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COMPLETE CHARACTERIZATION OF ODD FACTORS VIA

THE SIZE, SPECTRAL RADIUS OR DISTANCE SPECTRAL

RADIUS OF GRAPHS

Shuchao Li and Shujing Miao

Abstract. Given a graph G, a {1, 3, . . . , 2n−1}-factor of G is a spanning

subgraph of G, in which each degree of vertices is one of {1, 3, . . . , 2n−1},
where n is a positive integer. In this paper, we first establish a lower
bound on the size (resp. the spectral radius) of G to guarantee that G

contains a {1, 3, . . . , 2n−1}-factor. Then we determine an upper bound on

the distance spectral radius of G to ensure that G has a {1, 3, . . . , 2n−1}-
factor. Furthermore, we construct some extremal graphs to show all the

bounds obtained in this contribution are best possible.

1. Introduction

In this paper, we only deal with finite and undirected graphs without loops
or multiple edges. For graph theoretic notation and terminology not defined
here, we refer to [5, 14].

Let G be a graph with vertex set V (G) = {v1, . . . , vν} and edge set E(G).
The order of G is the number ν := |V (G)| of its vertices and its size is the
number ε := |E(G)| of its edges. A graph G is called trivial if ν = 1. Let
V1 ⊆ V (G) and E1 ⊆ E(G). Then G − V1, G − E1 are the graphs formed
from G by deleting the vertices in V1 and their incident edges, the edges in
E1, respectively. For convenience, denote G − {v} and G − {uv} by G − v
and G − uv, respectively. For a given subset S ⊆ V (G), the subgraph of G
induced by S is denoted by G[S]. As usual, let Pn and Kn denote the path
and complete graph on n vertices, respectively.

For a vertex v ∈ V (G), let NG(v) be the set of all neighbours of v in G. Then
dG(v) = |NG(v)| is the degree of v in G. A vertex v of G is called a pendant
vertex if dG(v) = 1. A quasi-pendant vertex is a vertex being adjacent to some
pendant vertex. A graph is r-regular if each vertex has the same degree r. The
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complement of a graph G is a graph G with the same vertex set as G, in which
any two distinct vertices are adjacent if and only if they are non-adjacent in G.

For two graphs G1 and G2, we define G1 ∪ G2 to be their disjoint union.
The join G1 ∨G2 is obtained from G1 ∪G2 by joining every vertex of G1 with
every vertex of G2 by an edge. The graph formed by joining Kq with a vertex

of the complete graph Kp (i.e., K1 ∨ (Kp−1 ∪Kq)) is called a pineapple graph,
written by P qp .

Given a graph G of order ν, the adjacency matrix A(G) = (aij)ν×ν of G is
a 0-1 matrix in which the entry aij = 1 if and only if vi and vj are adjacent.
The eigenvalues of the adjacency matrix A(G) are also called eigenvalues of G.
Note that A(G) is a real non-negative symmetric matrix. Hence, its eigenvalues
are real, which can be arranged in nonincreasing order as λ1(G) > · · · > λν(G).
Note that the adjacency spectral radius (or spectral radius, for short) of G is
equal to λ1(G), written as ρ(G).

Let G be a connected graph. The distance between vi and vj in G, denoted
by dij , is the length of a shortest path from vi to vj . The Winer index of G is
defined as W (G) =

∑
i<j dij . The distance matrix of G, denoted by D(G), is

a ν × ν real symmetric matrix whose (i, j)-entry is dij . Then we can order the
eigenvalues of D(G) as

µ1(G) > µ2(G) > · · · > µν(G).

By the Perron-Frobenius theorem, µ1(G) is always positive (unless G is trivial)
and µ1(G) > |µi(G)| for i = 2, 3, . . . , ν, and we call µ1(G) the distance spectral
radius.

A subset M of E(G) is called a matching if any two members of M do not
have a common vertex in G. A matching with the maximum size in G is called
the maximum matching. The matching number α′(G) is the size of a maximum
matching in G. We call M a perfect matching if each vertex of G is incident
with an edge in M .

Let I be a set of non-negative integers. A graph G is called an I-graph if
dG(v) ∈ I for all v ∈ V (G). In particular, a {r}-graph is a r-regular graph.
An I-factor is a spanning I-subgraph of G. Let n be a positive integer. Then,
a {1, 3, . . . , 2n − 1}-factor of graph G is a spanning subgraph, in which each
degree of vertices is one of {1, 3, . . . , 2n − 1}. The {1, 3, . . . , 2n − 1}-factor is
also called an odd factor of G. Note that a perfect matching of graph G is
indeed a {1}-factor of G.

In mathematical literature, it is interesting to study I-factor. For example,
Tutte [12] gave a necessary and sufficient condition for the existence of a {1}-
factor in a graph, which is well known as Tutte’s 1-Factor Theorem. Bondy
[3] gave a necessary and sufficient condition of a tree containing a {1}-factor.
Las Vergnas [13] obtained a necessary and sufficient condition for graphs with a
{1, 2, . . . , n}-factor, while Amahashi [1] characterized a necessary and sufficient
condition for graphs with a {1, 3, . . . , 2n− 1}-factor.
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In 2020, O [11] showed that there is a close relationship between the spectral
radius and {1}-factor by Tutte’s 1-Factor Theorem. He established a sharp
upper bound on the number of edges (resp. spectral radius) of a graph without
a {1}-factor. Cui and Kano [16] gave a sufficient condition for the existence
of a {1, 3, . . . , 2n − 1}-factor in a graph by using neighborhoods, and gave an
extension of Amahashi’s Theorem. For more advances on this topic, one may
be referred to [4, 7] and the references cited in.

Motivated by [1, 11] directly, it is natural and interesting to give some suf-
ficient conditions to ensure that a graph contains a {1, 3, . . . , 2n − 1}-factor.
Here, we focus on the sufficient conditions including the size, the spectral radius
or the distance spectral radius of graphs.

Our first main result gives a sufficient condition to ensure that a graph G
contains a {1, 3, . . . , 2n − 1}-factor according to the size of G. Note that if G
has odd-factors, then the order of G is even (based on handshaking lemma).
We call G a ν-vertex graph if the graph G has ν vertices.

Theorem 1.1. Let G be a ν-vertex connected graph, where ν is an even integer,
and let n 6 ν

2 − 1 be a positive integer.

(i) For ν = 4 or ν > 10, if |E(G)| > 2n+
(
ν−2n

2

)
, then G contains a

{1, 3, . . . , 2n− 1}-factor.
(ii) For ν = 6, if |E(G)| > 9, then G contains a {1}-factor; if |E(G)| > 5,

then G contains a {1, 3}-factor.
(iii) For ν = 8, if |E(G)| > 18, then G contains a {1}-factor; if |E(G)| >

10, then G contains a {1, 3}-factor; if |E(G)| > 7, then G contains a
{1, 3, 5}-factor.

Our second main result gives a sufficient condition to ensure that a graph G
contains a {1, 3, . . . , 2n − 1}-factor according to the adjacency spectral radius
of G.

Theorem 1.2. Let G be a ν-vertex connected graph, where ν is an even integer,
and let n 6 ν

2 − 1 be a positive integer. Assume the largest root of x3 + (2n−
ν + 2)x2 − (ν − 1)x− 2n(2n− ν + 2) = 0 is θ(ν).

(i) For ν = 4 or ν > 8, if ρ(G) > θ(ν), then G contains a {1, 3, . . . , 2n−1}-
factor.

(ii) For ν = 6, if ρ(G) > 1+
√
33

2 , then G contains a {1}-factor; if ρ(G) >
θ(6), then G contains a {1, 3}-factor.

Our last main result gives a sufficient condition to ensure that a graph G
contains a {1, 3, . . . , 2n− 1}-factor in regard to the distance spectral radius of
G.

