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P -EXTREMAL FUNCTIONS AND BERNSTEIN-MARKOV

PROPERTIES ASSOCIATED TO COMPACT SETS IN Rd

Hoang Thieu Anh, Kieu Phuong Chi, Nguyen Quang Dieu,
and Tang Van Long

Abstract. Given a compact subset P ⊂ (R+)d and a compact set K

in Cd. We concern with the Bernstein-Markov properties of the triple
(P,K, µ) where µ is a finite positive Borel measure with compact support

K. Our approach uses (global) P -extremal functions which is inspired by
the classical case (when P = Σ the unit simplex) in [7].

1. Introduction

Let K be a compact subset of Cd and µ be a positive Borel measure on
K ⊂ Cd. Obviously the L2(µ)-norm on K of a polynomial p is majorized by its
sup-norm. It is a natural problem to see whether this estimate can be reversed.
For this purpose, we say that the pair (K,µ) has the Bernstein-Markov property
if for each ε > 0 there exists a positive constant C = Cε > 0 such that

(1.1) ‖p‖K := sup
z∈K
|p(z)| ≤ Ceε deg p‖p‖L2(µ), ∀p ∈ C[z1, . . . , zd].

The Bernstein-Markov property is a classical concept and was studied thor-
oughly in [6, 7, 11]. The reader is referred to [8] for an authoritative survey on
Bernstein-Markov property and its numerous applications to approximation
theory. One use of this property is the possibility to approximate the (global)
extremal function of K by functions of the form 1

deg p log |p| where p are polyno-

mials that form an orthonormal system for L2(K,µ) (see [9]). In [7], T. Bloom
and N. Levenberg found, among other things, an interesting mass density con-
dition that guarantees the Bernstein-Markov property of (K,µ). The result
below is a consequence of Theorem 1.2 and Theorem 2.2 in [7].
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Theorem 1.1. Let K be a compact regular subset of Cd and µ be a finite
positive Borel measure on K. Set

Er = {z ∈ K : µ(K ∩B(z, r)) ≥ rT }, ∀r > 0.

Let V ∗Er and V ∗K be the extremal function of Er and K, respectively. Suppose
that there exists a positive constant T such that one of the following (equivalent)
conditions occurs:

(i) V ∗Er → 0 q.e. on K, i.e., outside a pluripolar set;

(ii) V ∗Er → V ∗K (globally) uniformly on Cd as r → 0.
Then (K,µ) has the Bernstein-Markov property (1.1).

Let R+ := [0,+∞) and P ⊂ (R+)N be a convex body, that is a compact,
convex set with non-empty interior. In recent years, a pluripotential theory
associated to P has been developed (see [1–3, 10]). It is attached to the no-
tions of P -extremal functions (see the definition in the next section) and of
P -polynomials. Our principal goal is to extend Theorem 1.1 to the context
of P -polynomials and P -extremal functions where P is a compact subset (not
necessarily a convex body) of (R+)d that contains the origin. Let us now recall
the notion of P -polynomials associated to such compact set P . Following [1],
for each n ≥ 1 we consider the finite-dimensional polynomial space

Poly(nP ) := {p ∈ C[z1, . . . , zd] : p(z) =
∑

J∈nP∩(Z+)d

aJz
J}.

Here we use the multi-dimensional notation zJ = zj11 · · · z
jd
d for J = (j1, . . . , jd).

In the case P = Σ := {(x1, . . . , xd) ∈ (R+)d : x1+· · ·+xd ≤ 1}, the standard
unit simplex in Rd we have Poly(nΣ) = Pn the usual space of holomorphic
polynomials of degree at most n in Cd. On the other hand, since there exists
A ∈ Z+ such that P ⊂ AΣ we get

Poly(nP ) ⊂ Poly(nAΣ) = PnA, ∀n ≥ 1.

Sometimes we also assume further that P is admissible in the sense that

Σ ⊂ kP for some k ∈ Z+.

The above restriction was emphasized in [1] and [2] to exploit the approximabil-
ity of the P -extremal functions by (normalized) logarithms of P -polynomials.

