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Abstract. A special class of exponential dispersion models is the class

of Tweedie distributions. This class is very significant in statistical mod-
eling as it includes a number of familiar distributions such as Gaussian,

Gamma and compound Poisson. A Tweedie distribution has a power pa-
rameter p, a mean m and a dispersion parameter φ. The value of the

power parameter lies in identifying the corresponding distribution of the

Tweedie family. The basic objective of this research work resides in in-
vestigating the existence of the implicit estimator of the power parameter

of the Tweedie distribution. A necessary and sufficient condition on the

mean parameter m, suggesting that the implicit estimator of the power
parameter p exists, was established and we provided some asymptotic

properties of this estimator.

1. Introduction

Exponential dispersion models (EDMs) were mainly introduced as a field
of study by Jørgensen [11, 12]. An EDM is characterized by its unit variance
function V which describes the relationship between the mean and the variance
of the distribution when the dispersion parameter φ is held constant. If a
random variable Y follows an EDM distribution with a mean m, a unit variance
function V (m) and a dispersion φ, then the variance of Y can be expressed as
follows:

V ar(Y ) = φV (m).

In particular, if we assume that V ar(Y ) = φmp, then Y follows a Tweedie dis-
tribution with parameters φ, m and p denoted by Twp(m,φ) ([12,19]). It should
be reminded that the Tweedie models class (TMs) includes such important dis-
tributions as the normal (p = 0), the Poisson (p = 1), the Gamma (p = 2) and
the inverse Gaussian (p = 3) distributions. TMs exist for all values of p outside
the interval (0, 1). Apart from the already mentioned four well-known distribu-
tions, the TMs probability density function cannot be written in a closed form
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and requires numerical methods for its evaluation [5,6]. For some p, Dunn and
Smyth [5, 6] elaborated a method to evaluate the Tweedie probability density
function. For p ∈ I1 = (2,+∞), the Tweedie distribution is generated by a
stable distribution and has the positive reals as support. The Tweedie distri-
bution with power parameter p ∈ I2 = (1, 2) corresponds to the compound
Poisson distribution, expressed as a Poisson mixture of Gamma distributions
with mass at zero. In this case, its support is the non-negative reals. Jørgensen
[11] demonstrated that a Tweedie distribution, with p ∈ I3 = (−∞, 0), has a
support concentrated on the whole real line. For more details, refer back to
Table 1. All Tweedie distributions, with p ∈ (−∞, 0)

⋃
(1,+∞), have strictly

positive means, m > 0. These distributions are useful because they are the
prototype response for generalized linear models [10].

Statistical estimation of the parameters of these distributions is a thorny
issue, mainly when selecting the appropriate power parameter p [15]. In this
case, multiple authors have taken p for a specified a priori. Jørgensen [11] chose
p = 1.75 to analyze an amount of spent money. This choice is quiet arbitrary.
Similarly, in [16], Nelder arbitrarily set p = 1.5 when analyzing the time spent
splicing cables.

In this research work, we addressed the existence of the implicit estimator
p̂I of the power parameter p [7, 8]. We displayed a necessary and sufficient
condition on the mean parameter m such that the implicit estimator p̂I of the
power parameter p exists. The implicit estimation method is a non-informative
Bayesian approach [13,18]. The basic merit of this approach resides in providing
a substantial computational way of learning from observations without any
prior knowledge. From this perspective, it offers a more efficient alternative to
the classical inference in the Bayesian method when priors are missing [3,7,9].
As a matter of fact, we opted to apply the implicit estimation approach [3,8,9].
The remaining of this paper is organized as follows. In the second section,
the Tweedie distributions are introduced and their properties are identified. In
the third section, an overview of the implicit estimation method is exhibited.
Section 4 tackles the theoretical foundation of the power parameter implicit
estimator as well as its asymptotic normality.

