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UNIQUENESS OF MEROMORPHIC SOLUTIONS OF

A CERTAIN TYPE OF DIFFERENCE EQUATIONS

Jun-Fan Chen and Shu-Qing Lin

Abstract. In this paper, we study the uniqueness of two finite order

transcendental meromorphic solutions f(z) and g(z) of the following com-
plex difference equation

A1(z)f(z + 1) +A0(z)f(z) = F (z)eα(z)

when they share 0, ∞ CM, where A1(z), A0(z), F (z) are non-zero polyno-
mials, α(z) is a polynomial. Our result generalizes and complements some

known results given recently by Cui and Chen, Li and Chen. Examples

for the precision of our result are also supplied.

1. Introduction

Let C denote the complex plane. In this paper, we assume that the reader
is familiar with Nevanlinna theory and standard notations (see [9,11]), such as

T (r, f), N(r, f), m(r, f), N(r, f), N(r,
1

f
), . . . .

We denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)), r →∞,

outside possibly an exceptional set of finite logarithmic measure.
Let f(z) and g(z) be meromorphic functions. We say that f(z) and g(z)

share a CM, provided that f(z)− a and g(z)− a have the same zeros counting
multiplicities. And we say that f(z) and g(z) share∞ CM, provided that they
have the same poles counting multiplicities.

The uniqueness theory of meromorphic functions is an important part of
Nevanlinna theory. The famous Nevanlinna 4 CM theorem will be given in
detail below.
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Theorem 1 (see [15]). Let f(z) and g(z) be two non-constant meromorphic
functions and let a1, a2, a3, a4 be four distinct values in the extended complex
plane. Furthermore, suppose that f(z) and g(z) share a1, a2, a3, a4 CM. If
f(z) 6≡ g(z), then f(z) = T (g(z)), where T is a Möbius transformation.

Later, Yang and Yi [19] supplemented and perfected the uniqueness theory of
meromorphic functions. One major problem in the study of complex difference
equations has so far been the lack of efficient tools. Fortunately, till the 1970s
and 1980s, Bank and Kaufman [1], Shimomura [17] and Yanagihara [18] initially
obtained the existence of meromorphic solutions of certain difference equations
in the complex plane. Recently, many scholars combined the uniqueness with
the differences and the solutions of difference equations, and obtained lots of
results [2–7, 10, 12–14, 16]. Specially, in 2013, Chen and Shon [3] studied the
following non-homogeneous linear difference equation

An(z)f(z + n) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = F (z),(1.1)

and proved the following theorem.

Theorem 2 (see [3]). Let A0(z), . . . , An(z), F (z) be polynomials such that

F (z)A0(z)An(z) 6≡ 0, A0 + · · ·+An 6≡ 0.

Then every finite order transcendental meromorphic solution f(z) of the equa-
tion (1.1) satisfies λ(f(z)) = σ(f(z)) ≥ 1. Here, the order σ(f(z)) of a mero-
morphic solution f(z) is defined to be

σ(f(z)) = lim sup
r→∞

log+ T (r, f(z))

log r
,

and its exponent of convergence of zeros is defined by

λ(f(z)) = lim sup
r→∞

log+N
(
r, 1
f(z)

)
log r

.

In 2016, Cui and Chen [6] considered the uniqueness of meromorphic solu-
tions sharing three values with a meromorphic function to the homogeneous
linear difference equation

A1(z)f(z + 1) +A0(z)f(z) = 0(1.2)

and proved the following theorem.

Theorem 3 (see [6]). Let f(z) be a transcendental meromorphic solution of
(1.2) and assume that the order of f(z) is finite. Suppose that A1(z) and
A0(z) are non-zero polynomials such that A1(z)+A0(z) 6≡ 0. If a meromorphic
function g(z) and f(z) share 0, 1,∞ CM, then either f(z) ≡ g(z) or f(z)g(z) ≡
1.
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In 2017, Cui and Chen [7] extended the complex difference equation in The-
orem 3 as

A1(z)f(z + 1) +A0(z)f(z) = F (z)(1.3)

and proved the following theorem.

Theorem 4 (see [7]). Let f(z) be a transcendental meromorphic solution of
(1.3) and assume that the order of f(z) is finite. Suppose that A1(z), A0(z),
F (z) are non-zero polynomials such that A1(z) +A0(z) 6≡ 0. If a meromorphic
function g(z) and f(z) share 0, 1,∞ CM, then one of the following cases holds:

(i) f(z) ≡ g(z); (ii) f(z) + g(z) = f(z)g(z);
(iii) there exist a polynomial β(z) = b1z + b0 and a constant a0 satisfying

ea0 6= eb0 such that

f(z) =
1− eβ(z)

eβ(z)(ea0−b0 − 1)
, g(z) =

1− eβ(z)

1− eb0−a0
,

where b1 6= 0 and b0 are constants.