Theorem 1.3. Let G be a ν-vertex connected graph, where ν is an even integer,
and let n 6 ν

2 − 1 be a positive integer.

(i) For ν = 4 or ν > 10, if µ1(G) < µ1(P 2n
ν−2n), then G contains a

{1, 3, . . . , 2n− 1}-factor.
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(ii) For ν = 6, if µ1(G) < µ1(K2 ∨ 4K1), then G contains a {1}-factor; if
µ1(G) < µ1(P 4

2 ), then G contains a {1, 3}-factor.
(iii) For ν = 8, if µ1(G) < µ1(K3 ∨ 5K1), then G contains a {1}-factor; if

µ1(G) < µ1(P 4
4 ), then G contains a {1, 3}-factor; if µ1(G) < µ1(P 6

2 ),
then G contains a {1, 3, 5}-factor.

The proof techniques for our main results follow the idea of O [11]. Together
with some new idea we make the proofs work. Our paper is organized as follows.
In Section 2, we give some preliminary results. In Section 3, we give the proof
of Theorem 1.1. In Section 4, we give the proof of Theorem 1.2 and in Section 5,
we give the proof of Theorem 1.3.

2. Some preliminaries

In this section, we present some necessary preliminary results, which will be
used to prove our main results. The first one follows directly from [2, Theorem
6.8].

Lemma 2.1 ([2]). Let G be a connected graph and let H be a proper subgraph
of G. Then ρ(G) > ρ(H).

Let M be an n × n irreducible and nonnegative matrix, by the Perron-
Frobenius theorem [6], we know that there exists a unit positive eigenvector,
say x = (x1, x2, . . . , xn)T , of M corresponding to spectral radius of M . As
usual, we call x the Perron vector of M .

The following lemma is a direct consequence of [10, Proposition 16].

Lemma 2.2 ([10]). Let G be a ν-vertex connected graph and let x = (x1, x2, . . . ,
xν)T be the Perron vector of A(G) corresponding to ρ(G). If vi, vj ∈ V (G)
satisfy NG(vi) \ {vj} = NG(vj) \ {vi}, then xi = xj.

Let M be a real matrix whose rows and columns are indexed by V =
{1, . . . , n}. Assume that M , with respect to to the partition π : V = V1∪ · · ·∪
Vs, can be written as

M =

 M11 · · · M1s

...
. . .

...
Ms1 · · · Mss

 ,

where Mij denotes the submatrix (block) of M formed by rows in Vi and
columns in Vj . Let qij denote the average row sum of Mij . Then matrix
Mπ = (qij) is called the quotient matrix of M . If the row sum of each block
Mij is a constant, then the partition is equitable.

Lemma 2.3 ([15]). Let M be a square matrix with an equitable partition π
and let Mπ be the corresponding quotient matrix. Then every eigenvalue of
Mπ is an eigenvalue of M . Furthermore, if M is nonnegative, then the largest
eigenvalues of M and Mπ are equal.
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Lemma 2.4 ([9]). Let G be a connected graph with two nonadjacent vertices
u, v ∈ V (G). Then µ1(G + uv) < µ1(G), where G + uv denotes the graph
obtained from G by adding an edge to connect u and v.

Lemma 2.5 ([8]). Let G be a ν-vertex connected graph and let y = (y1, y2, . . . ,
yν)T be the Perron vector of D(G) corresponding to µ1(G). If vi, vj are in
V (G) satisfying

NG(vi) \ {vj} = NG(vj) \ {vi},
then yi = yj.

The following lemma can be easily derived by the Rayleigh quotient [6].

Lemma 2.6. Let G be a connected graph with order ν. Then

µ1(G) = max
x 6=0

xTD(G)x

xTx
>

1TD(G)1

1T1
=

2W (G)

ν
,

where 1 = (1, 1, . . . , 1)T .

Lemma 2.7 ([9]). Let M be a Hermitian matrix of order s, and let N be

a principal submatrix of M with order t. If λ̂1 > λ̂2 > · · · > λ̂s are the
eigenvalues of M and µ̂1 > µ̂2 > · · · > µ̂t are the eigenvalues of N , then

λ̂i > µ̂i > λ̂s−t+i for 1 6 i 6 t.

Let o(G) be the number of odd components (components with odd order) of
G. The following lemma gives a sufficient and necessary condition for a graph
containing a {1, 3, . . . , 2n− 1}-factor.

Lemma 2.8 ([1]). Let G be a graph and n be a positive integer. Then G has
a {1, 3, . . . , 2n − 1}-factor if and only if o(G − S) 6 (2n − 1)|S| for every set
S ⊆ V (G).

Lemma 2.9. Let G be a connected graph and let n be a positive integer. If G
does not have a {1, 3, . . . , 2n− 1}-factor, then there exists a non-empty subset
S ⊆ V (G) such that o(G − S) > (2n − 1)|S|. Furthermore, if |V (G)| is even,
then

(1) o(G− S) ≡ (2n− 1)|S| (mod 2)

and o(G− S) > (2n− 1)|S|+ 2.

Proof. By Lemma 2.8, it is easy to see that there exists a subset S ⊆ V (G)
satisfying o(G − S) > (2n − 1)|S|. Assume |V (G)| is even. Then o(G − S) is
odd (resp. even) if and only if |S| is odd (resp. even), which is equivalent to
say that (2n− 1)|S| is odd (resp. even). Hence, (1) holds, and so o(G− S) >
(2n− 1)|S|+ 2. �

By Lemma 2.8, the following corollary can be shown easily.

Corollary 2.10. Let ν be an even number. If G is a ν-vertex connected graph,
then G has a {1, 3, . . . , ν − 1}-factor.
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Since {1, 3, . . . , 2n− 1} ⊂ {1, 3, . . . , 2n+ 1}, we have that G must contain a
{1, 3, . . . , 2n+ 1}-factor if G contains a {1, 3, . . . , 2n− 1}-factor. By Corollary
2.10, it suffices to consider 2n − 1 < |V (G)| − 1 (i.e., n 6 ν

2 − 1) in the whole
context.

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1, which gives a sufficient
condition via the size of a connected graph to ensure that the graph contains a
{1, 3, . . . , 2n − 1}-factor. We also show that the bounds obtained in Theorem
1.1 are the best possible.

Proof of Theorem 1.1. Suppose to the contrary that G has no {1, 3, . . . ,
2n − 1}-factor. By Lemma 2.9, there exists a non-empty subset S ⊆ V (G)
satisfying o(G − S) > (2n − 1)|S| + 2. Choose such a connected graph G of
order ν so that its size is as large as possible.

According to the choice of G, the induced subgraph G[S] and each con-
nected component of G − S are complete graphs, respectively. Furthermore,
all components of G− S are odd and G is just the graph G[S] ∨ (G− S).

For convenience, let o(G− S) = q and |S| = s. Assume that G1, G2, . . . , Gq
are all the components of G − S with ni = |V (Gi)| and n1 > n2 > · · · > nq.
Then, G = Ks ∨ (Kn1

∪Kn2
∪ · · · ∪Knq

). We proceed by showing n2 = · · · =
nq = 1.

In fact, if there exists some i ∈ {2, . . . , q} such that ni > 3, then we consider
a new graph H1 = Ks ∨ (Kn1+2 ∪Kn2 ∪ · · · ∪Kni−2 ∪ · · · ∪Knq ). It is easy to
see that

o(H1 − S) = o(G− S) > (2n− 1)|S|+ 2.

On the other hand,

|E(H1)| = |E(G)| − 2(ni − 2) + 2n1

= |E(G)|+ 2(n1 − ni) + 4

> |E(G)|.