2. Tweedie models

The Tweedie distribution belongs to the class of exponential dispersion mod-
els (EDM) [11, 12]. Let Y be a random variable distributed as a Tweedie
distribution Twp(m,φ). Its density function indicated in terms of

fp(y;m,φ) = ap(y, φ) exp
{ (yθ − kp(θ))

φ

}
,

where m = E(Y ) = k′p(θ) ∈ Mp is the mean (Mp is the domain of means),
φ > 0 is the dispersion parameter, θ is the canonical parameter and kp(θ) is
the cumulant function. The function ap(y, φ) cannot be written in a closed
form apart from the special cases stated in the introduction. The variance
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of Y is denoted by V ar(Y ) = φVp(m), where Vp(m) = k′′p (θ) is called the
unit variance function. Tweedie models are characterized by their unit power
variance functions having the form

(1) Vp(m) = mp,

where p ∈ (−∞, 0]
⋃

[1,+∞) is the power parameter determining the distri-
bution. The power parameter p is related to the parameter α ∈ (−∞, 2] as
indicated through the following equation

α =
p− 2

p− 1
.

The cumulant function kp (see, [11, 14]) is expressed by

kp(θ) =
α− 1

α
(

θ

α− 1
)α, (p 6= 1, 2),

k1(θ) = exp(θ),

k2(θ) = − log(−θ),

where, θ =

{
(α− 1) m

1
α−1 , p 6= 1;

log(m), p = 1.
Therefore, the density function of Y is stated as follows:

(2) fp(y;m,φ) = ap(y, φ) exp
{ym1−p

1−p −
m2−p

2−p

φ

}
.

Table 1 illustrates all Tweedie models with unit variance function (1).

Table 1. Summary of Tweedie models with mean domain Mp

and support Sp of distributions

Distribution(s) p α Mp Sp

Extreme stable p < 0 1 < α < 2 (0,∞) R
Normal p = 0 α = 2 R R
Poisson p = 1 α = −∞ (0,∞) N
Compound Poisson 1 < p < 2 α < 0 (0,∞) [0,∞)
Gamma p = 2 α = 0 (0,∞) (0,∞)
Positive stable p > 2 0 < α < 1 (0,∞) (0,∞)
Extreme stable p =∞ α = 1 R R

In [12], Jørgensen asserted that if Twp(m,φ) is a Tweedie compound Poisson
distribution (p ∈ I2 = (1, 2)), the function ap(y, φ) is provided as follows:

ap(y, φ) =
1

y

∞∑
k=1

y−kα(p− 1)αk

φk(1−α)(2− p)kk!Γ(−kα)
; y > 0.
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A similar series expansion exists for the Tweedie positive stable as well as
the Tweedie extreme stable model. For p ∈ I1 = (2,+∞) and y > 0, it follows
that

ap(y, φ) =
1

yπ

∞∑
i=1

Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)(p− 2)kyαk
(−1)k sin(−kπα).

For p ∈ I3 = (−∞, 0) and y ∈ R, we have

ap(y, φ) =
1

yπ

∞∑
k=1

Γ(1 + k
α )(−y)k(αφ)

k
α

k!(α− 1)
k(α−1)
α

sin(
−kπ
α

).

In [12], Jørgensen considered the cases of p < 0 and p > 2 and argued that the
density function ap(y, φ) corresponds to extreme stable distribution. Consult
Dunn and Smyth [5, 6] and Jørgensen [12, page 141] for more details.