In 2019, Li and Chen [12] considered the uniqueness of two meromorphic
solutions of non-homogeneous linear difference equation

B1(z)f(z + 1) +B2(z)f(z) = B3(z)(1.4)

when they share two values, and proved the following theorem.

Theorem 5 (see [12]). Let f(z) and g(z) be two finite order transcendental
meromorphic solutions of (1.4). Furthermore, suppose that B1(z) 6≡ 0, B3(z) 6≡
0, B2(z) are rational functions. If f(z) and g(z) share 0, ∞ CM, then either
f(z) ≡ g(z) or

f(z) =
B3(z)

2B2(z)
(eb1z+b0 + 1)

and

g(z) =
B3(z)

2B2(z)
(e−b1z−b0 + 1),

where b1 and b0 are constants such that e−b1 = eb1 = −1, and the coefficients
of (1.4) satisfy

B1(z)B3(z + 1) ≡ B3(z)B2(z + 1).

Here in this paper, if we generalize the equation (1.3) to the following more
general form

A1(z)f(z + 1) +A0(z)f(z) = F (z)eα(z),(1.5)

then how can we guarantee the meromorphic solutions of the equation (1.5)
are uniquely determined by their zeros and poles? Next we study this problem
and prove the following main result.
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Theorem 6. Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of the equation (1.5). Furthermore, suppose that A1(z), A0(z), F (z)
are non-zero polynomials, α(z) is a polynomial. If f(z) and g(z) share 0, ∞
CM, then one of the following cases holds:

(i) f(z) ≡ g(z);
(ii)

f(z) =
c1F (z)

2A0(z)
(eb1z+b0 + 1)

and

g(z) =
c1F (z)

2A0(z)
(e−b1z−b0 + 1),

where eα(z) = c1 (6= 0), e−b1 = eb1 = −1, b1 = (2k + 1)πi, k is an integer and
the coefficients of (1.5) satisfy

A1(z)F (z + 1) ≡ F (z)A0(z + 1);

(iii)

f(z) =
F (z)ea1z+a0(eb1z+b0 − e−b1)

A0(z)(1− e−b1)

and

g(z) =
F (z)ea1z+a0(1− e−b1z−b1−b0)

A0(z)(1− e−b1)
,

where (1−e−b1)−1 6= 0, a1 6= 0, b1 6= 0, a0, b0 are constants and the coefficients
of (1.5) satisfy

A1(z)F (z + 1) ≡ e−b1(e−b1z−b0 − 1)

ea1(1− e−b1z−2b1−b0)
F (z)A0(z + 1).

By Theorem 6, we can also give the following corollaries.

Corollary 1. Let f(z) and g(z) be two finite order transcendental meromor-
phic solutions of the equation (1.5), where A1(z), A0(z), F (z) are non-zero
polynomials such that A1(z)F (z + 1) 6≡ qF (z)A0(z + 1), where q = 1 or

q = e−b1 (e−b1z−b0−1)
ea1 (1−e−b1z−2b1−b0 )

, a1 and b1 are non-zero constants, b0 is a constant.

If f(z) and g(z) share 0, ∞ CM, then f(z) ≡ g(z).

Corollary 2. Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of the equation (1.5), where

F (z)eα(z) 6≡ A1(z) +A0(z),

A1(z)[c1F (z + 1)−A1(z + 1)] 6≡ [c1F (z)−A0(z)]A0(z + 1)

and

A1(z)[F (z + 1)ea1z+a1+a0 −A1(z + 1)−A0(z + 1)]

A0(z + 1)[F (z)ea1z+a0 −A1(z)−A0(z)]
6≡ e−b1z−b1−b0 − e−b1

1− e−b1z−2b1−b0
,

where a1, b1, c1 are non-zero constants, a0 and b0 are constants. If f(z) and
g(z) share 1, ∞ CM, then f(z) ≡ g(z).
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Remark 1. Corollary 1 and Corollary 2 follow from Theorem 6 immediately.

Example 1. The function f(z)= zeπiz+z
2 and another function g(z)= ze−πiz+z

2
solve the equation

zf(z + 1) + (z + 1)f(z) = z2 + z.

Here f(z) and g(z) share 0,∞ CM, e−πi = eπi = −1. Without loss of generality,
we may suppose that eα(z) ≡ 1, F (z) = z2 + z. Then the coefficients of (1.5)
satisfy A1(z) = z, A0(z) = z + 1 and A1(z)F (z + 1) ≡ F (z)A0(z + 1) =
z3+3z2+2z. The above statement shows that Case (ii) in Theorem 6 certainly
exists.

Example 2. The function f(z) = e3πiz−eπi(2z−1)

2 and another function g(z) =
e2πiz−eπi(z−1)

2 solve the equation

f(z + 1) + f(z) = e2πiz.