Our article is organized as follows. In the next section we gather up auxil-
iary facts about P -extremal functions. The most important notion is that of
the logarithmic indicator for a compact set P ⊂ (R+)d. Using this concept we
define the P -extremal functions and formulate their basic properties (Bernstein-
Walsh’s estimate and Siciak-Zakharyuta’s theorem). Our (new) results appear
in the later sections. In Section 3 we prove in Theorem 3.2 equivalent condi-
tions for convergence of sequence of P -extremal functions VP,Kj towards VP,K
where Kj are subsets of a compact set K in Cd. In the case P = Σ this result
is essentially the equivalence (i)⇔(ii) given in Theorem 1.1. Section 4 starts
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with definition the Bernstein-Markov properties for the triple (P,K, µ). Af-
ter presenting some easy consequences of the Bernstein-Markov properties in
Proposition 4.3 and Proposition 4.5, we move to Theorem 4.6. In this result we
follow the approach indicated in [7] and deduce the Bernstein-Markov property
for P -polynomials from the convergence of certain sequences of P -extremal
functions which are defined by some mass density estimate. The next result,
Proposition 4.8 serves as a prototype in which the above (somewhat) abstract
results can be applied.

2. Preliminaries

Throughout this paper, unless otherwise specified, we always denote by K
a compact subset of Cd, µ a positive finite measure whose support equals to K
and for P a compact subset of (R+)d satisfying 0 ∈ P . We claim no originality
in this section since most of the material that follows is taken from [14], [5]
and especially [12] (in the case P = Σ) and from [1], [10] (in the case P is an
admissible convex body).

We first recall some elements about global P -extremal functions associated
to P . The first function to be defined is the logarithmic indicator function of
P

HP (z) := sup
J=(j1,...,jd)∈P

log(|z1|j1 · · · |zd|jd)

= sup
J=(j1,...,jd)∈P

(j1 log |z1|+ · · ·+ jd log |zd|), z ∈ Cd.

Here we use the convention that 0 · ∞ = 0. We also consider the support
function of P

hP (x) := sup
J=(j1,...,jd)∈P

(j1x1 + · · ·+ jdxd), x ∈ Rd.

By Cauchy-Schwarz inequality we get

|hP (x)− hP (y)| ≤ ‖x− y‖ sup
t∈P
‖t‖, ∀x, y ∈ Rd.

This implies continuity of HP on Cd, and so HP ∈ PSH(Cd) being the upper
envelope of a family of plurisubharmonic functions on Cd. Moreover, by the
above convention HP ≥ 0 on Cd. In the standard case P = Σ, an easy reasoning
yields

HΣ(z) = max
1≤j≤d

log+ |zj |, ∀z ∈ Cd.

If P is admissible (but not necessarily convex), i.e., Σ ⊂ kP for some k ∈ Z+,
then we have the lower bound

(2.1)
HP (z) ≥ 1

k
HΣ(z)

=
1

k
max

1≤j≤d
log+ |zj |.
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We will now use HP (z) to provide a generalization of the standard Lelong
classes

LP := LP (Cd)

= {u ∈ PSH(Cd) : u(z) ≤ cu +HP (z), z ∈ Cd},

LP,+ := LP,+(Cd)

= {u ∈ PSH(Cd) : −cu +HP (z) ≤ u(z) ≤ cu +HP (z), z ∈ Cd},
where cu is a constant depending only on u. The above definition makes sense
since HP ∈ LP for every P . In the special case P = Σ we recover the standard
Lelong classes in Cd. For a bounded subset E ⊂ Cd, the P -global extremal
function of E is defined by

(2.2) VP,E(z) := sup{u(z) : u ∈ LP (Cd), u ≤ 0 on E}.
We also let V ∗E(z) := lim supξ→z VE(ξ) be the upper semicontinous regular-
ization of VP,E . For P = Σ we have VΣ,E = VE , the standard Siciak global
extremal function.

It is well-known that V ∗E ≡ +∞ if and only if E is pluripolar, i.e., there exists
a plurisubharmonic function u on Cd such that E ⊂ {z ∈ Cd : u(z) = −∞}.
According to a result of Siciak in [14] (see also [12]), in this case we can even
choose u ∈ L(Cd). One use of these extremal functions is to define certain
concepts of regularity.

Definition 2.1. A compact set K ⊂ Cd is said to be L-(resp. PL-)regular if
VK (resp. VP,K) is continuous on Cd.