3. General view of the implicit estimation method

The implicit estimation method was set forward by Hassairi et al. [8] as
an alternative to the non informative Bayesian approach. Relying upon some
prior information, the Bayesian theory ([1,17]) takes into account an unknown
parameter θ as a random variable and specifies its posterior distribution given
data. Similarly, the implicit distribution is regarded as a posterior distribution
of a parameter θ given data. Indeed, considering a family of probability distri-
butions {p(x/θ), θ ∈ Θ} parameterized by an unknown parameter θ in a set Θ;
where x stands for the observed data, the implicit distribution p(θ/x) is com-
puted by multiplying the likelihood function p(x/θ) through a counting measure
σ if Θ is a countable set and through a Lebesgue measure σ if Θ is an open set
(σ depends only on the topological structure of Θ) and subsequently dividing
by the norming constant c(x) =

∫
Θ
p(x/θ)σ(dθ). Hence, the implicit distribu-

tion is expressed by the following formula p(θ/x)(dθ) = (c(x))−1p(x/θ)σ(dθ)
and acts as a posterior distribution of θ given x in the Bayesian method. This
represents a specific improper prior which is based only on the topology of Θ
(without any statistical assumption).

Particularly, if the set of parameters Θ is bounded, then σ is proportional
to the uniform distribution on Θ. If Θ is unbounded, σ is an improper prior.

Provided its existence (which holds for most statistical models), the implicit
distribution can be invested for the estimation of the parameter θ following a

Bayesian methodology. The implicit estimator θ̂ of θ is a Bayes estimator with
regard to the squared error loss function given by the expected posterior mean,
that is

θ̂ = E(θ/x) =

∫
Θ

θp(θ/x)(dθ).

An intrinsic issue in Bayesian estimation lies in how to define the prior distri-
bution. If the prior information about the parameter θ is obtainable, it should
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be incorporated in the prior density. If we don’t have prior information, we
need apply non informative Bayesian estimation or implicit estimation.

4. Implicit Tweedie model selection

Let y = (y1, . . . , yn) be a sample from a Tweedie distribution Twp(m,φ).
Assuming that p ∈ Ij , j ∈ {1, 2, 3}, the likelihood function is expressed in
terms of

ln(y;m,φ, p) =

n∏
i=1

fp(yi;m,φ).

The implicit distribution of the power parameter p exists if and only if the
integral ∫

Ij

ln(y;m,φ, p)dp < +∞

converges. In this case, the implicit density function f(p;m,φ,y) of the power
parameter p is indicated as

f(p;m,φ,y) =
ln(y;m,φ, p)∫

Ij
ln(y;m,φ, p)dp

, j ∈ {1, 2, 3}.

The implicit estimator p̂Ij of p is a non informative Bayesian one and

p̂Ij = E(p|m,φ,y) =

∫
Ij

pfp(m,φ,y)dp, j ∈ {1, 2, 3}

minimizes the squared error loss function.

4.1. Existence of the power parameter implicit estimator

In this subsection, we set forward a necessary and sufficient condition on the
mean parameter m such that the implicit estimator p̂I of the power parameter
p exists. The convergence of the integral of the likelihood function over a
bounded interval is highlighted in the following theorem.

Theorem 4.1. Let fp(y;m,φ) be the density function of the Tweedie distribu-
tion Twp(m,φ) and let [a, b] ⊂ Ij for j = {1, 2, 3}. Hence, for all q ≥ 0, one
has ∫ b

a

|p|q
n∏
i=1

fp(yi;m,φ)dp < +∞,

which converges almost surely.

Proof. Let Yi ∼ Twp(m,φ). Then,

V ar(Yi) =

∫
R

(y −m)2fp(y;m,φ)dy

= φmp.
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Hence,

|p|q
n∏
i=1

∫
R

(yi −m)2fp(yi;m,φ)dyi = |p|q
n∏
i=1

φmp

= |p|qφnmnp.

One can easily verify that the integral
∫ b
a
|p|qφnmnpdp < +∞ is finite. Thus,

the integral
∫ b
a
|p|q

∏n
i=1

∫
R(yi −m)2fp(yi;m,φ)dyidp < +∞ is finite. Relying

upon the Fubini-Tonelli theorem, we obtain

H1 =

∫
R

∫ b

a

|p|q
n∏
i=1

(yi −m)2fp(yi;m,φ)dpdy1 · · · dyn

=

∫
R
{
n∏
i=1

(yi −m)2}{
∫ b

a

|p|q
n∏
i=1

fp(yi;m,φ)dp}dy1 · · · dyn < +∞.