Here f(z) and g(z) share 0, ∞ CM, (1 − e−b1)−1 = 1
2 6= 0, and the coeffi-

cients of (1.5) satisfy A1(z) ≡ A0(z + 1) ≡ F (z) ≡ 1, A1(z)F (z + 1) ≡ 1 ≡
e−b1 (e−b1z−b0−1)

ea1 (1−e−b1z−2b1−b0 )
F (z)A0(z + 1), where a1 = 2πi, b1 = πi, a0 = b0 = 0. The

above statement shows that Case (iii) in Theorem 6 certainly exists.

Example 3. The function f(z) = −e3πiz and another function g(z) = −e−3πiz
solve the equation

f(z + 1) + f(z) = 0.

Here f(z) and g(z) share 1, ∞ CM, e−3πi = e3πi = −1, and the coefficients of
(1.5) satisfy A0(z) ≡ A1(z) ≡ 1; A0(z) +A1(z) ≡ 2 6≡ F (z)eα(z) ≡ 0. But

A1(z)[c1F (z + 1)−A1(z + 1)] ≡ −1 ≡ [c1F (z)−A0(z)]A0(z + 1)

and

A1(z)[F (z + 1)ea1z+a1+a0−A1(z + 1)−A0(z + 1)]

A0(z + 1)[F (z)ea1z+a0−A1(z)−A0(z)]
≡ 1 ≡ e−b1z−b1−b0 − e−b1

1− e−b1z−2b1−b0
,

where b1 = 3πi, b0 = 0, c1 6= 0, a1 6= 0, a0 are constants.

Remark 2. From Example 3, we find that the conditions

A1(z)[c1F (z + 1)−A1(z + 1)] ≡ [c1F (z)−A0(z)]A0(z + 1)

and

A1(z)[F (z + 1)ea1z+a1+a0 −A1(z + 1)−A0(z + 1)]

A0(z + 1)[F (z)ea1z+a0 −A1(z)−A0(z)]
≡ e−b1z−b1−b0 − e−b1

1− e−b1z−2b1−b0

in Corollary 2 cannot be deleted.

Example 4. The functions f(z) = ez

z and g(z) = ez

z solve the equation

f(z + 1) + ef(z) =
2z + 1

z(z + 1)
ez+1.
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Here f(z) and g(z) share 0, ∞ CM. The above statement shows that Case (i)
in Theorem 6 certainly exists.

Example 5. The function f(z) = z(e3πiz+e2πiz)
2 and another function g(z) =

z(e2πiz+eπiz)
2 solve the equation

z

z + 1
f(z + 1) + f(z) = ze2πiz.

Here f(z) and g(z) share 0, ∞ CM, (1− e−b1)−1 = 1
2 6= 0, and the coefficients

of (1.5) satisfy A1(z) ≡ z
z+1 , A0(z) ≡ 1, F (z) ≡ z, A1(z)F (z + 1) ≡ z ≡

e−b1 (e−b1z−b0−1)
ea1 (1−e−b1z−2b1−b0 )

F (z)A0(z + 1), where a1 = 2πi, b1 = πi, a0 = b0 = 0. The

above statement shows that when F (z) and α(z) are non-constant polynomials,
Case (iii) in Theorem 6 certainly exists.

2. Some lemmas

Lemma 1 (see [5, 8]). Let ε be a positive constant, ξ1 and ξ2 be two distinct
complex constants, and let f(z) be a meromorphic function of finite order σ =
σ(f(z)). Then we have

m

(
r,
f(z + ξ1)

f(z + ξ2)

)
= O(rσ−1+ε) = o(T (r, f)).(2.1)

Lemma 2 (see [5]). Let f(z) be a meromorphic function such that the order
σ = σ(f(z)) < +∞, and let η be a nonzero complex number. If ε > 0, then

T (r, f(z + η)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).(2.2)

Lemma 3 (see [19]). If meromorphic functions fj(z) (j = 1, 2, . . . , n) (n ≥
2) and entire functions gj(z) (j = 1, 2, . . . , n) (n ≥ 2) satisfy the following
conditions:

(1)
∑n
j=1 fje

gj ≡ 0,

(2) when 1 ≤ j < l ≤ n, gj − gl are not constants,
(3) when 1 ≤ j ≤ n, 1 ≤ h < l ≤ n, T (r, fj) = o(T (r, egh−gl)) (r → ∞,

r 6∈ E),

then we have fj ≡ 0 (j = 1, 2, . . . , n).