By simple considerations as in [2], p. 17 (see also our Proposition 3.1(iv))
we see that under some mild restriction on P , the set K is L-regular if and
only if it is PL-regular. Indeed, it is a consequence of the following comparison
lemma.

Lemma 2.2. If P is admissible, then there exist constants a, b > 0 such that
for all compact set K we have

aVK ≤ VP,K ≤ bVK .
We omit the straightforward proof which is based on (2.2). The definition

of VP,K also yields the following useful Bernstein-Walsh estimate.

Proposition 2.3. Let E be a non-pluripolar subset of Cd. Then for any p ∈
Poly(nP ) we obtain

|p(z)| ≤ ‖p‖EenVP,E(z), z ∈ Cd.
We have the following simple facts which will be useful in the sequel.

Proposition 2.4. (i) Let P (a, r) be the open polydisk with center a = (a1, . . .,
ad), radius r. Then

VP,P (a,r) = HP (
z − a
r

) = sup
J∈P

log+ |z − a
r
|J , z ∈ Cd.
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(ii) If u ∈ LP , then

u(z) ≤ max
P (a,r)

u+HP (
z − a
r

), ∀z ∈ Cd.

(iii) E ⊂ Cd is PL-pluripolar if and only if V ∗P,E ≡ ∞. Moreover, if E is
non-pluripolar, then V ∗P,E ∈ LP .

(iv) E is pluripolar if and only if E is PL-pluripolar.
(v) Let {uα}α∈I ⊂ LP and u := supα∈I uα. Set A := {z ∈ Cd : u(z) < +∞}.

Then u∗ ∈ LP if and only if A is non-pluripolar.

Proof. (i) After a translation and dilation of coordinates we may assume that
a = 0 and r = 1. It is then enough to show

VP,P (0,1)(z) = HP (z) = sup
J∈P

log+ |z|J , z ∈ Cd.

Since HP ∈ PSH(Cd), HP = 0 on P (0, 1), it is clear that HP ≤ VP,P (0,1) on

Cd. For the reverse inequality, we take z ∈ Cd. If |z| := max(|z1|, . . . , |zd|) ≤ 1,
then the inequality is obvious. Consider the case |z| > 1. Then for every
u ∈ LP , u ≤ 0 on P (0, 1) the function

ϕ(λ) =u(λz)−HP (λz)

is bounded and subharmonic on {λ ∈ C : |λ| > 1
|z|}. Moreover ϕ(λ) ≤ 0 on the

circle |λ| = 1
|z| . Using an extended version of the maximum principle we get

ϕ(λ) ≤ 0 for all |λ| ≥ 1
|z| . By setting λ := 1 we obtain the required inequality.

(ii) Set v(z) = u(z)− max
P (a,r)

u, z ∈ Cd. Then v ∈ LP , v ≤ 0 on P (a, r). Then

by (i),

v(z) ≤ VP,P (0,1)(z) = HP (z),

thus we get (ii).
(iii) Assume first that E is PL-pluripolar. Then we can find u ∈ LP such

that u|E = −∞. It follows that VP,E ≥ u+C for all C > 0. Hence V ∗P,E ≡ ∞.
Conversely, if V ∗P,E ≡ ∞, then by Choquet’s topological lemma we can find a

sequence uj ∈ LP with uj |E ≤ 0 and uj ↑ ∞ a.e. on Cd. By multiplying uj
with large constants we may obtain that

Mj := max
P (0,1)

uj ≥ 2j , ∀j.

By the same reasoning as in [5] we infer that

u :=
∑
j≥1

2j(uj −Mj)

belongs to LP and satisfies u|E ≡ −∞. Thus E is PL-pluripolar. Now suppose
that E is not PL-pluripolar. Then by the above reasoning we have V ∗P,E(a) <

+∞ for some a ∈ Cd. Then there exists a polydisk P (a, r) such that C :=
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supP (a,r) VP,E < +∞. On the other hand, (ii) implies that for every u ∈ LP
with u|E ≤ 0 we have

u(z) ≤ C +HP (
z − a
r

) ≤ C ′ +HP (z), ∀z ∈ Cd,

for some constant C ′ > 0 depends only on C, a, r. It follows that V ∗P,E ≤
C ′ +HP . We are done.