From this perspective, we infer that the integral∫ b

a

|p|q
n∏
i=1

fp(yi;m,φ)dp < +∞

converges almost surely. �

Our main result is the following.

Theorem 4.2. Let fp(y;m,φ) be the density function of a the Tweedie distri-
bution Twp(m,φ). Then, for all q ≥ 0, one has

(i) The integral

(3)

∫ +∞

2

|p|q
n∏
i=1

fp(yi;m,φ)dp < +∞

converges almost surely if and only if 0 < m < 1.
(ii) The integral

(4)

∫ 0

−∞
|p|q

n∏
i=1

fp(yi;m,φ)dp < +∞

converges almost surely if and only if m > 1.

To corroborate the main theorem, we shall introduce the following lemma
([20, page 81]).

Lemma 4.3. Let Y be a random stable variable with density function ap(y, φ)

and stability index 0 < α = p−2
p−1 < 2. Therefore,

ap(y, φ) −→
p→±∞

a∞(y, φ),

where a∞(y, φ) is the density function of the stable distribution with a stability
index equal to 1.
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Proof of Theorem 4.2. (i) Let Y1, . . . , Yn be n independent and identically dis-
tributed random variables with common Tweedie distribution Twp(m,φ).
Therefore, for each 1 ≤ i ≤ n, one has

V ar(Yi) =

∫
R

(y −m)2fp(y;m,φ)dy

= φmp.

It follows that, for any q ≥ 0,

|p|q
n∏
i=1

∫
R

(yi −m)2fp(yi;m,φ)dyi = |p|q
n∏
i=1

φmp

= |p|qφnmnp.

By assuming that the mean m < 1, one can easily verify that the integral∫∞
2
|p|qφnmnpdp < +∞

converges. Thus, if m < 1, the integral

H2 =

∫ +∞

2

|p|q
n∏
i=1

∫
R
(yi −m)2fp(yi;m,φ)dyidp < +∞

converges. By applying the Fubini-Tonelli theorem one gets, for all m < 1

H2 =

∫
Rn

∫ +∞

2

|p|q
n∏
i=1

(yi −m)2fp(yi;m,φ)dpdy1 · · · dyn

=

∫
Rn
{
n∏
i=1

(yi −m)2}{
∫ +∞

2

|p|q
n∏
i=1

fp(yi;m,φ)dp}dy1 · · · dyn < +∞.

Hence, we conclude that
∫ +∞

2
|p|q

∏n
i=1 fp(yi;m,φ)dp converges almost surely.

Conversely, if m ≥ 1 the integral (3) diverges. Indeed, as it is well known,
the Tweedie distribution with p ≥ 2 is generated by a stable distribution and
has a support on the positive reals. Moreover, when m ≥ 1,

lim
p→+∞

exp
{ym1−p

1−p −m
2−p

φ(2− p)
}

= 1.

According to Equation (2), it follows that

(5) fp(y;m,φ) ∼
p→+∞

ap(y, φ).

Resting on (5) and Lemma 4.3, one can deduce easily that the integral (3)
diverges.

(ii) Proceeding in the same way, as it is demonstrated the proof of (i), we
have ∫ 0

−∞
|p|qφmpdp < +∞.
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Therefore, for all m > 1, we get

H3 =

∫
Rn

∫ 0

−∞
|p|q

n∏
i=1

(yi −m)2fp(yi;m,φ)dpdy1 · · · dyn

=

∫
Rn
{
n∏
i=1

(yi −m)2}{
∫ 0

−∞
|p|q

n∏
i=1

fp(yi;m,φ)dp}dy1 · · · dyn < +∞.