This contradicts the choice of G. Therefore, ni = 1 for all i ∈ {2, 3, . . . , q} and
so n1 = ν − s− q + 1. Then, G = Ks ∨ (Kn1

∪ (q − 1)K1).
Notice that q > (2n − 1)s + 2. We are to show q = (2n − 1)s + 2. In fact,

if q > (2n − 1)s + 4, then let H2 = Ks ∨ (Kn1+2 ∪ (q − 3)K1). Clearly, G is a
proper subgraph of H2. Hence |E(H2)| > |E(G)|. Bear in mind that

o(H2 − S) = o(G− S)− 2 > (2n− 1)|S|+ 2.

Hence, we obtain a contradiction to the choice of G. Therefore, q < (2n−1)s+4.
Together with (1), one has q = (2n− 1)s+ 2 and so G = Ks ∨ (Kn1 ∪ (2ns−
s+ 1)K1).

It is straightforward to check that ν = n1 + 2ns+ 1 > 2ns+ 2 and |E(G)| =
s(2ns − s + 1)+

(
ν−2ns+s−1

2

)
=: f(n, s). In what follows, we are to prove
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f(n, s) 6 2n+
(
ν−2n

2

)
for n > 2. In fact,

f(n, s)− 2n−
(
ν − 2n

2

)
= s(2ns− s+ 1) +

(
ν − 2ns+ s− 1

2

)
− 2n−

(
ν − 2n

2

)
=

(s− 1)[4n2s+ 4n2 − (4n− 2)ν + 6n− s− 2]

2
.

Obviously, f(n, s) = 2n+
(
ν−2n

2

)
if s = 1. So it suffices to prove 4n2s+ 4n2 −

(4n− 2)ν + 6n− s− 2 6 0 for s > 2. By ν > 2ns+ 2, we have

4n2s+ 4n2 − (4n− 2)ν + 6n− s− 2 6 4n2s+ 4n2 − (4n− 2)(2ns+ 2)

+ 6n− s− 2

= (−4n2 + 4n− 1)s+ 4n2 − 2n+ 2

6 2(−4n2 + 4n− 1) + 4n2 − 2n+ 2

= − 4n2 + 6n < 0.

Therefore, when n > 2, we have

f(n, s) 6 2n+
(
ν−2n

2

)
.(2)

Recall that ν > 2ns + 2 and n 6 ν
2 − 1. If ν = 4, then n = 1 and s = 1.

Note that |E(G)| = f(1, 1) = 2+
(
4−2
2

)
, a contradiction to the assumption that

|E(G)| > 2n+
(
ν−2n

2

)
.

If ν = 6, then n 6 2. For n = 1, one has s 6 2. By a direct calculation,
one has f(1, 1) = 8 and f(1, 2) = 9, each of which deduces a contradiction. For
n = 2, by (2), we have f(2, s) 6 5, a contradiction.

If ν = 8, then n 6 3. For n = 1, we have s 6 3. By a direct calculation,
one has f(1, 1) = 17, f(1, 2) = 16 and f(1, 3) = 18, each of which induces a
contradiction. For n > 2, by (2), we get f(2, s) 6 10 and f(3, s) 6 7, in which
each contradicts the condition.

At last we consider the case ν > 10. By (2), we have f(n, s) 6 2n+
(
ν−2n

2

)
for n > 2. Thus, it is sufficient to show f(n, s) 6 2n+

(
ν−2n

2

)
for n = 1. Note

that

f(1, s)− 2n−
(
ν − 2n

2

)
= s(s+ 1) +

(
ν − s− 1

2

)
− 2−

(
ν − 2

2

)
=

(s− 1)(3s− 2ν + 8)

2
.

Recall that ν = n1 + 2s+ 1 > 10. Hence, 2n1 + s > 6. So we have

f(1, s)− 2n−
(
ν − 2n

2

)
6

(s− 1)[3s− 2(n1 + 2s+ 1) + 8]

2

=
(s− 1)(−2n1 − s+ 6)

2
6 0.
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By the argument as above, we obtain |E(G)| 6 2n+
(
ν−2n

2

)
, a contradiction to

the condition for ν > 10. �

Bearing in mind that a perfect matching of graph G is a {1}-factor. So the
next result follows immediately.

Corollary 3.1 ([11]). Let G be a ν-vertex connected graph. If ν = 4 or ν > 10,
and |E(G)| > 2+

(
ν−2
2

)
, then G has a perfect matching. If ν = 6 and |E(G)| >

9, or ν = 8 and |E(G)| > 18, then G has a perfect matching.

At last we show the bounds obtained in Theorem 1.1 are the best possible. It
is straightforward to check that |E(P 2n

ν−2n)| = 2n+
(
ν−2n

2

)
, |E(K2 ∨ 4K1)| = 9,

|E(P 4
2 )| = 5, |E(K3 ∨ 5K1)| = 18, |E(P 4

4 )| = 10 and |E(P 6
2 )| = 7.

Theorem 3.2. Let G be a ν-vertex connected graph, where ν is an even integer,
and let n 6 ν

2 − 1 be a positive integer.

(i) For ν = 4 or ν > 10, P 2n
ν−2n has no {1, 3, . . . , 2n− 1}-factor.

(ii) For ν = 6, K2 ∨ 4K1 has no {1}-factor, and P 4
2 has no {1, 3}-factor.

(iii) For ν = 8, K3 ∨ 5K1 has no {1}-factor, P 4
4 has no {1, 3}-factor and

P 6
2 has no {1, 3, 5}-factor.

Proof. Let v be the vertex with the maximum degree of P 2n
ν−2n. Put S =

{v} (resp. V (K2) and V (K3)), then o(P 2n
ν−2n − S) = 2n + 1 > 2n − 1 (resp.

o(K2 ∨ 4K1 − S) = 4 and o(K3 ∨ 5K1 − S) = 5). By Lemma 2.8, we get
that P 2n

ν−2n has no {1, 3, . . . , 2n − 1}-factor, K2 ∨ 4K1 and K3 ∨ 5K1 have no
{1}-factor. �

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2, which presents a suffi-
cient spectral condition to ensure a graph containing a {1, 3, . . . , 2n−1}-factor.
Based on the idea in the proof of Theorem 1.1, we prove Theorem 1.2 by com-
paring the spectral radius rather than the number of edges. We also show that
the bounds obtained in Theorem 1.2 are the best possible.

Proof of Theorem 1.2. Suppose to the contrary that G has no {1, 3, . . . ,
2n − 1}-factor. Then by Lemma 2.9, one has that there exists a non-empty
subset S ⊆ V (G) satisfying o(G−S) > (2n−1)|S|+2. Choose such a connected
graph G of order ν so that its spectral radius is as large as possible.

Together with Lemma 2.1 and the choice of G, we obtain that all the compo-
nents of G− S are odd, and the induced subgraph G[S] (resp. each connected
component of G− S) is a complete subgraph. Thus, G = G[S] ∨ (G− S).

For convenience, let o(G − S) = q and |S| = s. Assume G1, G2, . . . , Gq are
all the components of G − S and let ni = |V (Gi)| with n1 > n2 > · · · > nq.
Then, G = Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Knq ).

In what follows, we show that n2 = n3 = · · · = nq = 1. If n2 > 3, then let
H = Ks∨(Kn1+2∪Kn2−2∪Kn3

∪· · ·∪Knq
). Note that o(H−S) = o(G−S) >

(2n− 1)|S|+ 2.
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Assume x = (x1, . . . , xν)T is the Perron vector of A(G), and let xi denote
the entry of x corresponding to the vertex vi ∈ V (G). By Lemma 2.2, one has
xr = xs for all vr, vs in S (resp. V (Gi), i ∈ {1, 2, . . . , q}). For convenience, let
x0 = xr for all vr ∈ S, and xi = xr for all vr ∈ V (Gi), i ∈ {1, 2, . . . , q}. Then{

ρ(G)x1 = sx0 + (n1 − 1)x1,

ρ(G)x2 = sx0 + (n2 − 1)x2.