(iv) We proceed by contradiction as in the classical case P = Σ. Assume
that E is not PL-pluripolar. Then by (iii) V ∗P,E ∈ LP and therefore M :=

supE V
∗
P,E < +∞. Since E is bounded, there is a polydisk P (0, r) such that

E ⊂ P (0, r). Then from (ii) we obtain

V ∗P,E ≥ V ∗P,P (0,r)
= HP (z)− log r =

1

k
HΣ − log r.

Thus we can find R > r such that inf∂P (0,R) V
∗
P,E ≥ 2M + 1. Now we choose

u ∈ PSH(Cd) such that u = −∞ on E and u < 0 on P (0, R). For each positive
integer j ≥ 1 we set

vj :=

{
max{ 1

j u+ 1, 1
2M+1V

∗
P,E} on P (0, R),

1
2M+1V

∗
P,E , otherwise.

Then (2M + 1)vj ∈ LP and on E we have (2M + 1)vj ≤ M . Hence (2M +
1)vj −M ≤ VP,E on Cd. In particular

(2M + 1)(
1

j
u+ 1) ≤M + VP,E in P (0, R)

for all j ≥ 1. By letting j →∞ we obtain V ∗P,E ≥M + 1 on E which is absurd.

(v) If A is not pluripolar, then we can find r,M > 0 such that A′ := {z ∈
P (0, r) : u(z) < M} is not pluripolar as well. So by (iv), A′ is also not PL-
pluripolar. Observe that

uα ≤ VP,A′ + C ∀α ∈ I.
Hence u∗ ≤ V ∗P,A′ + C. Since the function on the right belongs to LP we
conclude that u∗ ∈ LP . �

In the special but important case where P is an admissible convex body,
using a standard technique for solving ∂̄-equation with L2-estimates, Bayraktar
et al. proved (see Theorem 1.1 in [3]) that VP,K can be defined by means of
polynomials. In case P = Σ, this result of course reduces to the famous Siciak-
Zakharyuta approximation theorem. We state below a slight generalization of
this fundamental result. We only need it in Proposition 4.3 of the next section.

Theorem 2.5. Let P be an admissible compact subset of (R+)d which is in
general position, i.e., P is not included in a real hyperplane in Rd. Then for
any non-pluripolar compact subset K in Cd we have

VP,K = lim
n→∞

1

n
log Φn,K
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pointwise on Cd. Here

Φn,K(z) := sup{|pn(z)| : pn ∈ Poly(nP̃ ), ‖pn‖K ≤ 1}

and P̃ is the closure of the convex hull of P .

We will sometimes write Φn instead of Φn,K if there is no danger of confusion.
The above result follows immediately from the mentioned above Theorem 1.1
in [3], Proposition 3.1(v) (in the next section) and the following simple fact.

Lemma 2.6. Let P and P̃ be given as in Theorem 2.5. Then P̃ is an admissible
convex body.

Proof. First we let P ′ ⊂ P be a maximal set of linearly independent vectors.
By the assumption we see that P ′ contains exactly d elements. By a linear
change of coordinates we may achieve that P ′ = {e1, . . . , ed}, the standard
basic of Rd. Thus the convex hull of P ′ coincides with the standard simplex Σ.
Hence P̃ has non-empty interior. This implies the desired conclusion. �

Finally we mention the following useful domination principle in LP,+ : If
u, v ∈ LP,+ and satisfies u ≤ v a.e. with respect to (ddcv)d, then u ≤ v on Cd.

In the case P = Σ, the above result is proved by Bedford and Taylor in
[4]. The general case can be demonstrated exactly in the same fashion (see
Proposition 2.2 in [13]).

3. Convergence of P -extremal functions

We start by collecting below some continuity properties of P -extremal func-
tions that will be used later on.

Proposition 3.1. Let E be a bounded set in Cd and K be a compact set. Then
we have the following assertions:

(i) If Kj ↓ K and if Kj are compact, then VP,Kj ↑ VP,K .
(ii) If Ej ↑ E, then V ∗P,Ej ↓ V

∗
P,E.

(iii) V ∗P,E\F = V ∗P,E if F is pluripolar.

(iv) If V ∗P,K ≡ 0 on K, then VP,K is continuous on Cd. Thus, if P is
admissible, then K is L-regular if and only if it is PL-regular.

(v) If P̃ is the closure of the convex hull of P , then we have

VP,E = VP̃ ,E on Cd.