Hence, we conclude that if m > 1, the integral (4) converges almost surely.
Conversely if m ≤ 1, the integral (4) diverges. Indeed, investing similar the
arguments to those used in (i), we shall conform that

fp(y;m,φ) −→
p→−∞

a∞(y, φ) > 0.

Thus, the integral (4) diverges. �

Corollary 4.4. Let Y1, . . . , Yn be n independent and identically distributed
random variables with common Tweedie distribution Twp(m,φ). Then, the
implicit distribution of the power parameter p exists if and only if one of the
following assertions holds:

(i) p ∈ [2,+∞) and m < 1.
(ii) p ∈ (1, 2).
(iii) p ∈ (−∞, 0) and m > 1.

Proof. It is sufficient to check that the following integral is convergent.∫
Ij

n∏
i=1

fp(yi;m,φ)dp.

For (i) and (iii), it is sufficient to apply Theorem 4.2 for q = 0. By applying
Theorem 4.1, for a = 1 and b = 2, we get (ii). �

In these cases, the implicit density distribution of p is denoted by

f(p;y,m, φ) =

∏n
i=1 fp(yi;m,φ)dp∫

Ij

∏n
i=1 fp(yi;m,φ)dp

, j ∈ {1, 2, 3}

∝
n∏
i=1

fp(yi;m,φ)dp.

Then, the implicit estimator of p is expressed as

(6) p̂Ij =
J1j

J2j
, j = 1, 2, 3,

where

J1j =

∫
Ij

p

n∏
i=1

fp(yi;m,φ)dp,

J2j =

∫
Ij

n∏
i=1

fp(yi;m,φ)dp < +∞.
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As a matter of fact, the implicit estimator p̂I can be calculated, through the
use of the Monte-Carlo estimation method. The sub-classes of Tweedie models
are characterized by their supports (see Table 1). The compound Poisson
distribution is a frequent choice for the modelling of non-negative data with a
probability mass at zero. In this case, we proved that the implicit estimator of
the power parameter exists without any condition. In positive-stable and the
extreme stable Tweedie models, we proved that the implicit estimator of the
power parameter p exists provided that the mean m < 1 when p ∈ [2,+∞)
and m > 1 when p ∈ (−∞, 0). The selection of sub-class Ij , (j = 1, 2, 3) refers
basically to the nature of data sample y = (y1, . . . , yn). If the y components are
non-negative and have exact zeros, the model will be the compound-Poisson
one (j = 2). Otherwise if the components of data sample are non-negative
and haven’t any zero, the sub-class will be the Tweedie positive-stable one.
When the data sample is an interesting mixture of negative and non-negative
components, the appropriate sub-class corresponds to the Tweedie negative-
stable one.

4.2. Asymptotic behavior of the power parameter implicit estimator

In this section, we shall determine some asymptotic properties of the implicit
estimator of the power parameter p. Consider a sample y = (y1, . . . , yn) from
a Tweedie distribution Twp(m,φ) with a density function fp(·;m,φ). The log-
likelihood function is expressed by

Ln(y; p) =

n∑
i=1

log(fp(yi;m,φ)).

The maximum likelihood estimator p̂M of the power parameter p is obtained
by maximizing the log-likelihood function L(y; p). The score function for the
power parameter p is stated as

Un(y; p) =
∂Ln(y; p)

∂p
.

The Fisher information function of the power parameter p is indicated as

Fn,p = −E(
∂2Ln(y; p)

∂p2
).

Since y1, y2, . . . , yn are independent variables and following the same Tweedie
distribution Twp(m,φ), we have

Fn,p = −
n∑
i=1

∂2L(yi; p)

∂p2
= nFp, where Fp = −E(

∂2L(y1; p)

∂p2
).

According to Bonat and Kokonendji [2], the asymptotic distribution of p̂M is
normal:

p̂M ∼N(p,
F−1
p

n
),
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where F−1
p denotes the inverse of the Fisher information and p is the true power

parameter. Now, we shall display the asymptotic normality of the implicit
estimator p̂I .