Thus, x1 > x2. By the Rayleigh quotient, we have

ρ(H)− ρ(G) > xT (A(H)−A(G))x

= 4n1x1x2 − 4(n2 − 2)x22

> 4x22(n1 − n2 + 2)

> 0.

Hence, H is a ν-vertex connected graph with ρ(H) > ρ(G), a contradiction
to the choice of G. Therefore, n2 = n3 = · · · = nq = 1. This gives us
n1 = ν − s− q + 1. Thus, G = Ks ∨ (Kn1

∪ (q − 1)K1).
Next we show q = (2n−1)s+2. Note that q > (2n−1)s+2 and o(G−S) and

(2n−1)|S| have the same parity based on Lemma 2.9. Hence, if q > (2n−1)s+4,

then let Ĥ = Ks ∨ (Kn1+2 ∪ (q− 3)K1). Note that o(Ĥ − S) = o(G− S)− 2 >
(2n − 1)|S| + 2 and G is a proper subgraph of Ĥ. Hence, by Lemma 2.1,

ρ(Ĥ) > ρ(G), a contradiction to the choice of G. Therefore, q < (2n− 1)s+ 4.
Thus, q = (2n− 1)s+ 2 and so G = Ks ∨ (Kn1 ∪ (2ns− s+ 1)K1).

Let f(x) = x3 + (2n−ν+ 2)x2− (ν−1)x−2n(2n−ν+ 2) be a real function
in x, and let θ(ν) be the largest root of f(x) = 0. Note that ν = n1 + 2ns+ 1
and n1 is odd. In what follows, we proceed by considering the two possible
cases.

Case 1. n1 = 1.
In this case, ν = 2ns + 2 and G = Ks ∨ (2ns − s + 2)K1. Consider the

partition π1: V (G) = S ∪ V ((2ns − s + 2)K1). Then the quotient matrix of
A(G) corresponding to the partition π1 equals

B1 =

(
s− 1 2ns− s+ 2
s 0

)
.

Thus the characteristic polynomial of B1 is

ΦB1
(x) = x2 − (s− 1)x− s(2ns− s+ 2).

Since the partition π1 : V (G) = S ∪ V ((2ns − s + 2)K1) is equitable, by
Lemma 2.3, the largest root, say ρ1, of ΦB1(x) = 0 satisfies ρ1 = ρ(G). By a
simple calculation, one has

ρ(G) = ρ1 =
s− 1 +

√
(8n− 3)s2 + 6s+ 1

2
.
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This gives us

f(ρ1) =(s− 1)[(−4n2 + 4n− 1)s2 + (−3n+ 2)s

+ n
√

(8n− 3)s2 + 6s+ 1 + 4n2 − n].

We proceed by considering the following two subcases.
Subcase 1.1. n = 1. In this case ν = 2s + 2. If ν = 4, then s = 1. Note

that f(ρ1) = 0 when s = 1. Hence, ρ(G) 6 θ(4), which is a contradiction
to the assumption. If ν = 6, then s = 2. By a direct calculation, one has

ρ(G) = 1+
√
33

2 , a contradiction to the assumption. So we consider ν > 8 in
what follows. Together with ν = 2s+ 2 > 8, one has s > 3.

Note that

f(ρ1) = (s− 1)(−s2 − s+ 3 +
√

5s2 + 6s+ 1)

= (s− 1)(−s2 − s+ 3 +

√
5(s+

3

5
)2 − 4

5
)

< (s− 1)[−s2 − s+ 3 +
5

2
(s+

3

5
)]

= (s− 1)(−s2 +
3

2
s+

9

2
)

= −(s− 1)(s+
3

2
)(s− 3)

6 0.

Thus, f(ρ1) < 0. Then ρ(G) = ρ1 6 θ(ν), a contradiction to the assumption.
Subcase 1.2. n > 2. In this case ν = 2ns+ 2 > 4s+ 2 > 6.
Obviously, f(ρ1) = 0 when s = 1. Then ρ(G) = ρ1 6 θ(ν) for s = 1,

a contradiction to the assumption. Next our purpose is to show, for s > 2,
f(ρ1) < 0, which is equivalent to show

g1 := (−4n2 + 4n− 1)s2 + (−3n+ 2)s

+ n
√

(8n− 3)s2 + 6s+ 1 + 4n2 − n < 0

for s > 2. Note that√
(8n− 3)s2 + 6s+ 1 <

√
8ns2 + 6s+ 1

=

√
8n(s+

3

8n
)2 +

8n− 9

8n
< 2
√

2n(s+
3

8n
) + 1.

This gives us

g1 < (−4n2 + 4n− 1)s2 + (−3n+ 2)s+ n[2
√

2n(s+
3

8n
) + 1] + 4n2 − n

= (−4n2 + 4n− 1)s2 + (2
√

2n2 − 3n+ 2)s+
3
√

2n

4
+ 4n2

6 s[2(−4n2 + 4n− 1) + 2
√

2n2 − 3n+ 2] +
3
√

2n

4
+ 4n2
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= s(−8n2 + 2
√

2n2 + 5n) +
3
√

2n

4
+ 4n2.

Together with n > 2 and −8n2 + 2
√

2n2 + 5n < 0, one has

g1 < 2(−8n2 + 2
√

2n2 + 5n) +
3
√

2n

4
+ 4n2

= (−12 + 4
√

2)n2 + (10 +
3
√

2

4
)n < 0,

i.e., g1 < 0 for n > 2, and so ρ(G) = ρ1 < θ(ν), a contradiction to the
assumption.

Case 2. n1 > 3.
In this case, one has ν > 2ns + 4 > 6. Consider the partition π2: V (G) =

V (Kn1
) ∪ V (Ks) ∪ V ((2ns − s + 1)K1). Then the quotient matrix of A(G)

corresponding to the partition π2 equals

B2 =

 ν − 2ns− 2 s 0
ν − 2ns− 1 s− 1 2ns− s+ 1

0 s 0

 .

Thus the characteristic polynomial of B2 is

ΦB2
(x) = x3 + (2ns− s− ν + 3)x2 − (2ns2 − 2ns− s2 + 2s+ ν − 2)x

+ s(2ns− s+ 1)(ν − 2ns− 2).

Since the partition π2: V (G) = V (Kn1)∪V (Ks)∪V ((2ns−s+1)K1) is equitable,
by Lemma 2.3, the largest root, say ρ2, of ΦB2(x) = 0 satisfies ρ2 = ρ(G).

In what follows, we are to show ρ(G) 6 θ(ν), i.e., ρ2 6 θ(ν). By a direct
calculation, we have

f(x)− ΦB2
(x) = (−2ns+ 2n+ s− 1)x2 + (2ns2 − 2ns− s2 + 2s− 1)x

+ 4n2s3 − 2ns3 − 2ns2ν + 6ns2 + s2ν − 4n2

+ 2nν − 2s2 − sν − 4n+ 2s

= − (s− 1)[(2n− 1)x2 + (s− 1− 2ns)x

+ (ν − 2n− 2)(2ns+ 2n− s)− 2ns(2ns− s+ 1)].

Obviously, f(x) = ΦB2
(x) and ρ2 6 θ(ν) when s = 1. Let g2(x) = (2n−1)x2 +

(s−1−2ns)x+ (ν−2n−2)(2ns+ 2n− s)−2ns(2ns− s+ 1) be a real function
in x. Then it suffices to show g2(ρ2) > 0 for s > 2. We proceed by considering
the following two possible subcases.

Subcase 2.1. n = 1. In this case, ν>2s + 4 > 6, and g2(x) = x2 − (1 +
s)x+ (ν− 4)(s+ 2)− 2s(s+ 1). Note that Ks+3 is a proper subgraph of G. By
Lemma 2.1, one has ρ2 > s+ 2.

