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POSITIVE SOLUTION AND GROUND STATE SOLUTION

FOR A KIRCHHOFF TYPE EQUATION

WITH CRITICAL GROWTH

Caixia Chen and Aixia Qian

Abstract. In this paper, we consider the following Kirchhoff type equa-
tion on the whole space

− (a+ b

∫
R3
|∇u|2dx)4u = u5 + λk(x)g(u), x ∈ R3,

u ∈ D1,2(R3),

where λ > 0 is a real number and k, g satisfy some conditions. We mainly

investigate the existence of ground state solution via variational method
and concentration-compactness principle.

1. Introduction

In this paper, we are concerned with the following Kirchhoff type problem

(1.1)

− (a+ b

∫
R3

|∇u|2dx)4u = u5 + λk(x)g(u), x ∈ R3,

u ∈ D1,2(R3),

where the nonlinear growth u5 reaches the Sobolev critical exponent since the
critical exponent 2∗ = 6 in three spatial dimensions. In recent years, because
of the strong physical meaning in mechanics models, the following Kirchhoff
type problem involving the critical Sobolev exponent has attracted a lot of
attention,

(1.2)

− (a+ b

∫
R3

|∇u|2dx)4u = f(x, u), in Ω,

u = 0, on ∂Ω,

where Ω is a smooth domain in R3. Therefore many results have been obtained,
including the existence of positive solutions, multiple solutions, sign-changing
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962 C. CHEN AND A. QIAN

solutions and so on, see for example [2, 5, 7, 8, 16] and the reference therein on
bounded domain, [3,9,11,19] and the reference therein on unbounded domains.

The existence of positive ground state solution for Kirchhoff equation has
also been widely investigated in recent years. Wang et al. in [19] showed the
existence of positive ground state solutions by using the variational method,
where the subcritical nonlinear function f(u) satisfies some stronger conditions.
By a monotonicity trick and a new version of global compactness lemma, Li
and Ye in [10] considered the following Kirchhoff type problem with pure power
nonlinearities− (a+ b

∫
R3

|∇u|2dx)4u+ V (x)u = |u|p−1, x ∈ R3,

u ∈ H1(R3), u > 0,

and gave the existence of positive ground state solution for 2 < p < 5. In
[4], Hu and Lu obtained the multiplicity of positive solutions for the following
Kirchhoff type problem with pure power nonlinearities− (ε2a+ εb

∫
R3

|∇u|2dx)4u+ u = Q(x)|u|p−2u, x ∈ R3,

u ∈ H1(R3), u > 0

with p ∈ (2, 6). Recently, Lei et al. in [9] studied the following Kirchhoff type
problem involving critical growth− (a+ b

∫
R3

|∇u|2dx)4u = u5 + λk(x)uq−1, x ∈ R3,

u ∈ D1,2(R3)

with 2 < q < 6.
In the present paper, we are concerned with a more general nonlinearity

λk(x)g(u), where g(u) is a nonlinear function with superquadratic growth both
at zero and at infinity. Besides, we use a new cut-off technique together with
critical point theorems to investigate the ground state solutions of (1.1). Nowa-
days, it has become a classical variational method due to its useful features. It
is highlighted in the recent contribution [1, 8, 15] and so on.

Before stating our results, we assume that k(x) satisfies the following con-
ditions.

(k1) k(x) ∈ L
6

6−q (R3)
⋂
L

6
6−p (R3), k(x) ≥ 0 for any x ∈ R3, 4 < p, q < 6

and k(x) 6≡ 0;
(k2) There exist x0 ∈ R3 and δ1, ρ1 > 0 such that k(x) ≥ δ1|x− x0|−β for

|x− x0| < ρ1 with 3− p
2 < β < 3.

Moreover, we assume the nonlinearity g(u) ∈ C(R,R) satisfies the following
hypotheses.

(G1) There is a q ∈ R with 4 < q < 6 such that lim|u|→0
g(u)
|u|q−2u = 1;

(G2) There is a p ∈ R with 4 < p < 6 such that lim|u|→∞
g(u)
|u|p−2u = 1;
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(G3) g(u) > 0 for all u > 0.
Since our aim is to find the positive solutions, it is only necessary to consider

u > 0 for the equation (1.1). Then throughout the paper we assume, without
loss of generality, that g(u) is defined in R as an odd function.

Now the main result of the present paper reads as follows.

Theorem 1.1. Assume (k1)-(k2) and (G1)-(G3) hold. Then there exists λ∗ > 0
such that problem (1.1) has at least one positive ground state solution for any
0 < λ < λ∗.

Remark 1.2. From the hypotheses (G1)-(G3), we know the nonlinear term g(u)
is more general than the specific power-type nonlinearity uq−1 for q ∈ (4, 6).
Furthermore, under some suitable assumptions, we can still prove the existence
of positive state ground solution. Therefore, we generalize some corresponding
results in the relative references.

Hereafter we use the following notations.