3. Proof of Theorem 6

Since f(z) and g(z) are finite order transcendental meromorphic functions
that share 0, ∞ CM, we get

f(z)

g(z)
= eβ(z),(3.1)

where β(z) is a polynomial such that deg β(z) ≤ max{σ(f), σ(g)}.
From the equations (1.5) and (3.1), we have

A1(z)g(z + 1) +A0(z)g(z) = F (z)eα(z)(3.2)
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and

A1(z)g(z + 1)eβ(z+1) +A0(z)g(z)eβ(z) = F (z)eα(z).(3.3)

Combining (3.2) with (3.3), we have

g(z)A0(z)[1− eβ(z)−β(z+1)] = F (z)eα(z)[1− e−β(z+1)].(3.4)

If 1 − eβ(z)−β(z+1) ≡ 0, then from (3.4), we have 1 − e−β(z+1) ≡ 0, which
means that f(z) ≡ g(z).

If 1− eβ(z)−β(z+1) 6≡ 0, then β(z) must be a non-constant polynomial. Thus
from (3.4) we may solve out g(z) of the form

g(z) =
F (z)eα(z)(1− e−β(z+1))

A0(z)[1− eβ(z)−β(z+1)]
.(3.5)

By (3.2) and (3.5), we see that

A1(z)F (z + 1)eα(z+1)[1−e−β(z+2)]

A0(z + 1)[1−eβ(z+1)−β(z+2)]
+
A0(z)F (z)eα(z)[1−e−β(z+1)]

A0(z)[1−eβ(z)−β(z+1)]
= F (z)eα(z).

Equally,

A1(z)q(z + 1)[1− e−β(z+2)] +A0(z)q(z)[1− e−β(z+1)] = F (z)eα(z),(3.6)

where

q(z) =
F (z)eα(z)

A0(z)[1− eβ(z)−β(z+1)]
.

Now we set

α(z) = amz
m + am−1z

m−1 + · · ·+ a0,

β(z) = bnz
n + bn−1z

n−1 + · · ·+ b0,
(3.7)

where am 6= 0, am−1, . . . , a0, bn 6= 0, bn−1, . . . , b0 are constants, m and n are
integers.

Note that β(z) is a non-constant polynomial and α(z) is a polynomial. Next,
we divide our argument into two cases respectively: Case 1, α(z) is a constant,
β(z) is not a constant; Case 2, α(z) and β(z) are not constants.

Case 1. If α(z) is a constant, β(z) is not a constant, then it is natural to have
deg β(z) ≥ 1. Now we will prove that deg β(z) = 1. Suppose on the contrary
that deg β(z) = n ≥ 2. Then, it is obvious that

deg[β(z + 1)− β(z)] = deg[β(z + 2)− β(z + 1)] = n− 1,(3.8)

and σ(eβ(z+2)−β(z+1)) = σ(eβ(z+1)−β(z)) = n− 1 ≥ 1.
Without loss of generality, we assume that eα(z) = c1 (6= 0). By the first

main theorem of Nevanlinna theory, we have

T (r, q(z)) = T

(
r,

1

q(z)

)
+O(1) = T

(
r,
A0(z)−A0(z)eβ(z)−β(z+1)

c1F (z)

)
+O(1)

= T
(
r, eβ(z)−β(z+1)

)
+O(log r).



834 J. F. CHEN AND S. Q. LIN

Therefore, σ(q(z)) = n− 1. From Lemma 1, we get

m

(
r,
q(z + 1)

q(z)

)
= O(rσ(q)−1+ε) = O(rn−2+ε) = o(rn−1)(3.9)

for each ε ∈ (0, 1).
The equation (3.6) can be changed to

−A1(z)q(z + 1)−A0(z)q(z)eβ(z+2)−β(z+1)

= [c1F (z)−A1(z)q(z + 1)−A0(z)q(z)]eβ(z+2).
(3.10)

If c1F (z) − A1(z)q(z + 1) − A0(z)q(z) 6≡ 0, then by (3.8), (3.10) and the fact
σ(q(z)) = n− 1, we have

n = σ
(

(c1F (z)−A1(z)q(z + 1)−A0(z)q(z))eβ(z+2)
)

= σ
(
−A1(z)q(z + 1)−A0(z)q(z)eβ(z+2)−β(z+1)

)
≤ n− 1.

This is absurd. Thus c1F (z)−A1(z)q(z + 1)−A0(z)q(z) ≡ 0.
From the above discussion and (3.10), we see that

−A1(z)q(z + 1)−A0(z)q(z)eβ(z+2)−β(z+1) = 0.(3.11)

Since A1(z) and A0(z) are non-zero polynomials, by (3.9) and (3.11), we obtain

T
(
r, eβ(z+2)−β(z+1)

)
= m

(
r, eβ(z+2)−β(z+1)

)
= m

(
r,
−A1(z)q(z + 1)

A0(z)q(z)

)
≤ o(rn−1) +O(log r),

which contradicts σ(eβ(z+2)−β(z+1)) = n − 1 ≥ 1. We thus have proved that
deg β(z) = 1. Next we derive from (3.7) that there exist two constants b1 ( 6= 0),
b0 such that β(z) = b1z + b0.