It is routine to check that the derivative function of g2(x) is

g′2(x) = 2x− (1 + s).
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Hence, 1+s
2 is the unique solution of g′2(x) = 0. As 1+s

2 < s+ 2, one has g2(x)
is increasing for x ∈ [s+ 2,+∞). Then

g2(ρ2) > g2(s+ 2)

= s+ 2 + (ν − 4)(s+ 2)− 2s(s+ 1)

> s+ 2 + 2s(s+ 2)− 2s(s+ 1)

= 3s+ 2

> 0.

Hence, ρ2 6 θ(ν) if n = 1. Then we can get a contradiction for ν > 8. As

θ(6) < 1+
√
33

2 , one also obtains a contradiction for ν = 6.

Subcase 2.2. n > 2. In this case, ν > 4s + 4 > 8, and Ks ∨ Kν−s is a
proper subgraph of G. By Lemma 2.1, one has ρ2 > ρ(Ks ∨Kν−s). Consider
a equitable partition V (Ks ∨Kν−s) = V (Ks)∪V (Kν−s). One may obtain the
quotient matrix of A(Ks ∨Kν−s) corresponding to the partition as

B3 =

(
s− 1 ν − s
s 0

)
.

Its characteristic polynomial is ΦB3(x) = x2+(1−s)x+s(s−ν). By Lemma 2.3,
the largest root, say ρ3, of ΦB3

(x) = 0 is equal to ρ(Ks∨Kν−s). Hence, ρ2 > ρ3.
Note that

(1− s)2 − 4s(s− ν) = −3s2 + 4sν − 2s+ 1

> −3s2 + 4s(2ns+ 4)− 2s+ 1

= (8n− 3)s2 + 14s+ 1

> 9s2

> 0.

Hence,

ρ3 =
s− 1 +

√
−3s2 + 4sν − 2s+ 1

2
> 2s− 1

2
.

Recall that g2(x) = (2n− 1)x2 + (s− 1− 2ns)x+ (ν − 2n− 2)(2ns+ 2n− s)−
2ns(2ns− s+ 1). It is routine to check that the derivative function of g2(x) is

g′2(x) = 2(2n− 1)x+ s− 1− 2ns.

Hence s
2 + 1

4n−2 is the unique solution of g′2(x) = 0. As

s

2
+

1

4n− 2
< 2s− 1

2
< ρ3,

one obtains that g2(x) is increasing for x ∈ [ρ3,+∞). Together with ρ2 > ρ3,
one has g2(ρ2) > g2(ρ3), where

g2(ρ3) = (4ns+ 2n− 2s)ν − 4n2s2 − 4n2s− n
√
−3s2 + 4sν − 2s+ 1

− 4n2 − 5ns+ s2 − 3n+ 2s.
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Note that
nsν > n

√
4sν > n

√
−3s2 + 4sν − 2s+ 1.

Hence,

g2(ρ2) >(3ns+ 2n− 2s)ν − 4n2s2 − 4n2s− 4n2 − 5ns+ s2 − 3n+ 2s.

Recall that ν > 2ns+ 4. Then

g2(ρ2) > (3ns+ 2n− 2s)(2ns+ 4)− 4n2s2 − 4n2s− 4n2 − 5ns+ s2 − 3n+ 2s

= (2n2 − 4n+ 1)s2 + (7n− 6)s− 4n2 + 5n.

Together with s > 2 and n > 2, one has

g2(ρ2) > 4(2n2 − 4n+ 1) + 2(7n− 6)− 4n2 + 5n = 4n2 + 3n− 8 > 0.

Hence, g2(ρ2) > 0. Then ρ2 6 θ(ν) for n > 2, a contradiction to the condition.
Together with Cases 1 and 2, we complete the proof. �

Bearing in mind a perfect matching of graph G is a {1}-factor. So we have
the following corollary directly.

Corollary 4.1 ([11]). Let ν = 4 or ν > 8 be an even integer. If G is a
ν-vertex connected graph with ρ(G) > θ(ν), where θ(ν) is the largest root of
x3 + (4− ν)x2 − (ν − 1)x− 2(4− ν) = 0, then G has a perfect matching. For

ν = 6, if G is a ν-vertex connected graph with ρ(G) > 1+
√
33

2 , then G has a
perfect matching.

We close this section by showing the bounds in Theorem 1.2 are best possible.

Theorem 4.2. Let G be a ν-vertex connected graph, where ν is even, and let
n 6 ν

2 −1 be a positive integer. Assume the largest root of x3 +(2n−ν+2)x2−
(ν − 1)x− 2n(2n− ν + 2) = 0 is θ(ν).

(i) For ν = 4 or ν > 8, we have that ρ(P 2n
ν−2n) = θ(ν) and P 2n

ν−2n has no
{1, 3, . . . , 2n− 1}-factor.

(ii) For ν = 6, we have that ρ(K2 ∨ 4K1) = 1+
√
33

2 and ρ(P 4
2 ) = θ(6),

K2 ∨ 4K1 has no {1}-factor and P 4
2 has no {1, 3}-factor.

Proof. Here we only prove (i). By a similar discussion, we can also show (ii),
which is omitted here.

Let v be the maximum degree vertex of P 2n
ν−2n and let S = {v}, then

o(P 2n
ν−2n − S) = 2n + 1 > 2n − 1. By Lemma 2.8, we get P 2n

ν−2n has no
{1, 3, . . . , 2n−1}-factor. Consider the partition V (G) = V (Kν−2n−1)∪V (K1)∪
V (K2n), the quotient matrix of A(G) corresponding to the above partition
equals

B =

 ν − 2n− 2 1 0
ν − 2n− 1 0 2n

0 1 0

 .

Then we obtain

ΦB(x) = x3 + (2n− ν + 2)x2 − (ν − 1)x− 2n(2n− ν + 2).
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By Lemma 2.3, one has ρ(P 2n
ν−2n) = θ(ν). This completes the proof. �

5. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3, which presents a suf-
ficient condition via distance spectral radius to ensure a graph containing a
{1, 3, . . . , 2n− 1}-factor.

Proof of Theorem 1.3. Suppose to the contrary that G has no {1, 3, . . . ,
2n − 1}-factor. By Lemma 2.9, there exists a subset S ⊆ V (G) satisfying
o(G− S) ≡ (2n− 1)|S| (mod 2) and

(3) o(G− S) > (2n− 1)|S|+ 2.

Choose such a connected graph G of order ν so that its distance spectral radius
is as small as possible.

Together with Lemma 2.4 and the choice of G, we know that all the compo-
nents are odd, and the induced subgraphG[S] (resp. each connected component
of G− S) is a complete subgraph. Thus G is just the graph G[S] ∨ (G− S).

For convenience, let o(G−S) = q and |S| = s. Suppose that G1, G2, . . . , Gq
are all the components of G−S and let ni = |V (Gi)| with n1 > n2 > · · · > nq.
Then,

(4) G = Ks ∨ (Kn1
∪Kn2

∪ · · · ∪Knq
).

In order to characterize the structure of G, we need the following facts.

Fact 1. In (4), one has n2 = 1, and so n3 = · · · = nq = 1.

Proof of Fact 1. If it is not true, then n2 > 3. Consider a graph G̃ := Ks ∨
((q − 1)K1 ∪Kν−s−q+1). Note that o(G̃− S) = o(G− S), one obtains that G̃

satisfies (3). Suppose z = (z1, . . . , zν)T is the Perron vector of D(G̃), and let zi
denote the entry of z corresponding to the vertex vi ∈ V (G̃). By Lemma 2.5,
one has zr = zs for all vr, vs in V (Ks) (resp. V ((q− 1)K1) and V (Kν−s−q+1)).
For convenience, let zr = a for all vr ∈ V (Ks), zr = b for all vr ∈ V ((q− 1)K1)
and zr = c for all vr ∈ V (Kν−s−q+1). Then{

µ1(G̃)b = sa+ 2(ν − s− q + 1)c+ 2(q − 2)b,

µ1(G̃)c = sa+ (ν − s− q)c+ 2(q − 1)b.