• D1,2(R3) is the usual Sobolev space endowed with the standard norm ‖u‖2 =∫
R3 |∇u|2dx;

• Lp(R3) and Lq(R3) ( 1 ≤ q, p ≤ ∞) denote Lebesgue spaces, the norm in
Lp(R3) and Lq(R3) are denoted by | · |p and | · |q, respectively;

• C,C0, Ĉ, C1, Ĉ1, C2, . . . denote various positive constants, which may vary
from lines to lines;

• Sr (respectively, Br) is the sphere (respectively, the closed ball) of center
zero and radius r, i.e., Sr = {u ∈ D1,2(R3) : ‖u‖ = r}, Br = {u ∈ D1,2(R3) :
‖u‖ ≤ r};

• S is the best Sobolev constant for the embedding of D1,2(R3) in L6(R3),
that is

(1.3) S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

) 1
3

;

• → (⇀) means strong (weak) convergence.

This paper is organized as follows. After introducing some preliminary re-
sults in Section 2, we shall demonstrate the proof of Theorem 1.1 in Section 3.

2. Some preliminaries

The solution of (1.1) corresponds to critical points of the following energy
functional

Iλ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

6

∫
R3

|u|6dx− λ
∫
R3

k(x)G(u)dx

with G(u) =
∫ u

0
g(t)dt. The hypotheses (G1)-(G2) imply that

(2.1) |g(t)| ≤ b1|t|q−1 + b2|t|p−1, |G(t)| ≤ b1|t|q + b2|t|p for all t ∈ R,
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and

(2.2)
b3|t|q ≤ G(t), b3|t|q ≤ g(t)t, if |t| ≤ δ0,
b4|t|p ≤ G(t), b4|t|p ≤ g(t)t, if |t| ≥ δ0,

for some b1, b2, b3, b4, δ0 > 0 (see e.g. [8]).
It follows from (G2) that there exist r ≥ 4 and M > 0 such that

(2.3) |u| ≥M =⇒ 0 < rG(u) ≤ ug(u).

Lemma 2.1 ([6]). Under the assumption (k1), the function K : D1,2(R3)→ R
given by

K(u) =

∫
R3

k(x)g(u)udx

is weakly continuous.

Lemma 2.2. Suppose that (k1)-(k2) hold. Then
(i) There are two constants α, ρ > 0 such that Iλ|Sρ ≥ α;

(ii) There exists u0 ∈ D1,2(R3) with ‖u0‖ > ρ satisfying Iλ(u0) < 0.

Proof. (i) For any u ∈ D1,2(R3) \ {0}, 4 < q, p < 6, it follows from (1.3) that

Iλ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

6

∫
R3

|u|6dx− λ
∫
R3

k(x)G(u)dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − 1

6S3
‖u‖6 − λ

∫
R3

k(x)(b1|u|q + b2|u|p)dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − 1

6S3
‖u‖6

− λb1|k(x)| 6
6−q

S−
q
2 ‖u‖q − λb2|k(x)| 6

6−p
S−

p
2 ‖u‖p.

Let ρ = ‖u‖ be sufficiently small such that

a

2
ρ2 +

b

4
ρ4 − 1

6S3
ρ6 − λb1|k(x)| 6

6−q
S−

q
2 ρq − λb2|k(x)| 6

6−p
S−

p
2 ρp >

a

4
ρ2.

Therefore we get

Iλ|Sρ ≥
a

4
ρ2 = α.

(ii) (k1) and (k2) imply that

Iλ(tu) =
a

2
t2‖u‖2 +

b

4
t4‖u‖4 − t6

6

∫
R3

|u|6dx− λ
∫
R3

k(x)G(tu)dx→ −∞

as t→ +∞.
Therefore there exists u0 ∈ D1,2(R3) with ‖u0‖ > ρ such that Iλ(u0) < 0.

Then (ii) follows and the proof of Lemma 2.2 is complete. �

Denote M+ as a space of positive finite Radon measures on R3, and δx as
the Dirac mass at point x.
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Lemma 2.3 ([12, 13]). Let {un} ⊂ D1,2(R3) be a bounded sequence, due to
Hardy-Sobolev inequality, passing to a subsequence if necessary, we may assume
that un ⇀ u in D1,2(R3), |∇un|2 ⇀ µ in M+, |un|6 ⇀ ν in M+. Define

µ∞ := lim
R→∞

lim
n→∞

∫
R3

⋂
|x|>R

|∇un|2dx,

ν∞ := lim
R→∞

lim
n→∞

∫
R3

⋂
|x|>R

|un|6dx.

Then for every j in an at most countable set J , there hold

(1) µ∞ ≥ Sν
1
3∞;

(2) ν = |u|6 + ν0δ0 +
∑
δxjνj > 0, µ ≥ ‖∇u‖2 + µ0δ0 +

∑
δxjµj ;

(3) µj ≥ Sν
1
3
j ;

(4) limn→∞
∫
R3 |un|6dx =

∫
R3 |u|6dx+ ‖ν‖+ ν∞.

Next, we define

Λ =
abS3

4
+
b3S6

24
+

(b2S4 + 4aS)
3
2

24
.

Lemma 2.4. Suppose 4 < p, q < 6. Let {un} be a (PS)c sequence of Iλ with
c < Λ−C0λ. Then there exists u ∈ D1,2(R3) such that |un|66 → |u|66 as n→∞.

Proof. For 4 < p, q < 6, let {un} ⊂ D1,2(R3) be a (PS)c sequence for Iλ at
level c < Λ− C0λ, i.e.,

(2.4) Iλ(un)→ c, I
′

λ(un)→ 0 as n→∞.

