefficient and power transfer capacity is verified through experiments.

Keywords

References

  1. Hui, S.Y.R., Zhong, W.X., Lee, C.K.: A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500-4511 (2014) https://doi.org/10.1109/TPEL.2013.2249670
  2. Musavi, F., Eberle, W.: Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electron. 7(1), 60-66 (2014) https://doi.org/10.1049/iet-pel.2013.0047
  3. Li, Y., Sun, W., Zhu, X., Hu, J.: A hybrid modulation control for wireless power transfer systems to improve efficiency under light-load conditions. IEEE Trans. Ind. Electron. Early Access 69, 6870-6880 (2022) https://doi.org/10.1109/TIE.2021.3102411
  4. Li, Y., et al.: Extension of ZVS region of series-series WPT systems by an auxiliary variable inductor for improving efficiency. IEEE Trans. Power Electron. 36(7), 7513-7525 (2021) https://doi.org/10.1109/TPEL.2020.3042011
  5. Li, H., Fang, J., Chen, S., Wang, K., Tang, Y.: Pulse density modulation for maximum efficiency point tracking of wireless power transfer systems. IEEE Trans. Power Electron. 33(6), 5492-5501 (2018) https://doi.org/10.1109/tpel.2017.2737883
  6. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Industr. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/tie.2018.2835378
  7. Garnica, J., Chinga, R.A., Lin, J.: Wireless power transmission: from far field to near field. Proc. IEEE 101(6), 1321-1331 (2013) https://doi.org/10.1109/JPROC.2013.2251411
  8. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83-86 (2007) https://doi.org/10.1126/science.1143254
  9. Chen, K.N., Zhao, Z.M.: Analysis of the double-layer printed spiral coil for wireless power transfer. IEEE J. Emerg. Select. Top. Power Electron. 1(2), 114-121 (2013) https://doi.org/10.1109/JESTPE.2013.2272696
  10. Lee, S. H., Lorenz, R. D.: Surface spiral coil design methodologies for high efficiency, high power, low flux density, large air-gap wireless power transfer systems. In: IEEE Applied Power Electronics Conference and Exposition, pp. 1783-1790 (2013)
  11. Sampath, J. P. K., Alphones, A., Kenneth, L. Y. Y., Vilathgamuwa, D. M.: Analysis on normalized distance and scalability in designing wireless power transfer. In: IEEE PELS Workshop on Emerging Technologies: Wireless Power, pp. 1-6 (2015)
  12. Sampath, J. P. K., Alphones, A., Shimasaki, H.: Coil design guidelines for high efficiency of wireless power transfer (WPT). In: IEEE Region 10 Conference, pp. 726-729 (2016)
  13. Ke, Q., Luo, W., Yan, G., Yang, K.: Analytical model and optimized design of power transmitting coil for inductively coupled endoscope robot. IEEE Trans. Biomed. Eng. 63(4), 694-706 (2016) https://doi.org/10.1109/TBME.2015.2469137
  14. Etemadrezaei, M., Lukic, S. M.: Optimization of foil conductor layout in inductive power transfer system resonators. In: IEEE Energy Conversion Congress and Exposition, pp. 876-883 (2014)
  15. Li, H., Wang, K., Huang, L., Li, J., Yang, X.: Coil structure optimization method for improving coupling coefficient of wireless power transfer. In: IEEE Applied Power Electronics Conference and Exposition, pp. 2518-2521 (2015)
  16. Abdolkhani, A., Hu, A.P.: Improved coupling design of contactless slipring for rotary applications. IEEE J. Emerg. Select. Top. Power Electron. 3(1), 288-295 (2015) https://doi.org/10.1109/JESTPE.2014.2336895
  17. Budhia, M., Boys, J.T., Covic, G.A., Huang, C.Y.: Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron. 60(1), 318-328 (2013) https://doi.org/10.1109/TIE.2011.2179274
  18. Kim, S., Covic, G.A., Boys, J.T.: Tripolar pad for inductive power transfer systems for EV charging. IEEE Trans. Power Electron. 32(7), 5045-5057 (2017) https://doi.org/10.1109/TPEL.2016.2606893
  19. Zhang, W., White, J.C., Abraham, A.M., Mi, C.C.: Loosely coupled transformer structure and interoperability study for EV wireless charging systems. IEEE Trans. Power Electron. 30(11), 6356-6367 (2015) https://doi.org/10.1109/TPEL.2015.2433678
  20. Zierhofer, C.M., Hochmair, E.S.: Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43(7), 708-714 (1996) https://doi.org/10.1109/10.503178
  21. Teng, M., Chenyang, W., Kai, W., Ping, L.: Design of multilayer fat spiral inductive coil for wireless power transfer. In: IEEE 5th Global Conference on Consumer Electronics, pp. 1-2 (2016)
  22. Paul, C.R.: Inductance: loop and partial. Wiley-IEEE Press (2010)
  23. Hurley, W.G., Dufy, M.C., Zhang, J., Lope, I., Kunz, B., Wolfle, W.H.: A unified approach to the calculation of self-and mutual-inductance for coaxial coils in air. IEEE Trans. Power Electron. 30(11), 6155-6162 (2015) https://doi.org/10.1109/TPEL.2015.2413493
  24. Li, H., Wang, K., Fang, J., Tang, Y.: Pulse density modulated ZVS full-bridge converters for wireless power transfer systems. IEEE Trans. Power Electron. 34, 369-377 (2018) https://doi.org/10.1109/TPEL.2018.2812213