Thus, b = (1 + ν−q−s
µ1(G̃)+2

)c. By the Rayleigh quotient, we have

µ1(G)− µ1(G̃) > zT (D(G)−D(G̃))z

= n1

q∑
k=2

(nk − 1)c2 + (n2 − 1)[(ν − s− n2 − (q − 2))c2 − 2bc]

+ (n3 − 1)[(ν − s− n3 − (q − 2))c2 − 2bc]

+ (n4 − 1)[(ν − s− n4 − (q − 2))c2 − 2bc] + · · ·
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+ (nq − 1)[(ν − s− nq − (q − 2))c2 − 2bc].(5)

We proceed by considering the following two possible cases.

(1) n3 = 1. In this case, we may consider either (i) n1 = 3 or (ii) n1 > 5.
(2) n3 > 3.

For item (1)(i), one has n2 = 3. Then

µ1(G)− µ1(G̃) > zT (D(G)−D(G̃))z

= n1(n2 − 1)c2 + (n2 − 1)(n1c
2 − 2bc)

= 4c(3c− b)

= 4c2(2− ν − s− q
µ1(G̃) + 2

)

= 4c2(2− 4

µ1(G̃) + 2
) > 0.

Thus, µ1(G) > µ1(G̃), a contradiction to the choice of G.
For item (1)(ii) and item (2), we are to show each term in (5) is positive. In

view of (5), it suffices to show that (ν − s− n2 − (q − 2))c2 − 2bc > 0.

Note that Kν−q+1 is a subgraph of G̃. By Lemma 2.7, one has

µ1(G̃) > µ1(Kν−q+1) = ν − q.

Thus,

(ν − s− n2 − (q − 2))c2 − 2bc = c2(ν − s− n2 − q −
2ν − 2s− 2q

µ1(G̃) + 2
)

> c2(ν − s− n2 − q −
2ν − 2s− 2q

ν − q + 2
)

= c2(ν − s− n2 − q − 2 +
2s+ 4

ν − q + 2
)

> c2(ν − s− n2 − q − 2)

= c2[

q∑
i=1,i6=2

(ni − 1)− 3].(6)

If n1 > 5, n2 > 3 and n3 = n4 = · · · = nq = 1, then
∑q
i=1,i6=2(ni − 1) − 3 =

n1−4 > 0. If n3 > 3, then n1 > n2 > n3 > 3. Thus,
∑q
i=1,i6=2(ni−1)−3 > 2(3−

1)−3 > 0. Together with (5) and (6), we obtain µ1(G) > µ1(G̃), a contradiction
to the choice of G. Therefore, we obtain n2 = 1, and so n3 = · · · = nq = 1. �

By Fact 1 and the choice of G, one has n1 = ν − s − q + 1. So we obtain
that

(7) G = Ks ∨ ((q − 1)K1 ∪Kν−s−q+1).

Fact 2. In (7), one has q = (2n− 1)s+ 2.
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Proof of Fact 2. If it is not true, then in view of (3) we may suppose q >
(2n − 1)s + 4. Consider a graph Ĝ := Ks ∨ ((2ns − s + 1)K1 ∪ Kν−2ns−1).

Thus, o(Ĝ − S) = (2n − 1)s + 2. Note that G is a proper subgraph of Ĝ.

By Lemma 2.4, one has µ1(G) > µ1(Ĝ), a contradiction. Hence, one has
q < (2n− 1)s+ 4. Together with (3) and o(G− S) ≡ (2n− 1)|S| (mod 2), we
get q = (2n− 1)s+ 2. �

By Fact 2, one has G = Ks∨((2ns−s+1)K1∪Kν−2ns−1). As ν−2ns−1 > 1,
one has ν > 2ns + 2. Furthermore, in order to complete the proof of (i), we
show the following claim to deduce a contradiction.

Claim 1. µ1(G) > µ1(P 2n
ν−2n) if ν = 4 or ν > 10.

Proof of Claim 1. Consider the equitable partition V (P 2n
ν−2n) = V (Kν−2n−1)

∪ V (K1) ∪ V (K2n). Then one may obtain the quotient matrix of D(P 2n
ν−2n)

corresponding to the partition as ν − 2n− 2 1 4n
ν − 2n− 1 0 2n

2(ν − 2n− 1) 1 2(2n− 1)

 .

So we obtain that its characteristic polynomial is Φ(x) = x3− (2n+ ν− 4)x2 +
(8n2 − 4nν + 4n − 3ν + 5)x + 4n2 − 2nν + 4n − 2ν + 2. By Lemma 2.3, the
largest root, say η, of Φ(x) = 0 satisfies η = µ1(P 2n

ν−2n).
By Lemma 2.6, one has

(8) η = µ1(P 2n
ν−2n) >

2W (P 2n
ν−2n)

ν
=
ν2 + (4n− 1)ν − 2n(3 + 2n)

ν
.

Note that n 6 ν
2 − 1. Then

(9) η > ν + (4n− 1)− (ν − 2)(3 + 2n)

ν
> ν + 2n− 4.

Clearly, ν is even. Hence, we proceed by consider the following two possible
cases.

Case 1. ν = 2ns+ 2. In this case, we proceed by considering the following
three possible subcases.

Subcase 1.1. n = 1. In this subcase, ν = 2s + 2. If ν = 4, then s = 1.
It is easy to see G = P 2

2 , and so µ1(G) = µ1(P 2
2 ), a contradiction. If ν > 10,

then s > 4. Observe that G = Ks ∨ (s+ 2)K1. Consider the partition V (G) =
V (Ks)∪V ((s+ 2)K1). One has the quotient matrix of D(G) corresponding to
the partition as

M1 =

(
s− 1 s+ 2
s 2s+ 2

)
.

Then the characteristic polynomial of M1 is

ΦM1
(x) =x2 − (3s+ 1)x+ s2 − 2s− 2.
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Since the partition V (G) = V (Ks)∪ V ((s+ 2)K1) is equitable, by Lemma 2.3,
the largest root, say ξ1, of ΦM1

(x) = 0 satisfies ξ1 = µ1(G). In what follows,
we are to prove ξ1 > η. For s = 4 (i.e., ν = 10), we have ξ1 ≈ 12.5208 >
12.4504 ≈ η. So we consider s > 5 in what follows. Note that

Φ(x) = x3 − 2sx2 − (14s− 3)x− 8s+ 2.

Let l1(x) = xΦM1(x) − Φ(x) be a real function in x. By a direct calculation,
we have

l1(x) = −(s+ 1)x2 + (s2 + 12s− 5)x+ 8s− 2.

It is sufficient to prove l1(η) < 0. In fact,

l′1(x) = −2(s+ 1)x+ s2 + 12s− 5.

Hence s2+12s−5
2(s+1) is the unique solution of l′1(x) = 0. As s2+12s−5

2(s+1) < 2s+ 4, l1(x)

is decreasing in the interval [2s+ 4,+∞). By (8), we see that

η > 2s+ 5− 10

2s+ 2
> 2s+ 4.

Thus
l1(η) 6 l1(2s+ 4) = −2s3 + 8s2 + 14s− 38.

Let l2(x) = −2x3 + 8x2 + 14x− 38 be a real function in x for x ∈ [5,+∞). It
is routine to check that the derivative function of l2(x) is

l′2(x) = −6x2 + 16x+ 14 = −6(x− 4 +
√

37

3
)(x− 4−

√
37

3
).

Note that
4−
√

37

3
<

4 +
√

37

3
< 5.