We firstly claim that {un} is bounded in D1,2(R3). It follows from (2.1) and
Hölder inequality that there exists C0 such that∫

{x:|un|≤M}
k(x)

(
1

4
g(un)un −G(un)

)
dx > −C0.

For n large enough, from (2.1) and (2.3), we conclude that

1 + o(‖un‖) + c

≥ Iλ(un)− 1

4
〈I
′

λ(un), un〉

=
a

2
‖un‖2 +

b

4
‖un‖4 −

1

6

∫
R3

|un|6dx− λ
∫
R3

k(x)G(un)dx

− 1

4

{
a‖un‖2 + b‖un‖4 −

∫
R3

|un|6dx− λ
∫
R3

k(x)g(un)undx

}
=
a

4
‖un‖2 +

1

12

∫
R3

|un|6dx+ λ

∫
R3

k(x)

(
1

4
g(un)un −G(un)

)
dx

=
a

4
‖un‖2 +

1

12

∫
R3

|un|6dx+ λ

∫
{x:|un|≤M}

k(x)

(
1

4
g(un)un −G(un)

)
dx
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+ λ

∫
{x:|un|≥M}

k(x)

(
1

4
g(un)un −G(un)

)
dx

≥ a

4
‖un‖2 +

1

12

∫
R3

|un|6dx+ λ

∫
{x:|un|≤M}

k(x)

(
1

4
g(un)un −G(un)

)
dx

≥ a

4
‖un‖2 +

1

12

∫
R3

|un|6dx− C0λ.

Thus {un} is bounded in D1,2(R3). Since g(u) is odd, we get G(u) is even and
Iλ(un) = Iλ(|un|). Here, we suppose straight away that un(x) ≥ 0 a.e. in R3

for all n. Then there exist u ∈ D1,2(R3) and a subsequence (still denoted {un})
satisfying 

un ⇀ u, in D1,2(R3),

un(x)→ u(x), a.e. in R3,

|∇un|⇀ µ, in M+,

|un|6 ⇀ ν, in M+.

Therefore u(x) ≥ 0 a.e. in R3.
Let xj be a singular point of the measure µ and ν. For any ε > 0 small

enough, we define a cut-off function φε,j ∈ C∞0 (R3, [0, 1]) such that
φε,j(x) = 1, in B(xj , ε),

φε,j(x) = 0, in R3 \B(xj , 2ε),

|∇φε,j(x)| ≤ 4

ε
, in R3.

It is easy to show that {φε,jun} is bounded in D1,2(R3). Then by (2.4) we get
that

〈I
′

λ(un), φε,jun〉 → 0,

which implies

(a+ b‖un‖2)

∫
R3

(∇un,∇(φε,jun))dx−
∫
R3

|un|6φε,jdx

− λ
∫
R3

k(x)g(un)φε,jundx→ 0.

Therefore

(2.5)

∫
R3

|un|6φε,jdx+ λ

∫
R3

k(x)g(un)φε,jundx

= (a+ b‖un‖2)

∫
R3

(∇un,∇φε,j)undx

+ (a+ b‖un‖2)

∫
R3

|∇un|2φε,jdx+ o(1).



GROUND STATE SOLUTION FOR A KIRCHHOFF EQUATION 967

Next we claim that

lim
ε→0

lim
n→∞

(a+ b‖un‖2)

∫
R3

(∇un,∇φε,j)undx = 0.

Actually, since {un} is bounded, for any ε > 0, combining Hölder inequality
with the definition of φε,j , we have∣∣∣∣lim sup

n→∞

∫
R3

(∇un,∇φε,j)undx
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣∣
∫
B(xj ,2ε)

(∇un,∇φε,j)undx

∣∣∣∣∣
≤ lim sup

n→∞

4

ε

∫
B(xj ,2ε)

|∇un| · |un| · 1dx

≤ 4

ε
C1

(∫
B(xj ,2ε)

|u|6dx

) 1
6
(∫

B(xj ,2ε)

13dx

) 1
3

≤ 4C2

(∫
B(xj ,2ε)

|u|6dx

) 1
6

,

with C1, C2 > 0, which implies that

lim
ε→0

lim
n→∞

∫
R3

(∇un,∇φε,j)undx = 0.

Now by Lemma 2.3(2)-(3), we know that

lim
ε→0

lim
n→∞

∫
R3

u6
nφε,j(x)dx = lim

ε→0

∫
R3

φε,j(x)dν = νj

and

lim sup
n→∞

∫
R3

|∇un|2φε,j(x)dx =

∫
R3

φε,j(x)dµ

≥
∫
R3

φε,j(x)|∇u|2dx+
∑

δjφε,j(x)µj ≥ µj .

Thus

lim sup
n→∞

(a+ b‖un‖2)

∫
R3

|∇un|2φε,j(x)dx

≥ lim sup
n→∞

(
a+ b

∫
R3

|∇un|2φε,j(x)dx

)∫
R3

|∇un|2φε,j(x)dx ≥ (a+ bµj)µj .