Substituting eα(z) = c1, β(z) = b1z + b0 into (3.5), we obtain

g(z) =
c1F (z)(1− e−b1z−b1−b0)

A0(z)(1− e−b1)
,(3.12)

where (1− e−b1)−1 6= 0.
Then, combining (3.2) with (3.12), we have[

−c1A1(z)F (z + 1)

A0(z + 1)(1− e−b1)
e−b1 − c1F (z)

(1− e−b1)

]
e−b1z−b1−b0

= c1F (z)− c1A1(z)F (z + 1)

A0(z + 1)(1− e−b1)
− c1F (z)

(1− e−b1)
.

From Lemma 3, we get

−c1A1(z)F (z + 1)

A0(z + 1)(1− e−b1)
e−b1 − c1F (z)

(1− e−b1)
≡ 0(3.13)
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and

c1F (z)− c1A1(z)F (z + 1)

A0(z + 1)(1− e−b1)
− c1F (z)

(1− e−b1)
≡ 0.(3.14)

By using the above equations, we have

e−b1 =
−A0(z + 1)F (z)

A1(z)F (z + 1)
= eb1 ,

where e−b1 = eb1 = −1.
Further, from (3.1) and (3.12), we obtain

f(z) =
c1F (z)

2A0(z)
(1 + eb1z+b0)

and

g(z) =
c1F (z)

2A0(z)
(1 + e−b1z−b0),

where e−b1 = eb1 = −1, b1 = (2k + 1)πi, k is an integer. Finally, we obtain
from (3.13) or (3.14) that

A1(z)F (z + 1) ≡ F (z)A0(z + 1)

holds for this case.
Case 2. If α(z) and β(z) are not constants with degα(z) = m, deg β(z) = n,

then (3.6) can be expressed as

A1(z)F (z + 1)eα(z+1) −A1(z)F (z + 1)eα(z+1)−β(z+2) −A0(z + 1)

F (z)eα(z)−β(z+1) +A0(z + 1)F (z)eα(z)−β(z+2) −A1(z)F (z + 1)

eβ(z)−β(z+1)+α(z+1) +A0(z + 1)F (z)eα(z)+β(z)−β(z+1)

−A0(z + 1)F (z)eα(z)+β(z)−β(z+2) +A1(z)F (z + 1)

eα(z+1)+β(z)−β(z+1)−β(z+2) = 0.

(3.15)

We will discuss three subcases.
Subcase 2.1: If degα(z) > deg β(z) ≥ 1, then (3.15) can be expressed as

J11(z)eα(z+1) = 0,

so that

J11(z) = 0,(3.16)

where

J11(z) = A1(z)F (z + 1)−A1(z)F (z + 1)e−β(z+2)

−A0(z + 1)F (z)eα(z)−α(z+1)−β(z+1)

+A0(z + 1)F (z)eα(z)−β(z+2)−α(z+1) −A1(z)F (z + 1)eβ(z)−β(z+1)

+A0(z + 1)F (z)eα(z)+β(z)−β(z+1)−α(z+1)

−A0(z + 1)F (z)eα(z)+β(z)−β(z+2)−α(z+1)
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+A1(z)F (z + 1)eβ(z)−β(z+1)−β(z+2).

Now we distinguish m− 1 > n ≥ 1, m− 1 = n ≥ 1 two subcases to derive the
contradictions.

Subcase 2.1.1: If m− 1 > n ≥ 1, then (3.16) can be expressed as

J24(z)e−β(z+2) + J23(z)eα(z)−α(z+1)−β(z+1) + J22(z)

eβ(z)−β(z+1)+α(z)−α(z+1) + J21(z)eh0(z) = 0,
(3.17)

where h0(z) ≡ 0 and
J24(z) = −A1(z)F (z + 1) +A1(z)F (z + 1)eβ(z)−β(z+1),

J23(z) = −A0(z + 1)F (z) +A0(z + 1)F (z)eβ(z+1)−β(z+2),

J22(z) = A0(z + 1)F (z)−A0(z + 1)F (z)eβ(z+1)−β(z+2),

J21(z) = A1(z)F (z + 1)−A1(z)F (z + 1)eβ(z)−β(z+1).

Now by m−1 > n ≥ 1 it follows that deg(β(z+ i)−β(z+ j)) = deg β(z)−1 =
n−1 ≥ 0 (i = 0, 1; j = 1, 2), deg(α(z+1)−α(z)+β(z+1)−β(z+2)) = m−1,
deg(α(z + 1)− α(z) + β(z + 1)− β(z + 2)− β(z)) = m− 1, deg(α(z)− α(z +
1)− β(z + 1)) = m− 1, deg(β(z)− β(z + 1) + α(z)− α(z + 1)) = m− 1. From
Lemma 2, for j = 1, 2, 3, 4, we get

T (r, J2j(z)) = o{T (r, eβ(z))},
T (r, J2j(z)) = o{T (r, eα(z)−α(z+1)−β(z+1))},
T (r, J2j(z)) = o{T (r, eα(z)−α(z+1)+β(z)−β(z+1))},
T (r, J2j(z)) = o{T (r, eα(z+1)−α(z)+β(z+1)−β(z+2))},
T (r, J2j(z)) = o{T (r, eα(z+1)−α(z)+β(z+1)−β(z+2)−β(z))}.