(vi) Let Pj be a sequence of bounded sets in Rd that decreases to P . Suppose
that E has non-empty interior. Then we have V ∗Pj ,E ↓ V

∗
P,E.

We do not know if (vi) still holds for general bounded sets E.

Proof. Using (iv) of Proposition 2.4 we see that all the assertions (i)-(iv) can
be proved in the same fashion as in the classical case P = Σ (see the discussion
after Propositions 2.1 and 2.3 in [10]). Note that Lemma 2.2 is needed for the
second assertion of (iv).
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(v) Using the definitions of support functions we obtain hP = hP̃ on Rd. It

follows that HP = HP̃ on Cd. So we are done.
(vi) The definition of P -extremal function (2.2) implies that V ∗Pj ,E ↓ u ∈

PSH(Cd) and u ≥ V ∗P,E . After a dilation we may assume E contains a small

ball B(0, r). By Proposition 2.4(i) we get

V ∗Pj ,E(z) ≤ HPj (z/r), ∀j.

Since hPj ↓ hP on Rd we conclude that HPj ↓ HP on Cd. It follows that

u(z) ≤ HP (z/r), ∀z ∈ Cd.

Observe that there exists a pluripolar subset X of Cd such that u = 0 on E \X.
Thus, by Proposition 2.4(iv) we can find v ∈ LP with v|E < 0 and v|X = −∞.
Then by (2.2), for every ε > 0 we get

1

1 + ε
(u+ εv) ≤ VP,E .

Therefore, by letting ε → 0 we obtain u ≤ VP,E on Cd \ v−1(−∞). Hence
u ≤ V ∗P,E entirely on Cd. So u = V ∗P,E as desired. �

Now we are able to present the main result of this section about convergence
of P -extremal functions.

Theorem 3.2. Let {Kj} be a sequence of subsets of K. Consider the following
assertions:

(i) V ∗P,Kj → 0 q.e. on K.

(ii) V ∗P,Kj → V ∗P,K pointwise on Cd;
(iii) V ∗P,Kj → V ∗P,K uniformly on Cd;
(iv) V ∗Kj → 0 q.e. on K.

(v) V ∗Kj → V ∗K pointwise on Cd;
(vi) V ∗Kj → V ∗K uniformly on Cd.

Then (i)⇔(ii)⇔(iii) if K is PL-regular, (iv)⇔(v)⇔(vi) if K is L-regular, and
(i)⇔(iv) if P is admissible.

Proof. First we consider the case K is PL-regular.
(i) ⇒ (ii) We can assume that Kj is non-pluripolar for all j ≥ 1. Then

V ∗P,Kj ∈ LP,+, ∀j ≥ 1. For s ≥ 1, define

vs(z) := sup
j≥s

V ∗P,Kj (z), z ∈ Cd.

Then the set {v1 < +∞} contains a non-pluripolar subset of K. Thus Propo-
sition 2.4(v) implies that v∗s ∈ LP for every s ≥ 1. Therefore

V ∗P,K ≤ v := lim ↓ v∗s .
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In particular v ∈ LP , v = 0 q.e. on K. Here the latter equality follows from
the fact that vs = v∗s q.e. on Cd. By Proposition 2.4(iii) we obtain v ≤ V ∗P,K
on Cd. Moreover, since Kj ⊂ K we have

v ≤ V ∗P,K ≤ V ∗P,Kj , ∀j ≥ 1.

Putting all this together we concludes that

lim
j→∞

V ∗P,Kj (z) = V ∗P,K(z), ∀z ∈ Cd.

(ii)⇒ (iii) Since K is PL-regular it follows that V ∗P,Kj → V ∗P,K = 0 on K. On

the other hand, by Proposition 2.4(v), the sequence V ∗P,Kj is locally uniformly

bounded on Cd. Then using Hartogs’ lemma we infer that V ∗P,Kj → 0 uniformly

on K. Hence, from (2.2) we deduce easily that V ∗P,Kj → V ∗P,K uniformly on Cd.
(iii) ⇒ (i) is trivial.
If K is L-regular, then by setting P = Σ in the above proof we have (iv) ⇔

(v) ⇔ (vi).
Finally, in case P is admissible we may apply Proposition 3.1(iv) and the

comparison lemma (Lemma 2.2) to see that (i) ⇔ (iv). �

Remark 3.3. 1. We do not need PL-regularity of K for the implication (i) ⇒
(ii).