By (2.1), one has∣∣∣∣limε→0
lim sup
n→∞

∫
R3

φε,j(x)k(x)g(un)undx

∣∣∣∣
=

∣∣∣∣limε→0

∫
R3

φε,j(x)k(x)g(u)udx

∣∣∣∣
≤
∣∣∣∣limε→0

∫
R3

φε,j(x)k(x)(b1|u|q−1u+ b2|u|p−1u)dx

∣∣∣∣
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≤ lim
ε→0

∫
B(xj ,2ε)

k(x)b1|u|qdx+ lim
ε→0

∫
B(xj ,2ε)

k(x)b2|u|pdx

≤ b1|k(x)| 6
6−q

S−
q
2 lim
ε→0

(∫
B(xj ,2ε)

|∇u|2dx

) q
2

+ b2|k(x)| 6
6−p

S−
p
2 lim
ε→0

(∫
B(xj ,2ε)

|∇u|2dx

) p
2

= 0.

Then by (2.5), we have

νj ≥ aµj + bµ2
j .

Combining this with Lemma 2.3(3), a direct computation shows that either

(i) µj = 0 or (ii) µj ≥
bS3 +

√
b2S6 + 4aS3

2
:= A.

Now, we define another cut-off function φR ∈ C∞0 (R3, [0, 1]) such that
φR(x) = 0, on |x| < R,

φR(x) = 1, on |x| > 2R,

|∇φR(x)| ≤ 4

R
, in R3.

By the same argument as above, we can obtain

ν∞ ≥ aµ∞ + bµ2
∞.

Then by Lemma 2.3(1), one has that

(iii) µ∞ = 0 or (iv) µ∞ ≥
bS3 +

√
b2S6 + 4aS3

2
= A.

Next we claim that (ii) and (iv) cannot hold. Otherwise, we suppose that
there exists j ∈ J such that (iv) holds. By the weak lower semicontinuity of
the norm, (2.3) and (2.4), we conclude that

c = lim
n→∞

{
Iλ(un)− 1

4
〈I
′

λ(un), un〉
}

= lim
n→∞

{
a

2
‖un‖2 +

b

4
‖un‖4 −

1

6

∫
R3

|un|6dx− λ
∫
R3

k(x)G(un)dx

−1

4

(
a‖un‖2 + b‖un‖4 −

∫
R3

|un|6dx− λ
∫
R3

k(x)g(un)undx

)}
= lim
n→∞

{(
1

2
− 1

4

)
a‖un‖2 +

(
1

4
− 1

4

)
b‖un‖4 +

1

12

∫
R3

|un|6dx(2.6)

+λ

∫
R3

k(x)

(
1

4
g(un)un −G(un)

)
dx

}
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≥
(

1

2
− 1

4

)
aµ∞ +

(
1

4
− 1

4

)
bµ2
∞ +

1

12
ν∞ +

1

12

∫
R3

|u|6dx− C0λ

≥
(

1

2
− 1

4

)
aA+

(
1

4
− 1

4

)
bA2 +

aA+ bA2

12
− C0λ.

Here we show that
aA

2
+
b

4
A2 − aA+ bA2

6
= Λ.

Indeed,

aA

2
+
b

4
A2 − aA+ bA2

6
=
aA

3
+

b

12
A2

=
abS3 + a

√
b2S6 + 4aS3

6
+
b3S6 + 2abS3 + b2S3

√
b2S6 + 4aS3

24

=
abS3

4
+
b3S6

24
+

(4a+ b2S3)
√
b2S6 + 4aS3

24
= Λ.

Consequently Λ− C0λ ≤ c < Λ− C0λ, we deduce the contradiction.
Similarly (ii) cannot hold for any j. This implies that J is empty.
Up to now, we have proved that

lim
n→∞

∫
R3

|un|6dx =

∫
R3

|u|6dx.

This completes the proof. �

Moreover, it is well known that S is attained by the function

Uε,x0
(x) = C

ε
1
4

(ε+ |x− x0|2)
1
2

,

where C is a normalizing constant and x0 is defined in (k2).
Next, let a cut-off function ϕ ∈ C∞0 (R3) be such that 0 ≤ ϕ ≤ 1, ϕ|Br ≡ 1

and suppϕ ⊂ B2r for some r > 0. Set uε(x) = ϕUε,x0
(x), then uε ∈ D1,2(R3)

and uε ≥ 0 for all x ∈ R3. Let ε be small enough, it follows from [20] that

(2.7)


|∇uε|22 = K1 +O(ε

1
2 ), |uε|26 = K2 +O(ε),∫

R3

u2
εdx = O(ε

1
2 ),

where K1,K2 are positive constants. Moreover,

(2.8)
K1

K2
= S.

Lemma 2.5. Suppose that (k1)-(k2) hold. Then there exists u1 ∈ D1,2(R3)
such that

(2.9) sup
t≥0

Iλ(tu1) < Λ− C0λ.
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Proof. We first claim that there exist tε > 0 and positive constants t0, T1

independent of ε, λ, such that supt≥0 Iλ(tuε) = Iλ(tεuε) and

(2.10) 0 < t0 ≤ tε ≤ T1 <∞.