Applying Lemma 3 to (3.17), we have J2j(z) ≡ 0 (j = 1, 2, 3, 4). Then, by
J24(z) ≡ 0 and the assumption that A1(z) and F (z) are non-zero polynomials,
we have eβ(z)−β(z+1) ≡ 1, which contradicts that eβ(z)−β(z+1) 6≡ 1.

Subcase 2.1.2: If m−1 = n ≥ 1, then from (3.7), we see that α(z)−α(z+1) =
−mamzm−1− (C2

mam+C1
m−1am−1)zm−2−· · ·− (am+am−1 + · · ·+a1) is non-

constant polynomial with deg(α(z)−α(z+ 1)) = m− 1 ≥ 1. Similarly, we can
get deg(β(z)− β(z + 1)) = n− 1 ≥ 0. The following discussion is divided into
three subcases according to whether bn = ±mam.

Subcase 2.1.2.1: If bn 6= mam, bn 6= −mam, then (3.16) can be rewritten as
(3.17). Therefore, using the same method as in the proof of Subcase 2.1.1, we
can get a contradiction.

Subcase 2.1.2.2: If bn = −mam, then (3.16) can be expressed as

J33(z)e−β(z+2) + J32(z)eβ(z)−β(z+1)+α(z)−α(z+1) + J31(z)eh0(z) = 0,(3.18)
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where h0(z) ≡ 0 and

J33(z) = −A1(z)F (z + 1) +A1(z)F (z + 1)eβ(z)−β(z+1),

J32(z) = A0(z + 1)F (z)−A0(z + 1)F (z)eβ(z+1)−β(z+2),

J31(z) = A1(z)F (z + 1)−A1(z)F (z + 1)eβ(z)−β(z+1)

+A0(z + 1)F (z)eα(z)−β(z+2)−α(z+1)

−A0(z + 1)F (z)eα(z)−α(z+1)−β(z+1).

By bn = −mam, m− 1 = n ≥ 1, then deg(−β(z+ 2)−β(z) +β(z+ 1)−α(z) +
α(z+ 1)) = deg(β(z)−β(z+ 1) +α(z)−α(z+ 1)) = n, deg(β(z)−β(z+ 1)) =
deg(β(z+ 1)−β(z+ 2)) = n− 1, deg(α(z)−α(z+ 1)−β(z+ 1)) = deg(α(z)−
α(z + 1)− β(z + 2)) ≤ n− 1. From Lemma 2, for j = 1, 2, 3, we get

T (r, J3j(z)) = o{T (r, e−β(z+2))},
T (r, J3j(z)) = o{T (r, eβ(z)−β(z+1)+α(z)−α(z+1))},
T (r, J3j(z)) = o{T (r, e−β(z+2)−β(z)+β(z+1)−α(z)+α(z+1))}.

Applying Lemma 3 to (3.18), we have J3j(z) ≡ 0 (j = 1, 2, 3). Then, by
J33(z) ≡ 0 and the assumption that A1(z) and F (z) are non-zero polynomials,
we obtain a contradiction again.

Subcase 2.1.2.3: If bn = mam, then (3.16) can be expressed as

J43(z)e−β(z+2) + J42(z)eα(z)−α(z+1)−β(z+1) + J41(z)eh0(z) = 0,(3.19)

where h0(z) ≡ 0 and

J43(z) = −A1(z)F (z + 1) +A1(z)F (z + 1)eβ(z)−β(z+1)

−A0(z + 1)F (z)eβ(z)+α(z)−α(z+1)

+A0(z + 1)F (z)eβ(z)−β(z+1)+β(z+2)+α(z)−α(z+1),

J42(z) = −A0(z + 1)F (z) +A0(z + 1)F (z)eβ(z+1)−β(z+2),

J41(z) = A1(z)F (z + 1)−A1(z)F (z + 1)eβ(z)−β(z+1).