2. The assumption V ∗Kj → 0 q.e. on K does not imply L-regularity of K.

For a simple example we let K be the union of a closed disk ∆ and an isolated
point a while Kj is taken to be a sequence of closed disks increasing to ∆.

3. Under the assumptions that P is an admissible convex body and V ∗Kj → 0

pointwise on K then by adapting the proof of the implication (i) ⇒ (ii) to the
case P = Σ we can show that K is indeed L-regular. So in this case all the
equivalent conditions in Theorem 3.2 holds true.

4. Bernstein-Markov properties

The following basic notions are central to our work. Note that the first one
is a direct generalization of the classical Bernstein-Markov property and was
studied in [2].

Definition 4.1. The triple (P,K, µ) is said to have the Bernstein-Markov
property if for each ε > 0, there exists a constant C = Cε > 0 such that

(4.1) ‖p‖K ≤ Cenε‖p‖L2(µ), ∀p ∈ Poly(nP ), n ≥ 1;

Remark 4.2. (a) We present a class of pairs (K,µ) having the Bernstein-Markov
property. Let γ be smooth, closed curve on {1 ≤ |z| ≤ 2} and K be the
compact set γ ∪ {|z| = 1}. Let µ be a finite positive Borel measure on K
whose support coincides with K such that µ||z|=1 is the normalized Lebesgue
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measure. Consider an arbitrary polynomial p(z) := a0 + a1z + · · ·+ anz
n. By

Cauchy-Schwarz’s inequality and maximum principle, we obtain

‖p‖2K ≤
4n+1 − 1

3
(|a0|2 + · · ·+ |an|2) ≤ 4n+1

3

∫
∂∆

|p|2dµ.

Thus (K,µ) enjoy the Bernstein-Markov property.
(b) If P = Σ, then (4.1) becomes (1.1). Note that in general the exponent

n in (4.1) may be less than the (standard) degree of p.

We first give an easy result illustrating one use of the above notions.

Proposition 4.3. Assume that P is an admissible compact subset of (R+)d

which is in general position. Define

WP,K,µ(z) := sup
{ 1

n
log |p(z)| : p ∈ Poly(nP ), ‖p‖L2(µ) ≤ 1

}
, z ∈ Cd.

Then, if (P,K, µ) has the strong Bernstein-Markov property, then W ∗P,K,µ =
V ∗P,K .

Proof. First, we note that for any p ∈ Poly(nP ) with ‖p‖K ≤ 1 we have

‖p′‖L2(µ) ≤ 1 where p′ := µ(K)−1/2p.

It follows that

WP,K,µ ≥
1

n
log |p′| = − 1

2n
logµ(K) +

1

n
log |p|.

Now Theorem 2.5 implies that

(4.2) WP,K,µ ≥ VP,K .
For the other direction, fix z ∈ Cd, then we can find a sequence pj ∈ Poly(njP )
such that ‖pj‖L2(µ) ≤ 1 and

lim
j→∞

1

nj
log |pj(z)| = WP,K,µ(z).

Then for ε > 0 we can find Cε > 0 depending only on ε such that

‖pj‖K ≤ Cεenj(ε)‖pj‖L2(µ) ≤ Cεenj(ε).

Set p′j := C−1
ε e−nj(ε)pj . Then we have

VP,K(z) ≥ 1

nj
log |pj(z)| = −

logCε
nj

− ε+
1

nj
log |pj(z)|.

By letting j →∞ and then ε→ 0 we obtain

(4.3) VP,K(z) ≥WP,K,µ(z).

The result is desired from (4.2) and (4.3). �

Remark 4.4. The extremal function WP,K,µ can also be defined by n-th
Bergman function on Poly(nP ) (see Section 5.1 in [2]).

The Bernstein-Markov property also yields the following curious result.
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Proposition 4.5. Let P be as in the above proposition. Suppose further that
(P,K, µ) has the Bernstein-Markov property. Then for any compact subset L
of Cd we have

sup
K
VP,L = lim

n→∞

1

2n
log
(∫

K

Φ2
n,Ldµ

)
.

Here Φn,L is the function introduced in Theorem 2.5.