Indeed, since

lim
t→+∞

Iλ(tuε)

= lim
t→+∞

(
a

2
t2‖uε‖2 +

b

4
t4‖uε‖4 −

1

6
t6
∫
R3

|uε|6dx− λ
∫
R3

k(x)G(tuε)dx

)
= −∞,

Iλ(tuε) = 0 for t = 0 and Iλ(tuε) > 0 for t small enough, there exists tε > 0
such that

(2.11) Iλ(tεuε) = sup
t≥0

Iλ(tuε) and
dIλ(tuε)

dt

∣∣∣∣
t=tε

= 0.

It follows from (2.11) and (2.1) that

0 ≥ tεa‖uε‖2 + t3εb‖uε‖4 − t5ε
∫
R3

|uε|6dx

− λ
∫
R3

k(x)(b1|tεuε|q−1 + b2|tεuε|p−1)uεdx(2.12)

or

0 ≤ tεa‖uε‖2 + t3εb‖uε‖4 − t5ε
∫
R3

|uε|6dx

+ λ

∫
R3

k(x)(b1|tεuε|q−1 + b2|tεuε|p−1)uεdx.(2.13)

On one hand, as 4 < p, q < 6, by (2.12) and

a‖uε‖2 + 3t2εb‖uε‖4 − 5t4ε

∫
R3

|uε|6dx

− λ
∫
R3

k(x){b1(q − 1)tq−2
ε |uε|qdx+ b2(p− 1)tp−2

ε |uε|p}dx ≤ 0,

we can obtain easily that tε is bounded from below. Therefore, there exists a
positive constant t0 independent of ε and λ, satisfying 0 < t0 ≤ tε.

On the other hand, by (2.13) and

a‖uε‖2

t2ε
+ b‖uε‖4 − t2ε

∫
R3

|uε|6dx+ λ

∫
R3

k(x)(b1t
q−4
ε |uε|q + b2t

p−4
ε |uε|p)dx ≥ 0,

we see that tε is bounded from above for all ε > 0 small enough. Consequently,
we can conclude that (2.10) holds.

Set

h(tεuε) =
a

2
t2ε‖uε‖2 +

b

4
t4ε‖uε‖4 −

1

6
t6ε

∫
R3

u6
εdx.
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We claim that

(2.14) h(tεuε) ≤ Λ + C3ε
1
2 ,

where C3 is independent of ε, λ.
Indeed define

g(t) =
a

2
t2‖uε‖2 +

b

4
t4‖uε‖4 −

1

6
t6
∫
R3

u6
εdx.

It follows from

lim
t→∞

g(t) = −∞, g(0) = 0 and lim
t→0+

g(t) > 0

that sup
t≥0

g(t) is achieved at Tε > 0, that is

g
′
(t)
∣∣∣
Tε

= aTε‖uε‖2 + bT 3
ε ‖uε‖4 − T 5

ε

∫
R3

u6
εdx = 0.

A direct computation implies

Tε =

b‖uε‖4 +
√
b2‖uε‖8 + 4a‖uε‖2

∫
R3 u6

εdx

2
∫
R3 u6

εdx


1
2

.

Note that g(t) is increasing in the interval [0, Tε], then by (2.7) and (2.8),
we obtain

h(tεuε) ≤ g(Tε)

=
ab‖uε‖6

4
∫
R3 u6

εdx
+

b3‖uε‖12

24(
∫
R3 u6

εdx)2
+

(b2‖uε‖8 + 4a‖uε‖2
∫
R3 u

6
εdx)

3
2

24(
∫
R3 u6

εdx)2

=
abS3

4
+
b3S6

24
+

(b2S4 + 4aS)
3
2

24
+O(ε

1
2 )

= Λ +O(ε
1
2 ).

Hence there exists C3 > 0 (independent of ε, λ) such that (2.14) holds.
It is easy to show that {x| |x − x0| < ρ1} ⊂ {x| |tεuε(x)| ≥ δ0}. Since 4 <

p, q < 6, together with (k2) and (2.2), when 0 < ε < min

{(
t0ϕ(x0)·c

δ0

)4

, ρ2
1

}
,

we get∫
R3

k(x)G(tεuε)dx =

∫
|tεuε(x0)≤δ0|

k(x)G(tεuε)dx+

∫
|tεuε(x0)≥δ0|

k(x)G(tεuε)dx

≥
∫
|tεuε(x0)≤δ0|

k(x)b3|tεuε|qdx+

∫
|tεuε(x0)≥δ0|

k(x)b4|tεuε|pdx

≥
∫
|tεuε(x0)≥δ0|

k(x)b4|tεuε|pdx(2.15)

≥ b4 · Cp · δ1 · tpε
∫
|x−x0|<ρ1

ϕp|x− x0|−βε
p
4

(ε+ |x− x0|2)
p
2

dx
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≥ C4 · ε
p
4 · tpε

∫ ρ1

0

r2

rβ(ε+ r2)
p
2

dr

≥ C5 · ε
3
2−

p
4−

β
2 · tpε ,

where C4, C5 are independent of ε, λ. Since 3 − p
2 < β < 3, then 6−p−2β

2 < 0.