By bn = mam, m−1 = n ≥ 1, then deg(−β(z+2)−α(z)+α(z+1)+β(z+1)) =
deg(α(z) − α(z + 1) − β(z + 1)) = n, deg(β(z) − β(z + 1)) = deg(β(z + 1) −
β(z + 2)) = n − 1, deg(β(z) − β(z + 1) + β(z + 2) + α(z) − α(z + 1)) =
deg(β(z) + α(z)− α(z + 1)) ≤ n− 1. From Lemma 2, for j = 1, 2, 3, we get

T (r, J4j(z)) = o{T (r, e−β(z+2))},
T (r, J4j(z)) = o{T (r, eα(z)−α(z+1)−β(z+1))},
T (r, J4j(z)) = o{T (r, e−β(z+2)−α(z)+α(z+1)+β(z+1))}.

Applying Lemma 3 to (3.19), we have J4j(z) ≡ 0 (j = 1, 2, 3). Then by
J41(z) ≡ 0, we can get the same contradiction as in Subcase 2.1.2.2.

Subcase 2.2: If deg β(z) > degα(z) ≥ 1, then (3.15) can be expressed as

J52(z)eα(z+1) + J51(z)eα(z+1)−β(z+2) = 0,(3.20)
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where

J52(z) = A1(z)F (z + 1)−A1(z)F (z + 1)eβ(z)−β(z+1)

+A0(z + 1)F (z)eα(z)−α(z+1)+β(z)−β(z+1)

−A0(z + 1)F (z)eα(z)−α(z+1)+β(z)−β(z+2),

J51(z) = −A1(z)F (z + 1)−A0(z + 1)F (z)eα(z)−α(z+1)−β(z+1)+β(z+2)

+A0(z + 1)F (z)eα(z)−α(z+1) +A1(z)F (z + 1)eβ(z)−β(z+1).

By deg β(z) > degα(z) ≥ 1, then deg(β(z+2)) = n, deg(β(z)−β(z+1)) = n−1,
deg(α(z)−α(z+1)) = m−1 < n, deg(α(z)−α(z+1)+β(z)−β(z+1)) = n−1,
deg(α(z)−α(z+1)+β(z)−β(z+2)) = n−1, deg(α(z)−α(z+1)−β(z+1)+β(z+
2)) = n−1. From Lemma 2, for j = 1, 2, we get T (r, J5j(z)) = o{T (r, eβ(z+2))}.
Applying Lemma 3 to (3.20), we have J5j(z) ≡ 0 (j = 1, 2). Then by J52(z) ≡ 0,
we have

A1(z)F (z + 1)−A1(z)F (z + 1)eβ(z)−β(z+1) +A0(z + 1)F (z)

eα(z)−α(z+1)+β(z)−β(z+1)−A0(z + 1)F (z)eα(z)−α(z+1)+β(z)−β(z+2) ≡ 0.
(3.21)

We will discuss the degree of α(z) and obtain the contradiction.
Firstly, if degα(z) = m ≥ 2, by deg β(z) > degα(z) ≥ 1, then we obtain

deg β(z) = n ≥ 3, thus deg(β(z)−β(z+1)) = n−1 ≥ 2, deg(β(z+2)−β(z+1)) =
n − 1 ≥ 2, deg(α(z) − α(z + 1) + β(z) − β(z + 1)) = deg(α(z) − α(z + 1) +
β(z) − β(z + 2)) = deg(α(z + 1) − α(z) + β(z + 2) − β(z + 1)) = n − 1 ≥ 2,
deg(α(z + 1) − α(z)) = m − 1 ≥ 1. Applying Lemma 3 to (3.21), we have
A1(z)F (z + 1) ≡ A0(z + 1)F (z) ≡ 0. This contradicts the assumption that
A1(z), A0(z), F (z) are non-zero polynomials. Hence, degα(z) = 1. Setting
α(z) = a1z + a0, where a1 6= 0 and a0 are constants. Then (3.21) can be
expressed as

A1(z)F (z + 1) + [A0(z + 1)F (z)e−a1 −A1(z)F (z + 1)]eβ(z)−β(z+1)

−A0(z + 1)F (z)e−a1+β(z)−β(z+2) ≡ 0.
(3.22)

By degα(z) = 1, then deg β(z) ≥ 2, thus deg(β(z + 2) − β(z + 1)) ≥ 1,
deg(β(z) − β(z + i)) ≥ 1 (i = 1, 2). Applying Lemma 3 to (3.22), we have
A1(z)F (z + 1) ≡ A0(z + 1)F (z) ≡ 0, which is a contradiction.