Proposition 4.5. The implicit estimator p̂I of the power parameter p is asymp-
totically normal implying that

p̂I ∼N(p,
F−1
p

n
).

To specify the asymptotic properties of p̂I , we need to consider the following
lemmas.

Lemma 4.6 (Laplace approximation [4]). Consider the integral

I =

∫
D

h(y) exp{−gn(y)}dy,

where h is a positive continuous function on an open set D ⊂ R, and gn is a
twice continuously differentiable on D. Assume that gn has a strict minimizer
y? on D. Then the Laplace’s approximation is well-defined and is provided by

I ≈ (2π)1/2|g′′n(y?)|−1/2h(y?) exp{−gn(y?)}(1 +O(
1

n
)),

where g′′n is the second derivative of the function gn.

Lemma 4.7 (Slutsky Lemma). Let (Xn)n, (Yn)n be two sequences of ran-
dom variables. If (Xn)n converges in distribution to a random variable X and
(Yn)n converges in probability to a real constant c, then the sequence (Xn+Yn)n
converges in distribution to X + c and the sequence (XnYn)n converges in dis-
tribution to cX.

Proof of Proposition 4.5. Since

exp{Ln(y; p)} = ln(y;m,φ, p) =

n∏
i=1

fp(yi;m,φ)

and according to (6), the implicit estimator p̂Ij is stated as

(7) p̂Ij =

∫
Ij
p exp{Ln(y; p)}dp∫

Ij
exp{Ln(y; p)}dp

, j = 1, 2, 3.

The Laplace’s method is well suitable for application to both the numerator
(gn(p) = −Ln(y; p) and h(p) = p) and denominator (gn(p) = −Ln(y; p) and
h(p) = 1) of (7). Therefore∫
Ij

p exp{Ln(y; p)}dp=
√

2π | ∂
2Ln(y; p̂M )

∂p2
|− 1

2 p̂M exp{Ln(y; p̂M )}(1+O(
1

n
))

and∫
Ij

exp{Ln(y; p)}dp =
√

2π | ∂
2Ln(y; p̂M )

∂p2
|− 1

2 exp{Ln(y; p̂M )}(1 +O(
1

n
)).
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Consequently, we have

(8) p̂I = p̂M
1 +O( 1

n )

1 +O( 1
n )

= p̂M (1 +O(
1

n
)).

Now, we shall prove that the implicit estimator of the power parameter con-
verges in probability to p. Indeed, based upon the fact that the maximum
likelihood estimator p̂M is asymptotically normal [2] which implies that

p̂M ∼N(p,
F−1
p

n
).

Indeed,

(9)
√
n(p̂M − p)∼N(0,F−1

p ) as n→ +∞.

Therefore, referring to Equation (9), p̂M − p = 1√
n

√
n(p̂M − p), and by

applying Slutsky Lemma, we infer that p̂M converges in distribution to p (which
is constant) then it converges also in probability to p .

According to Equation (8), we have

√
n(p̂I − p) =

√
n[(p̂M − p) + p̂MO(

1

n
)]

=
√
n(p̂M − p) + p̂MO(

1√
n

)).(10)

According to the Slutsky Lemma, one verifies that p̂MO(1/
√
n) converges

in probability to 0. From Equation (10) and using again Slutsky Lemma, we
deduce that

√
n(p̂I − p) converges in distribution to N(0,F−1

p ). �

5. Conclusion and perspectives

In this work, we elaborated a necessary and sufficient condition, on the mean
parameter p so that the implicit estimator of the power parameter p, of the
Tweedie distribution Twp(m,φ), exists. We demonstrated that this estimator
is asymptotically normal. Our research could be regarded as valuable in terms
of opening further fruitful lines of investigation and offering promising future
research directions. In perspective, we shall implement this implicit estimator
and apply it in the Tweedie regression model on a given real dataset.
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