Let ε = λ2, 0 < λ < λ0 = (
C5T

2
1

C0+C3
)

6−p−2β
2 , by using (2.14) and (2.15), we deduce

Iλ(tεuε) = h(tεuε)− λ
∫
R3

k(x)G(tεuε)dx

≤ Λ + C3ε
1
2 − λC5 · ε

3
2−

p
4−

β
2 · T 2

1

< Λ− C0λ.

Then Iλ(tεuε) < Λ− C0λ. Consequently, there exists u1 ∈ D1,2(R3) such that
(2.9) holds. This completes the proof. �

Theorem 2.6. Under the hypotheses of Theorem 1.1, the problem (1.1) has at
least a positive solution.

Proof. For 4 < p, q < 6, there exists δ2 > 0 such that Λ − C0λ > 0 for every
λ ∈ (0, δ2). Set λ∗ = min{δ2, λ0}, then Lemmas 2.1-2.5 hold when λ ∈ (0, λ∗).
By Lemma 2.2, we can conclude that Iλ satisfies the mountain-pass geometry,
so there exists a (PS)c sequence {un} ⊂ D1,2(R3), such that

(2.16) Iλ(un)→ c > α, I
′

λ(un)→ 0,

where

c = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

and

Γ = {γ ∈ C([0, 1],D1,2(R3)) : γ(0) = 0, γ(1) = u0}.
By Lemma 2.5, we obtain that

(2.17) 0 < α < c ≤ max
t∈[0,1]

Iλ(tũ) ≤ sup
t≥0

Iλ(tũ) < Λ− C0λ.

Furthermore, by Lemma 2.4, {un} is bounded in D1,2(R3). Then {un} is
bounded in L6(R3) and there exists u∗ ∈ D1,2(R3) such that

un ⇀ u∗, weakly in D1,2(R3).

In the following, we only need to prove un → u∗ in D1,2(R3), then Theorem
2.6 is obtained. Let us first prove that, for all φ ∈ D1,2(R3), there holds

(2.18)

∫
R3

k(x)g(un) · φ(x)dx→
∫
R3

k(x)g(u∗) · φ(x)dx.

For any ε > 0, since k ∈ L
6

6−q (R3)
⋂
L

6
6−p (R3), there exists ρ2 ≡ ρ2(ε) > 0

such that

|k| 6
6−q ,R3\Bρ2 (0) < ε and |k| 6

6−p ,R3\Bρ2 (0) < ε.
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On one hand, by using the boundedness of the sequence {un}, we deduce that

(2.19)

∫
R3\Bρ2 (0)

k(x)(g(un)− g(u∗)) · φdx ≤ C(φ)ε.

On the other hand, since g is continuous and un → u∗ strongly in Lploc(R3), we
have

g(un)→ g(u∗) strongly in Lploc(R
3).

By the Hölder inequality, for any ε > 0, we have

(2.20)

∫
Bρ2 (0)

k(x)(g(un)− g(u∗)) · φ(x)dx ≤ Ĉ(φ)ε

for n large enough. Then from (2.19), (2.20) and the arbitrary choice of ε, we
deduce that (2.18) holds. Similarly we also get

(2.21)

∫
R3

u5
nφ(x)dx→

∫
R3

u5
∗φ(x)dx.

Set limn→∞ ‖un‖ = l, by (2.18) and (2.21), for any φ ∈ D1,2(R3) as n→∞
there holds

〈I
′

λ(un), φ〉 = (a+b‖un‖2)

∫
R3

(∇un,∇φ)dx−
∫
R3

u5
nφdx−λ

∫
R3

k(x)g(un) · φdx

→ (a+ bl2)

∫
R3

(∇u∗,∇φ)dx−
∫
R3

u5
∗φdx−λ

∫
R3

k(x)g(u∗) · φdx

= 〈I
′

λ(u∗), φ〉.

Thus from (2.16) we get that 〈I ′λ(u∗), φ〉 = 0 for all φ ∈ D1,2(R3).
In particular, let u∗ = φ, we have

(2.22) (a+ bl2)‖u∗‖2 −
∫
R3

u6
∗dx− λ

∫
R3

k(x)g(u∗)u∗dx = 0.

Since 〈I ′λ(un), un〉 → 0, there holds

(a+ b‖un‖2)‖un‖2 −
∫
R3

u6
ndx− λ

∫
R3

k(x)g(un)undx = o(1).

Combining this with Lemma 2.4, we get that

(2.23) (a+ bl2)l2 −
∫
R3

u6
∗dx− λ

∫
R3

k(x)g(u∗)u∗dx = 0.

Consequently, by (2.22) and (2.23), we have ‖u∗‖ = l. That is limn→∞ ‖un‖ =
‖u∗‖. Moreover, ‖un − u∗‖ → 0 implies that un → u∗ in D1,2(R3). Thus,

(2.24) Iλ(u∗) = lim
n→∞

Iλ(un) = c > α > 0.

It follows from (2.24) that u∗ 6≡ 0, then u∗ ≥ 0 in D1,2(R3). The strong max-
imum principle implies that u∗ is a positive solution of (1.1). This completes
the proof. �
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3. Proof of Theorem 1.1

In this section, we shall prove that problem (1.1) has at least one positive
ground state solution via variational method.

Proof of Theorem 1.1. By Theorem 2.6, we have obtained the existence of pos-
itive solution for (1.1). In this section, we will consider the existence of positive
ground state solution.