Hence l2(x) is a monotonically decreasing function for x > 5, and l2(x) 6
l2(5) = −18 < 0 when x > 5. Thus, l1(η) < 0, and so ξ1 > η (i.e., µ1(G) >
µ1(P 2n

ν−2n)).
Subcase 1.2. n = 2. In this subcase, by ν = 4s + 2 > 10, we have s > 2.

Observe that G = Ks ∨ (3s + 2)K1. Consider the partition V (G) = V (Ks) ∪
V ((3s+ 2)K1). Then we obtain the quotient matrix of D(G) corresponding to
the partition as

M2 =

(
s− 1 3s+ 2
s 6s+ 2

)
.

Thus, ΦM2(x) = x2 − (7s + 1)x + 3s2 − 6s − 2. Since the partition V (G) =
V (Ks) ∪ V ((3s + 2)K1) is equitable, by Lemma 2.3, the largest root, say ξ2,
of ΦM2

(x) = 0 satisfies ξ2 = µ1(G). In what follows, we are to prove ξ2 > η.
Recall that

Φ(x) = x3 − (4s+ 2)x2 − (44s− 23)x− 24s+ 14.

Let l3(x) = xΦM2
(x)− Φ(x) be a real function in x, i.e.,

l3(x) = (1− 3s)x2 + (3s2 + 38s− 25)x+ 24s− 14.
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It is sufficient to prove l3(η) < 0. In fact, the derivative function of l3(x) is

l′3(x) = 2(1− 3s)x+ 3s2 + 38s− 25.

Hence 3s2+38s−25
6s−2 is the unique solution of l′3(x) = 0. Together with

3s2 + 38s− 25

6s− 2
< 4s+ 6,

one may obtain l3(x) is a monotonically decreasing function for x > 4s+ 6. By
(8), we have

η > 4s+ 9− 28

4s+ 2
> 4s+ 6.

Thus

l3(η) < l3(4s+ 6) = −36s3 + 42s2 + 92s− 128.

Let l4(x) = −36x3 + 42x2 + 92x− 128 be a real function in x for x ∈ [2,+∞).
It is routine to check that the derivative function of l4(x) is

l′4(x) = −108x2 + 84x+ 92 = −108(x− 7 + 5
√

13

18
)(x− 7− 5

√
13

18
).

Clearly,

7− 5
√

13

18
<

7 + 5
√

13

18
< 2.

Hence, l4(x) is a monotonically decreasing function for x > 2. Hence, l3(η) <
l4(x) 6 l4(2) = −64 < 0 when x > 2. Thus, ξ2 > η, i.e., µ1(G) > µ1(P 2n

ν−2n).
Subcase 1.3. n > 3. In this subcase, G = Ks ∨ ((2ns − s + 1)K1 ∪K1).

Consider the partition V (G) = V (K1) ∪ V (Ks) ∪ V ((2ns − s + 1)K1). Then
the quotient matrix of D(G) corresponding to the partition is given as

M3 =

 0 s 2(2ns− s+ 1)
1 s− 1 2ns− s+ 1
2 s 2(2ns− s)

 .

Thus, ΦM3(x) = x3−(4ns−s−1)x2−(−2ns2+12ns+s2−4s+4)x+4ns2−8ns−
2s2 + 4s− 4. Since the partition V (G) = V (K1)∪ V (Ks)∪ V ((2ns− s+ 1)K1)
is equitable, by Lemma 2.3, the largest root, say ξ3, of ΦM3

(x) = 0 satisfies
ξ3 = µ1(G). Next we are to prove ξ3 > η. In fact,

Φ(x)=x3+(−2ns−2n+2)x2+(−8n2s+8n2−6ns−4n−1)x−4n2s+4n2−4ns−2.

By a direct calculation, one has

ΦM3
(x)−Φ(x) = (s−1)[(1−2n)x2+(8n2+2ns−4n−s+3)x+4n2+4ns−2s+2].

Obviously, ΦM3
(η) = Φ(η)= 0 when s = 1, and so ξ3 > η. In what follows, we

show ξ3 > η for s > 2.
Let

l5(x) = (1− 2n)x2 + (8n2 + 2ns− 4n− s+ 3)x+ 4n2 + 4ns− 2s+ 2
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be a real function in x. It is routine to check that the derivative function of
l5(x) is

l′5(x) = 2(1− 2n)x+ 8n2 + 2ns− 4n− s+ 3.

Hence − 8n2+2ns−4n−s+3
2(1−2n) is the unique solution of l′5(x) = 0. Together with

−8n2 + 2ns− 4n− s+ 3

2(1− 2n)
< 2ns+ 2n− 2,

we obtain that l5(x) is a decreasing function in the interval [2ns+2n−2,+∞).
By (9), we have

η > ν + 2n− 4 = 2ns+ 2n− 2.

Then

l5(η) < l5(2ns+ 2n− 2) = (−8n3 + 8n2 − 2n)s2 + (20n2 − 4n)s+ 8n3 − 2n.

Let l6(x) = (−8n3 + 8n2 − 2n)x2 + (20n2 − 4n)x+ 8n3 − 2n be a real function
in x for x ∈ [2,+∞). It is routine to check that the derivative function of l6(x)
is

l′6(x) = 2(−8n3 + 8n2 − 2n)x+ 20n2 − 4n.

Hence − 20n2−4n
2(−8n3+8n2−2n) is the unique solution of l′6(x) = 0. It is straightforward

to check that

− 20n2 − 4n

2(−8n3 + 8n2 − 2n)
< 2.

Hence, l6(x) is a decreasing function in the interval [2,+∞). Thus,

l6(x) 6 l6(2) = −24n3 + 72n2 − 18n = −24n(n− 3−
√

6

2
)(n− 3 +

√
6

2
).

Note that n > 3, and
3−
√

6

2
<

3 +
√

6

2
< 3.

Therefore, l5(η) < l6(x) < 0, and so ξ3 > η, i.e., µ1(G) > µ1(P 2n
ν−2n).

Case 2. ν > 2ns+ 4.
If s = 1, then it is easy to see that G ∼= P 2n

ν−2n and µ1(G) = µ1(P 2n
ν−2n). So

in what follows, we consider s > 2.
According to the partition V (G) = V (Kν−2ns−1) ∪ V (Ks) ∪ V ((2ns − s +

1)K1), we may obtain the quotient matrix of D(G) corresponding to the par-
tition as

M4 =

 ν − 2ns− 2 s 2(2ns− s+ 1)
ν − 2ns− 1 s− 1 2ns− s+ 1

2(ν − 2ns− 1) s 2(2ns− s)

 .

Then the characteristic polynomial of M4 is

ΦM4
(x) = x3 − (2ns+ ν − s− 3)x2 − (−8n2s2 + 2ns2 + 4nsν − 6ns+ s2

− 2sν + 5ν − 6)x− 4n2s3 + 8n2s2 + 2ns3 + 2ns2ν − 6ns2

− 4nsν − s2ν + 8ns+ 3sν − 2s− 4ν + 4.(10)
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Since the partition V (G) = V (Kν−2ns−1) ∪ V (Ks) ∪ V ((2ns − s + 1)K1) is
equitable, by Lemma 2.3, the largest root, say ξ4, of ΦM4

(x) = 0 satisfies
ξ4 = µ1(G).

Recall that

Φ(x) = x3−(2n+ν−4)x2+(8n2−4nν+4n−3ν+5)x+4n2−2nν+4n−2ν+2.

Together with (10), we have

ΦM4
(x)− Φ(x) = (s− 1)[(1− 2n)x2 + (8n2s− 4nν + 8n2 − 2ns+ 2ν + 4n

− s− 1)x− 4n2s2 + 2nsν + 4n2s+ 2ns2 − 2nν

− sν + 4n2 − 4ns+ 2ν + 4n− 2].