Proof. First by Bernstein-Walsh inequality we have Φn,L ≤ enVP,L on K. Hence∫
K

Φ2
n,Ldµ ≤ µ(K)e

2n sup
K
VP,L

.

Therefore

(4.4) lim sup
n→∞

1

2n
log
(∫

K

Φ2
n,Ldµ

)
≤ sup

K
VP,L.

For the reverse direction, we first use Bernstein-Markov property of (P,K, µ)
to derive the following estimate: For any δ > 0 there exists a constant C > 0
independent of n such that

sup
z∈K

Φn,L(z) ≤ Cenδ
(∫

K

Φ2
n,Ldµ

)1/2

.

Hence

sup
z∈K

1

n
log Φn,L(z) ≤ δ +

logC

n
+

1

2n
log
(∫

K

Φ2
n,Ldµ

)
.

Since δ > 0 can be arbitrarily small we infer that

(4.5) lim inf
n→∞

(
sup
z∈K

1

n
log Φn,L(z)

)
≤ lim sup

n→∞

1

2n
log
(∫

K

Φ2
n,Ldµ

)
.

Next, by Theorem 2.5 the sequence 1
n log Φn,L converges to VP,L pointwise

(from below) on Cd. So we get

(4.6) lim
n→∞

(
sup
z∈K

1

n
log Φn,L(z)

)
= sup

K
VP,L.

Hence by combining (4.4), (4.5) and (4.6) we reach the desired conclusion. �

We now give a sufficient condition, in the same spirit as Theorem 1.1, for
the triple (P,K, µ) to have the Bernstein-Markov property.

Theorem 4.6. Let K be a compact PL-regular set in Cd, µ be a finite positive
Borel measure on K. Suppose for each ε > 0 there exist two constants T > 0,
α ∈ (0, 1

T+1 ) and a sequence rn ↓ 0 satisfying the following conditions:

(i) inf
n≥1

rne
nε(1−α)

T > 0;

(ii) lim
n→∞

rne
αnε = 0;

(iii) V ∗P,En → 0 q.e. on K, where

En := {z ∈ K : µ(K ∩B(z, rn)) ≥ rTn }.
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Then the triple (P,K, µ) has the Bernstein-Markov property.

Before giving the proof of theorem, we would like to state some notes.

Remark 4.7. (a) Since 1−α
T > α, we can always find a sequence rn ↓ 0 satisfying

(i) and (ii).
(b) The above result formally generalizes Theorem 1.1. Nevertheless, it is

unclear to us if Theorem 4.6 is really stronger than Theorem 1.1 even in the case
P = Σ. Indeed, according to Remark 3.5 in [8], there exists no known example
of measure µ such that (K,µ) has the strong Bernstein-Markov property but
µ does not satisfy the condition in Theorem 1.1 for any T > 0.

(c) If P is admissible in the sense of (2.1), then P is also L-regular. So using
Theorem 3.2 we see that the condition V ∗P,En → 0 q.e. on K is equivalent to
V ∗En → 0 q.e. on K. Hence it may be interpreted as the convergence of relative
capacities of En towards that of K (with respect to some ball containing K),
in view of Theorem 1.1 in [7].

Proof. We rely on Bloom-Levenberg’s methods given in [7] and [6]. Fix ε > 0
and let T, α, rn be numbers satisfying (i), (ii) and (iii). We now divide the rest
of the proof into some steps.

Step 1. Set ε′ := αε. We claim that there exists δ > 0 such that for all n
large enough we have

(4.7) ‖p‖Kδ ≤ ‖p‖Enenε
′
, ∀p ∈ Poly(nP ),

where Kδ := {z ∈ Cd : d(z,K) ≤ δ}. To see this, we first apply Proposition
3.1 to see that VP,Kδ ↓ VP,K on Cd. Since VP,K is continuous on Cd, by Dini’s
theorem we can choose δ = δ(ε′) such that

|VP,K(z)− VP,Kδ(z)| <
ε′

2
, ∀z ∈ Kδ.

In particular, since VP,Kδ = 0 on Kδ we get

VP,K(z) ≤ ε′

2
, ∀z ∈ Kδ.

The Bernstein-Walsh inequality (Proposition 2.3) now implies that for any
n ≥ 1 and p ∈ Poly(nP ) we have

‖p‖Kδ ≤ ‖p‖Kenε
′/2.