Let

m = inf{Iλ(u) : u ∈ D1,2(R3), u 6= 0, I
′

λ(u) = 0}.
From the definition of m, there exists {vn} ⊂ D1,2(R3)\{0} such that

(3.1) Iλ(vn)→ m, I
′

λ(vn)→ 0, n→∞.

Obviously from (3.1), we can easily deduce that {vn} is bounded in D1,2(R3).
Then there exist a subsequence of {vn} (still denoted by {vn}) and v∗ ∈
D1,2(R3) such that

vn ⇀ v∗ weakly in D1,2(R3).

We claim v∗ 6= 0. Otherwise vn ⇀ 0 weakly in D1,2(R3), then by Lemma 2.1
we get that ∫

R3

k(x)g(vn)vndx→ 0.

From (3.1), it follows that

a‖vn‖2 + b‖vn‖4 −
∫
R3

|vn|6dx− λ
∫
R3

k(x)g(vn)vndx = o(1).

Therefore,

(3.2) a‖vn‖2 + b‖vn‖4 −
∫
R3

|vn|6dx = o(1).

Set limn→∞ ‖vn‖ = l. By (3.2) and (1.3), we can conclude that

l2 ≥ bS3 +
√
b2S6 + 4aS3

2
.

Next we claim that

(3.3)

∫
R3

k(x)G(vn)dx→ 0.

Indeed, we just need to prove∫
R3

k(x)b1|vn|qdx+

∫
R3

k(x)b2|vn|pdx→ 0.

Since k ∈ L
6

6−q (R3)
⋂
L

6
6−p (R3), for any ε > 0, there exists ρ3 ≡ ρ3(ε) > 0

such that

|k| 6
6−q ,R3\Bρ3 (0) < ε and |k| 6

6−p ,R3\Bρ2 (0) < ε.
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On one hand, by the boundedness of the sequence {vn} in D1,2(R3) and Hölder
inequality, one has

(3.4) b1

∫
R3\Bρ3 (0)

k(x)|vn|qdx ≤ C6ε.

On the other hand, we can conclude

(3.5) b1

∫
Bρ3 (0)

k(x)|vn|qdx ≤ Ĉ6ε

for large n. Then by (3.4), (3.5) and the arbitrary choice of ε, one gets

b1

∫
R3

k(x)|vn|qdx→ 0, n→∞.

Similarly, we can derive that

b2

∫
R3

k(x)|vn|pdx→ 0, n→∞.

Therefore (3.3) holds.
By (3.1), (3.2) and (3.3), we have

m = lim
n→∞

{
a

2
‖vn‖2 +

b

4
‖vn‖4 −

1

6

∫
R3

|vn|6dx− λ
∫
R3

k(x)G(vn)dx

}
= lim
n→∞

{
a

3
‖vn‖2 +

b

12
‖vn‖4

}
≥ abS3

4
+
b3S6

24
+

(b2S4 + 4aS)
3
2

24
= Λ.

Together with Lemma 2.5, Λ ≤ m < Λ − C0λ, this is a contradiction. Then
vn ⇀ v∗ 6= 0 in D1,2(R3) and I

′

λ(v∗) = 0. From Theorem 2.6, we have concluded
that vn → v∗ in D1,2(R3) and v∗ is a positive solution of (1.1), which implies
that Iλ(v∗) ≥ m. Now to show m ≥ Iλ(v∗).

Indeed, since I
′

λ(v∗) = 0 we have

Iλ(v∗) = Iλ(v∗)−
1

6
〈I
′

λ(v∗), v∗〉

=
a

2
‖v∗‖2 +

b

4
‖v∗‖4 −

1

6

∫
R3

|v∗|6dx− λ
∫
R3

k(x)G(v∗)dx

− 1

6

{
a‖v∗‖2 + b‖v∗‖4 −

∫
R3

|v∗|6dx− λ
∫
R3

k(x)g(v∗)v∗dx

}
=
a

3
‖v∗‖2 +

b

12
‖v∗‖4 − λ

∫
R3

k(x)

(
G(v∗)−

1

6
g(v∗)v∗

)
dx.
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By Iλ(vn)→ m, we get

m+ o(1) = Iλ(vn)

=
a

3
‖vn‖2 +

b

12
‖vn‖4 − λ

∫
R3

k(x)

(
G(vn)− 1

6
g(vn)vn

)
dx.

It deduces from Lebesgue dominated convergence theorem that

lim
n→∞

∫
R3

k(x)G(vn)dx =

∫
R3

k(x)G(v∗)dx.

Combining this with Fatou’s Lemma, we obtain that

m ≥ a

3
‖v∗‖2 +

b

12
‖v∗‖4 − λ

∫
R3

k(x)

(
G(v∗)−

1

6
g(v∗)v∗

)
dx = Iλ(v∗).

Thus v∗ 6= 0 satisfies I
′

λ(v∗) = 0 and Iλ(v∗) = m, which implies that v∗ is a
positive ground state solution of (1.1). Therefore, we obtain the existence of
positive ground state solution of (1.1). �

Remark 3.1. In the next paper, we hope to investigate the sign-changing so-
lution for Kirchhoff type equation as paper [14, 17, 18] by using the method
of invariant sets of descending flow or by means of a constraint variational
methods.