Let

h1(x) = (1− 2n)x2 + (8n2s− 4nν + 8n2 − 2ns+ 2ν + 4n− s− 1)x

− 4n2s2 + 2nsν + 4n2s+ 2ns2 − 2nν − sν + 4n2

− 4ns+ 2ν + 4n− 2(11)

be a real function in x. We are to show h1(η) < 0 by considering the following
two possible subcases.

Subcase 2.1. n = 1. In this case

h1(x) = −x2 − (2ν − 5s− 11)x− 2s2 + sν + 6.

It is routine to check that the derivative function of h1(x) is

h′1(x) = −2x− (2ν − 5s− 11).

Hence −ν + 5
2s+ 11

2 is the unique solution of h′1(x) = 0. Obviously, −ν + 5
2s+

11
2 < ν + 2. Then h1(x) is decreasing in the interval [ν + 2,+∞). By (8), one

has

η > ν + 3− 10

ν
> ν + 2.

So h1(η) 6 h1(ν + 2) = −3ν2 + (6s+ 3)ν − 2s2 + 10s+ 24.
Let h2(x) = −3x2 + (6s+ 3)x− 2s2 + 10s+ 24 be a real function in x. It is

routine to check that the derivative function of h2(x) is

h′2(x) = −6x+ 6s+ 3.

Hence s + 3
2 is the unique solution of h′2(x) = 0. Obviously, s + 3

2 < 2s + 4.
Therefore h2(x) is decreasing in the interval [2s+ 4,+∞). By ν > 2s+ 4, one
has

h2(ν) 6 h2(2s+ 4) = −2s2 − 8s− 12 < 0.

Hence, h1(η) < 0. Therefore, µ1(G) > µ1(P 2n
ν−2n).

Subcase 2.2. n > 2. In view of (11), we have

h′1(x) = 2(1− 2n)x+ 8n2s− 4nν + 8n2 − 2ns+ 2ν + 4n− s− 1.



COMPLETE CHARACTERIZATION OF ODD FACTORS 1065

Hence, −ν + 4n+1
2 s+ 8n2+4n−1

2(2n−1) is the unique solution of h′1(x) = 0. Obviously,

−ν +
4n+ 1

2
s+

8n2 + 4n− 1

2(2n− 1)
< ν + 2n− 4.

Thus, h1(x) is decreasing in the interval [ν + 2n − 4,+∞). By (9), we have
η > ν + 2n− 4. Thus, h1(η) 6 h1(ν + 2n− 4), where

h1(ν + 2n− 4) = (−6n+ 3)ν2 + (8n2s− 8n2 + 42n− 2s− 15)ν + 16n3s

− 4n2s2 + 8n3 − 32n2s+ 2ns2 + 16n2

+ 2ns− 62n+ 4s+ 18.

Let h3(x) = (−6n+ 3)x2 + (8n2s− 8n2 + 42n− 2s− 15)x+ 16n3s− 4n2s2 +
8n3 − 32n2s+ 2ns2 + 16n2 + 2ns− 62n+ 4s+ 18 be a real function in x. It is
routine to check that the derivative function of h3(x) is

h′3(x) = 2(−6n+ 3)x+ 8n2s− 8n2 + 42n− 2s− 15.

Hence − 8n2s−8n2+42n−2s−15
2(−6n+3) is the unique solution of h′3(x) = 0. Clearly,

−8n2s− 8n2 + 42n− 2s− 15

2(−6n+ 3)
< 2ns+ 4.

Then h3(x) is decreasing in the interval [2ns+ 4,+∞). Thus,

h3(x) 6 h3(2ns+ 4) = (−8n3 + 8n2 − 2n)s2 + (−12n2 + 20n− 4)s

+ 8n3 − 16n2 + 10n+ 6.

Let h4(x) = (−8n3 + 8n2 − 2n)x2 + (−12n2 + 20n − 4)x + 8n3 − 16n2

+ 10n + 6 be a real function in x. Hence, the derivative function of h4(x)
is

h′4(x) = 2(−8n3 + 8n2 − 2n)x− 12n2 + 20n− 4.

Hence − −12n2+20n−4
2(−8n3+8n2−2n) is the unique solution of h′4(x) = 0. Obviously,

− −12n2 + 20n− 4

2(−8n3 + 8n2 − 2n)
< 2.

Therefore, h4(x) is decreasing in the interval [2,+∞). Hence,

h4(x) 6 h4(2) = −24n3 − 8n2 + 42n− 2.

Let h5(x) = −24x3 − 8x2 + 42x− 2 be a real function in x. Thus,

h′5(x) = −72x2 − 16x+ 42 = −72(x+
2 +
√

193

18
)(x− −2 +

√
193

18
).

Note that

−2 +
√

193

18
<
−2 +

√
193

18
< 2.

Thus, h5(x) is decreasing in the interval [2,+∞). Therefore, h5(x) 6 h5(2) =
−142 < 0. Thus, h1(η) < 0 and so µ1(G) > µ1(P 2n

ν−2n). �
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By Claim 1, we get µ1(G) > µ1(P 2n
ν−2n) for ν = 4 or ν > 10. Thus, we get a

contradiction to the condition of (i). So we need to consider the rest case for
ν = 6, 8. Recall that G = Ks ∨ ((2ns− s+ 1)K1 ∪Kν−2ns−1).

For ν = 6, by n 6 ν
2 − 1, we have n 6 2. If n = 1, then s 6 2 by ν >

2ns+ 2. Hence G ∈ {P 2
4 ,K2 ∨ 4K1}. By a direct calculation, µ1(P 2

4 ) ≈ 7.5546,
µ1(K2 ∨ 4K1) ≈ 7.2744. Then µ1(G) > µ1(K2 ∨ 4K1). If n = 2, then s = 1 by
ν > 2ns+ 2. Hence G = P 4

2 , and so µ1(G) = µ1(P 4
2 ). So we obtain each of the

subcases deduces a contradiction to the condition of (ii).
For ν = 8, by n 6 ν

2 −1, we have n 6 3. If n = 1, then s 6 3 by ν > 2ns+2.

Hence G ∈ {P 2
6 ,K2∨(3K1∪K3),K3∨5K1}. By a direct calculation, µ1(P 2

6 ) ≈
10.0839, µ1(K3 ∨ 5K1) ≈ 9.8990, and µ1(K2 ∨ (3K1 ∪K3)) ≈ 10.3573, Thus,
µ1(G) > µ1(K3 ∨ 5K1). If n = 2, then s = 1 by ν > 2ns+ 2. Hence, G = P 4

4 ,
and so µ1(G) = µ1(P 4

4 ). If n = 3, then s = 1 by ν > 2ns+ 2. Hence G = P 6
2 ,

and so µ1(G) = µ1(P 6
2 ). Therefore, we deduce a contradiction to the condition

of (iii) for n = 1, 2, 3. �

Bearing in mind that a perfect matching of graph G is a {1}-factor. So we
have the following corollary immediately.

Corollary 5.1. Let G be a ν-vertex connected graph, where ν is an even
integer. If ν = 4 or ν > 10 and µ1(G) < µ1(P 2

ν−2), then G has a perfect
matching. If ν = 6 and µ1(G) < µ1(K2 ∨ 4K1), or ν = 8 and µ1(G) <
µ1(K3 ∨ 5K1), then G has a perfect matching.

By the proof of Theorems 3.2 and 4.2, we know P 2n
ν−2n has no {1, 3, . . .,

2n−1}-factor, K2∨4K1 and K3∨5K1 have no {1}-factor. Thus the condition
in Theorem 1.3 can not be replaced by the condition that µ1(G) 6 µ1(P 2n

ν−2n),
µ1(G) 6 µ1(K2 ∨ 4K1) and µ1(G) 6 µ1(K3 ∨ 5K1), which implies the bounds
established in Theorem 1.3 are the best possible.
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