Subcase 2.3: If deg β(z) = degα(z) = n ≥ 1, then (3.15) can be expressed as
(3.20). By deg β(z) = degα(z) = n ≥ 1, then deg(β(z)−β(z+1)) = deg β(z)−
1 = deg(α(z)−α(z+1)) = n−1, deg(α(z)−α(z+1)+β(z)−β(z+1)) ≤ n−1,
deg(α(z) − α(z + 1) + β(z) − β(z + 2)) ≤ n − 1, deg(α(z) − α(z + 1) − β(z +
1) + β(z + 2)) ≤ n − 1. From Lemma 2, for j = 1, 2, we get T (r, J5j(z)) =

o{T (r, eβ(z+2))}. Applying Lemma 3 to (3.20), we have J5j(z) ≡ 0 (j = 1, 2).
Then by J51(z) ≡ 0, we have

−A1(z)F (z + 1)−A0(z + 1)F (z)eα(z)−α(z+1)+β(z+2)−β(z+1)

+A0(z + 1)F (z)eα(z)−α(z+1) +A1(z)F (z + 1)eβ(z)−β(z+1) ≡ 0.
(3.23)
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Next we will prove that degα(z) = deg β(z) = 1.
Subcase 2.3.1: If degα(z) = deg β(z) = n ≥ 2, am 6= bn, then (3.23) can be

expressed as

J64(z)eα(z)−α(z+1) + J63(z)eβ(z)−β(z+1) + J62(z)

eα(z)−α(z+1)+β(z+2)−β(z+1) + J61(z)eh0(z) ≡ 0,
(3.24)

where h0(z) ≡ 0 and 
J64(z) = A0(z + 1),

J63(z) = A1(z)F (z+1)
F (z) ,

J62(z) = −A0(z + 1),

J61(z) = −A1(z)F (z+1)
F (z) .

By degα(z) = deg β(z) = n ≥ 2, am 6= bn, then deg(α(z)− α(z + 1)− β(z) +
β(z+1)) = n−1 ≥ 1, deg(β(z+1)−β(z+2)) = n−1 ≥ 1, deg(α(z)−α(z+1)) =
n−1 ≥ 1, deg(β(z)−α(z)+α(z+1)−β(z+2)) = n−1 ≥ 1, deg(β(z)−β(z+1)) =
n−1 ≥ 1, deg(α(z)−α(z+ 1)−β(z+ 1) +β(z+ 2)) = n−1 ≥ 1. From Lemma
2, for j = 1, 2, 3, 4, we get

T (r, J6j(z)) = o{T (r, eα(z)−α(z+1))},
T (r, J6j(z)) = o{T (r, eβ(z)−β(z+1))},
T (r, J6j(z)) = o{T (r, eβ(z+1)−β(z+2))},
T (r, J6j(z)) = o{T (r, eβ(z)−α(z)+α(z+1)−β(z+2))},
T (r, J6j(z)) = o{T (r, eα(z)−α(z+1)−β(z)+β(z+1))},
T (r, J6j(z)) = o{T (r, eα(z)−α(z+1)−β(z+1)+β(z+2))}.

Applying Lemma 3 to (3.24), we have J6j(z) ≡ 0 (j = 1, 2). Then by J64(z) ≡
0, we have A0(z + 1) ≡ 0. This contradicts the assumption that A0(z) is a
non-zero polynomial.

Subcase 2.3.2: If degα(z) = deg β(z) = n ≥ 2, am = bn, then (3.23) can be
expressed as

J72(z)eα(z)−α(z+1) + J71(z)eα(z)−α(z+1)+β(z+2)−β(z+1) ≡ 0,(3.25)

where
J72(z) = A0(z + 1),

J71(z) = −A0(z + 1)−A1(z)
F (z + 1)

F (z)
eα(z+1)−α(z)+β(z+1)−β(z+2)

+A1(z)
F (z + 1)

F (z)
eα(z+1)−α(z)+β(z)−β(z+2).

By degα(z) = deg β(z) = n ≥ 2, am = bn, then deg(β(z + 1) − β(z + 2)) =
n − 1 ≥ 1, deg(α(z + 1) − α(z) + β(z) − β(z + 2)) = deg(α(z + 1) − α(z) −
β(z+2)+β(z+1)) ≤ n−2. From Lemma 2, for j = 1, 2, we get T (r, J7j(z)) =

o{T (r, eβ(z+1)−β(z+2))}. Applying Lemma 3 to (3.25), we have J7j(z) ≡ 0 (j =
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1, 2). Then by J72(z) ≡ 0, we have A0(z + 1) ≡ 0, a contradiction. Hence,
degα(z) = deg β(z) = 1.

Now we set α(z) = a1z+a0, β(z) = b1z+b0. Then, substituting it into (3.1)
and (3.5), we obtain

f(z) =
F (z)ea1z+a0(eb1z+b0 − e−b1)

A0(z)(1− e−b1)

and

g(z) =
F (z)ea1z+a0(1− e−b1z−b1−b0)

A0(z)(1− e−b1)
,

where (1− e−b1)−1 6= 0, a1 6= 0, b1 6= 0, a0, b0 are constants.
What is more, from (3.6), we see that the coefficients of (1.5) satisfy

A1(z)F (z + 1) ≡ e−b1(e−b1z−b0 − 1)

ea1(1− e−b1z−2b1−b0)
F (z)A0(z + 1).

This completes the proof of Theorem 6.
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