DOI QR코드

DOI QR Code

Burn-back Analysis for Propellant Grains with Embedded Metal Wires

금속선이 삽입된 추진제 그레인의 Burn-back 해석

  • Lee, Hyunseob (PGM Mechanical R&D Cetner, LIG Nex1 Co., Ltd.) ;
  • Oh, Jongyun (PGM Mechanical R&D Cetner, LIG Nex1 Co., Ltd.) ;
  • Yang, Heesung (PGM Mechanical R&D Cetner, LIG Nex1 Co., Ltd.) ;
  • Lee, Sunyoung (PGM Mechanical R&D Cetner, LIG Nex1 Co., Ltd.) ;
  • Khil, Taeock (PGM Mechanical R&D Cetner, LIG Nex1 Co., Ltd.)
  • Received : 2021.12.04
  • Accepted : 2022.02.13
  • Published : 2022.04.30

Abstract

Propellant grains with embedded metal wires have been used for enhancement of burning rate while maintaining high loading density. For the performance design of a solid rocket motor using propellant grain with embedded metal wires, burn-back analysis is required according to number, location, arrangement angle of metal wires, and augmentation ratio of the propellant burning rate near a wire region. In this study, a numerical method to quickly calculate a burning surface area was developed in response to the design change of the propellant grain with embedded metal wires. The burning surface area derived from the developed method was compared with the results of a CAD program. Error rate decreased as the radial size of the grid decreased. Analysis for characteristics of burning surface area was performed according to the number and location of metal wires, the initial and final phases were shortened and the steady-state phase was increased when the number of metal wires increased. When arranging the metal wires at different radii, the burning surface area rapidly increased in the initial phase and sharply decreased in the final phase compared to the case where the metal wires were disposed in the same radius.

금속선이 삽입된 추진제 그레인은 높은 충전율을 유지하면서 연소속도를 증가시키기 위해 사용되어왔다. 금속선이 삽입된 추진제 그레인을 사용하는 추진기관의 성능설계를 위해서는 금속선의 위치, 개수, 배치각도, 금속선에서의 추진제 연소속도 증가비에 따른 burn-back 해석이 요구된다. 본 연구에서는 금속선이 삽입된 추진제 그레인의 설계변경에 대응하여 신속하게 연소면적을 계산할 수 있는 수치적 방법이 개발되었다. 개발된 방법과 CAD 프로그램으로부터 도출된 연소면적 결과를 비교하였으며, 격자의 반경방향 크기가 줄어들수록 오차율이 줄어드는 것을 확인 했다. 금속선의 개수 및 위치변경에 따른 영향성 분석이 수행되었으며, 금속선의 개수가 증가하면 연소초기 및 말기 구간이 짧아지고 정상상태구간이 길어지는 것이 확인되었다. 금속선을 배치할 때, 서로 다른 반경에 금속선을 배치하는 경우에서 동일한 반경에 금속선을 배치하는 경우보다 연소초기 영역에서의 연소면적이 급증하고 연소말기에서 연소면적이 급감하는 것이 확인되었다.

Keywords

References

  1. Rumbel, K.E. and Cohen, M., "Propellant grains," U.S. Patent 3109374, Nov. 1963.
  2. Sparks, J.F. and Friedlander III, M.F., "Fifty years of solid propellant technical achievements at Atlantic Research Corporation," 35th Joint Propulsion Conference and Exhibit, Los Angeles, C.A., U.S.A., AIAA 1999-2932, Jun. 1999.
  3. Caveny, L.H. and Glick, R.L., "Influence of embedded metal fibers on solid-propellant burning rate," Journal of Spacecraft and Rockets, Vol. 4, No. 1, pp. 79-85, 1967. https://doi.org/10.2514/3.28813
  4. Gossant, B., Godfroy, F. and Robert, P.H, "Theoretical calculus of burning rate ratio in grains with embedded metal wires," 34th Joint Propulsion Conference, Boston, M.A., U.S.A., AIAA 1988-3255, Jul. 1988.
  5. King, M.K., "Analytical modeling of effects of wires on solid motor ballistics," Journal of Propulsion and Power, Vol. 7, No. 3, pp. 312-321, 1991. https://doi.org/10.2514/3.23329
  6. You, J.C., Park, Y.K. and Kim, I.C., "Combustion characteristics of composite solid propellants embedded with metal wires," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 26, No. 2, pp. 133-142, 1998.
  7. You, J.C., "Burning characteristics of nitramine propellant embedded with metal wires," Journal of the Korean Society of Propulsion Engineers, Vol. 4, No. 4, pp. 50-58, 2000.
  8. Kubota, N. and Ichida, M., "Combustion processes of propellants with embedded metal wires," AIAA Journal, Vol. 20, No. 1, pp. 116-121, 1982. https://doi.org/10.2514/3.51056
  9. Hyun, H.S., Hwang, K.S. and Kim, C.K., "Combustion behavior of solid rocket motor embedding silver wire in propellant," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 26, No. 3, pp. 115-122, 1998.
  10. You, J.C., Park, Y.K. and Kim, I.C., "A study on the burning characteristics of N-5 propellant embedded with metal wires," Journal of the Korean Society of Propulsion Engineers, Vol. 3, No. 3, pp. 78-85, 1999.
  11. Isert, S., Lane., C.D. and Gunduz, I.E., Son, S.F., "Tailoring burning rates using reactive wires in composite solid rocket propellants," Proceedings of the Combustion Institute, Vol. 36, No. 2, pp. 2283-2290, 2017. https://doi.org/10.1016/j.proci.2016.06.141
  12. Collard, D.N., McClain, M.S., Fleck, T.J., Rahman, N.A., Rhoads, J.F., Meyer, T.R. and Son, S.F., "Solid propellant with embedded additively manufactured reactive components," AIAA Propulsion and Enrgey 2019 Forum, Indianapolis, I.N., U.S.A., AIAA 2019-4443, Aug. 2019.
  13. Collard, D.N., Fleck, T.J., Rhoads, J.F. and Son, S.F., "Tailoring the reactivity of printable Al/PVDF filament," Combustion and Flame, Vol. 223, pp. 110-117, 2021. https://doi.org/10.1016/j.combustflame.2020.09.016
  14. Barkley, S.J., Kindem, D.K., Zhu, K., Michael, J.B. and Sippel, T., "Dynamic control of composite solid propellant flame spread through microwave eddy current heating of propellant-embedded antennas," AIAA SciTech Forum, San Diego, C.A., U.S.A., AIAA 2019-1239, Jan. 2019.
  15. Oh, S.H., Lee, H.J. and Roh, T.S., "Development of a hybrid method in a 3-D numerical burn-back analysis for solid propellant grains," Aerospace Science and Technology, Vol. 106, 106103, 2020. https://doi.org/10.1016/j.ast.2020.106103
  16. Park, C.W., Roh, T., Lee, H.J. and Jung, E., "Analysis of burn-back tendency on the Finocyl grain," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 2, pp. 55-65, 2021. https://doi.org/10.6108/KSPE.2021.25.2.055