Acknowledgements. The authors would like to express sincere thanks to the
anonymous referee for his/her carefully reading of the manuscript and valuable
comments and suggestions.

References

[1] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-

Poisson systems, J. Differential Equations 248 (2010), no. 3, 521–543. https://doi.

org/10.1016/j.jde.2009.06.017

[2] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with
critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), no. 2, 706–

713. https://doi.org/10.1016/j.jmaa.2012.12.053

[3] X. He and W. Zou, Existence and concentration behavior of positive solutions for a
Kirchhoff equation in R3, J. Differential Equations 252 (2012), no. 2, 1813–1834. https:

//doi.org/10.1016/j.jde.2011.08.035

[4] T. Hu and L. Lu, Multiplicity of positive solutions for Kirchhoff type problems in R3,
Topol. Methods Nonlinear Anal. 50 (2017), no. 1, 231–252. https://doi.org/10.12775/

tmna.2017.028

[5] Y. Huang, Z. Liu, and Y. Wu, On finding solutions of a Kirchhoff type problem, Proc.
Amer. Math. Soc. 144 (2016), no. 7, 3019–3033. https://doi.org/10.1090/proc/12946

[6] L. Huang, E. M. Rocha, and J. Chen, On the Schrödinger-Poisson system with a general

indefinite nonlinearity, Nonlinear Anal. Real World Appl. 28 (2016), 1–19. https://

doi.org/10.1016/j.nonrwa.2015.09.001

[7] C.-Y. Lei, J.-F. Liao, and C.-L. Tang, Multiple positive solutions for Kirchhoff type of

problems with singularity and critical exponents, J. Math. Anal. Appl. 421 (2015), no. 1,
521–538. https://doi.org/10.1016/j.jmaa.2014.07.031

https://doi.org/10.1016/j.jde.2009.06.017
https://doi.org/10.1016/j.jde.2009.06.017
https://doi.org/10.1016/j.jmaa.2012.12.053
https://doi.org/10.1016/j.jde.2011.08.035
https://doi.org/10.1016/j.jde.2011.08.035
https://doi.org/10.12775/tmna.2017.028
https://doi.org/10.12775/tmna.2017.028
https://doi.org/10.1090/proc/12946
https://doi.org/10.1016/j.nonrwa.2015.09.001
https://doi.org/10.1016/j.nonrwa.2015.09.001
https://doi.org/10.1016/j.jmaa.2014.07.031


GROUND STATE SOLUTION FOR A KIRCHHOFF EQUATION 977

[8] C.-Y. Lei, G.-S. Liu, and L.-T. Guo, Multiple positive solutions for a Kirchhoff type

problem with a critical nonlinearity, Nonlinear Anal. Real World Appl. 31 (2016), 343–

355. https://doi.org/10.1016/j.nonrwa.2016.01.018
[9] C.-Y. Lei, H. Suo, C. Chu, and L. Guo, On ground state solutions for a Kirchhoff

type equation with critical growth, Comput. Math. Appl. 72 (2016), no. 3, 729–740.
https://doi.org/10.1016/j.camwa.2016.05.027

[10] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff

type equations in R3, J. Differential Equations 257 (2014), no. 2, 566–600. https://doi.
org/10.1016/j.jde.2014.04.011

[11] S. Liang and J. Zhang, Existence of solutions for Kirchhoff type problems with critical

nonlinearity in R3, Nonlinear Anal. Real World Appl. 17 (2014), 126–136. https://

doi.org/10.1016/j.nonrwa.2013.10.011

[12] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The

limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. https://doi.org/10.
4171/RMI/6

[13] P.-L. Lions, The concentration-compactness principle in the calculus of variations, the

limit case, Part II, Rev. Mat. Iberoam. 2 (1985), no. 2, 45–121. https://doi.org/10.
4171/RMI/12

[14] Z. Liu and C. Luo, Existence of positive ground state solutions for Kirchhoff type equa-

tion with general critical growth, Topol. Methods Nonlinear Anal. 49 (2017), no. 1,
165–182. https://doi.org/10.12775/tmna.2016.068

[15] Z. Liu, Z.-Q. Wang, and J. Zhang, Infinitely many sign-changing solutions for the non-
linear Schrödinger-Poisson system, Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 775–

794. https://doi.org/10.1007/s10231-015-0489-8

[16] A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math.
Acad. Sci. Paris 352 (2014), no. 4, 295–298. https://doi.org/10.1016/j.crma.2014.

01.015

[17] A. Qian, J. Liu, and A. Mao, Ground state and nodal solutions for a Schrödinger-
Poisson equation with critical growth, J. Math. Phys. 59 (2018), no. 12, 121509, 20 pp.

https://doi.org/10.1063/1.5050856

[18] M. Shao and A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J.
Fixed Point Theory Appl. 20 (2018), no. 1, Paper No. 2, 20 pp. https://doi.org/10.

1007/s11784-018-0486-9

[19] J. Wang, L. Tian, J. Xu, and F. Zhang, Multiplicity and concentration of positive so-
lutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253

(2012), no. 7, 2314–2351. https://doi.org/10.1016/j.jde.2012.05.023
[20] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their
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