On the other hand, by the hypothesis V ∗P,En → 0 q.e. on K, so by Theorem
2.5, we see that the family V ∗P,En is locally uniformly bounded from above on

Cd. So by shrinking δ and using Theorem 3.2 we see that for all n sufficiently
large

V ∗P,En(z) ≤ ε′

2
, ∀z ∈ K.

Using again the Bernstein-Walsh inequality for En we obtain

(4.8) ‖p‖K ≤ ‖p‖Enenε
′/2, ∀p ∈ Poly(nP ).
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Combining these last estimates we obtain (4.7).
Step 2. We will show for all n large enough and all p ∈ Poly(nP ), w ∈ En(⊂

K)

(4.9) |p(z)| ≥ |p(w)| − 1

2
‖p‖En , ∀|z − w| < rn.

For z 6= w we put e = z−w
‖z−w‖ = (e1, . . . , ed). Put q(t) := p(w1 + e1t, . . . , wd +

edt). Then q is a polynomial of one complex variable t with p(z) = q(‖z −w‖)
and p(w) = q(0). Then

p(z)− p(w) = q(‖z − w‖)− q(0) =

∫ ‖z−w‖
0

q′(t)dt.

So for r′ > r := ‖z − w‖ > 0 we have

|p(z)− p(w)| ≤ r‖q′‖|t|<r ≤ r
‖q‖|t|<r′
r′ − r

≤ r

r′ − r
‖p‖Kr′ .

Here we use Cauchy’s inequality in the second estimate. Choose the parameters

r := rn, r
′ := rn(1 + 2enε

′
).

By Step 1 and the assumption (ii), we obtain for n large enough the following
estimate

|p(z)| ≥ |p(w)| −
‖p‖Kr′
2enε′

≥ |p(w)| − 1

2
‖p‖En .

We finish the proof of this step.
Step 3. Completion of the proof. Fix p ∈ Poly(nP ). Then for each w ∈ En,

from (4.9) we obtain the following chain of estimates

‖p‖L2(µ) =
(∫

K

|p|2dµ
) 1

2 ≥
(∫

B(w,rn)∩K
|p|2dµ

) 1
2

≥ µ(B(w, rn) ∩K)1/2 inf
B(w,rn)

|p(z)|

≥ rT/2n

(
|p(w)| − 1

2
‖p‖En

)
.

Taking supremum over w ∈ En and using (4.8) we get

‖p‖L2(µ) ≥
1

2
rT/2n ‖p‖En ≥

1

2
rT/2n e−nε

′/2‖p‖K .

So in view of the property (i), there exists a constant Cε > 0 such that for
n ≥ n0 large enough we have

Cεe
nε/2‖p‖L2(µ) ≥ ‖p‖K .

Finally, since Poly(n0P ) is a finite dimension space, the norm ‖.‖L2(µ) and the
sup-norm are equivalent. The proof is thereby completed. �

We have the following result which gives examples of measures satisfying the
condition of Theorem 4.6.
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Proposition 4.8. Let K be a compact set in Cd, µ be a finite positive Borel
measure on K and T > 0 be a constant. Set

G := {z ∈ K : lim inf
r→0

µ(B(z, r) ∩K)

rT
> 1}.

Then if K is PL-regular and V ∗P,G = VP,K , then (P,K, µ) has the Bernstein-
Markov property.

Remark 4.9. The second requirement is satisfied if (ddcVP,K)d = 0 on K \ G
in view of the domination principle in LP,+.

Proof. For r > 0 we set

fr(z) :=
µ(B(z, r) ∩K)

rT
, Er := {z ∈ K : fr(z) ≥ 1}.

Then we have

G =
⋃
r>0

( ⋂
0<s<r

Es

)
=
⋃
r>0

Fr,

where Fr :=
⋂

0<s<r Es. Note that Fr ⊂ Er and by the above reasoning
{Fr}r>0 ↑ G. By Proposition 3.1(iii) we get

V ∗P,Fr ↓ V
∗
P,G = V ∗P,K on Cd.

Since V ∗P,Er ≤ V
∗
P,Fr

we infer V ∗P,Er → 0 pointwise on K as r → 0. By Theorem
4.6 we obtain the desired conclusion. �
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