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MEAN VALUES OF DERIVATIVES OF QUADRATIC PRIME
DIRICHLET L-FUNCTIONS IN FUNCTION FIELDS

HwANYUP JUNG

ABSTRACT. In this paper, we establish an asymptotic formula for mean
value of L(k>(%, Xp) averaging over Pag11 and over Pogio as g — oo in
odd characteristic. We also give an asymptotic formula for mean value
of L(k)(%,)(u) averaging over Zgy1 and over Fgy1 as g — oo in even
characteristic.

1. Introduction

The study on mean values of central values of derivative of quadratic Dirich-
let L-functions in function fields was initiated by Andrade and Rajagopal [3].
Let F,[t] be the polynomial ring over a finite field F,, where ¢ is odd, and
denote by M, the set of monic square-free polynomials in F[t] of degree n.
In [3], Andrade and Rajagopal gave an asymptotic formula for mean value of
LH(%,XD) averaging over Hag41 as g — oo. Here, L(s, xp) is the quadratic
Dirichlet L-function associated to a quadratic character yp and L”(s, xp)
is the second derivative of L(s,xp). It is shown by Bae and Jung [5] that
L'(3,xp) = (—Ing)g - L(3,xp) for any D € Hggy1. Hence the moment of
L/(%,XD) over Hag41 is a constant multiple of that of L(%,XD) over Hogy1.
Applying the results of Florea on k-th moment of L(%, xp) over Hagy1 ([7-9]),
they obtained the k-th moment of L/(%,XD) over Hogq for 1 < k < 4.
They also improved the error term and showed that there is an extra term
in the asymptotic formula of Andrade and Rajagopal [3] for the first moment
of L"(4,xp). Andrade and Jung [2] established an asymptotic formula for
mean value of L(k)(%7XD) averaging over Hogy1 and over Hogyo as g — 00,
where L(¥) (s, xp) is the k-th derivative of L(s,xp). Recently, Bae and Jung
[6] established an even characteristic analogue of the result of Andrade and
Jung. The aim of this paper is to give asymptotic formulas for mean values
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of central values of k-th derivative of prime Dirichlet L-functions in both odd
characteristic and even characteristic.

Let us fix some notations. Let k = F,(¢) be the rational function field over
a finite field F, and A = F[t]. Denote by A the set of monic polynomials in
A and by P the set of monic irreducible polynomials in A. Write A} = {f €
AT :deg(f) =n} and P,, =PNA}. Let m,(n) = |P,| be the number of monic
irreducible polynomials in A of degree n. The prime polynomial theorem says
that (see [10, Theorem 2.2])

(1.1) mq(n) = % +0 (qn> .

Let (a(s) be the zeta function of A defined by

Cals) =Y ﬁ Re(s) > 1,

feAt

where |f| = ¢32(/). Tt is well known that (4(s) = #

2. Odd characteristic case

In this section we assume that ¢ is odd. For any monic square-free polyno-
mial D in A, the quadratic Dirichlet L-function L(s,xp) attached to a qua-
dratic character xp is defined as follows:

xp(f)
|fls 7

L(s,xp) = Re(s) > 1.

fEAT
Let Jg(n) = 3" _, mF for any positive integer n. We establish an asymptotic
formula for mean value of L(’“)(%7 xp) averaging over P 41 and over Pogyo as
g — 0.

Theorem 2.1. Let k be a fixed positive integer. As g — oo, we have that
(1)
Z L(k)(%’XP)
(Ing)*

Y (Jk([g]H 5 (1)b+ck!ga5(b)(§)J([g_1])>
g 2 c\l™3

1ble! b
e aldble!  (21lng)
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o by gy e (B gt ()
—(a(2) q <(g_|_ l)kq[i]*a + ¢l Z ( )(2)>

29 + 2 = \m/ (—In qQm
+0 (gkq%g) ,
where 6(s) = 11__(;1:1

2.1. Preparations for the proof

In this subsection we present some auxiliary lemmas which are needed in
proof of Theorem 2.1.

The following lemma is quoted from Rudnick [11, (2.5)], and it is proved by
using the explicit formula for L(s, xp) and the Riemann hypothesis for curves.

Lemma 2.2. For any non-constant f € AT, which is not a perfect square, we
have

n

> xr(f) < L deg(s).

PeP,

Let k be a fixed positive integer. For h € {g — 1,9}, m € {0,1,...,k} and
n € {29+ 1,2g + 2}, we define two sums Sy, ., (P,,) and T3, (P,,) as follows:

h
Sh,m (Pr) :ng % Z Z xr(f)
=0

+
feaf Pebn

and

h
T®) =% 3. 3 3 xplh)

£=0 fEAzr PeP,
We first give an asymptotic formula of Sp, p, (Py).

Lemma 2.3. For h € {g — 1,9}, m € {0,1,...,k} and n € {29 + 1,29 + 2},
we have

n

Shm(P) = 2™ T ([2]) 4

o +0 (gmq%g> .

Proof. We split the sum S, ., (P,,) over f with f being a square or a non-square
to obtain

(21) Sh,m(]}pn) - Sh,m(Pn)D + Sh,m(Pn);éD;

where
h

ShanP)g =3 "5 >3 xp(f)

(=0 O=fea} PEP,
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and

h
Sh,m(]P)n)?gD - Zem(f% Z Z XP(f)
£=0

O#feAf PePn

For the contribution of non-squares, we use Lemma 2.2 to deduce that

Shm (P 7,5D)<< Zﬁmq E3TY xe(h)

feAZ' PeP,

n h
(2.2) < % STt < gngE

For f € Azr with 0 < ¢ < h, if f is a square, that is, f = L? for some L € A},
then ¢ = 2a and xp(f) = xp(L?) = 1. Thus we have

Then, by the prime polynomial theorem (1.1), we deduce that

(23) Sun(Ba)g = 2" T (4D L + 0G5 a?)

since

2"”] ([%])E < gmqg.
n
Inserting (2.2) and (2.3) into (2.1), we complete the proof. O

We now give an asymptotic formula of 75 (n).

Lemma 2.4. For he€ {g—1,g9} and n € {29 + 1,29 + 2}, we have

Ti(Ba) = @ 40 (¢¥).

Proof. Splitting the sum 7, (P,) over f with f being a square or a non-square,
we can write

(2.4) Ti(Pa) = Ta(Ba)oy + T (Pa) s,

where

To(Py qu’?lz S Y xeh)

=0 O=feA; PEPn
and

Tn(Pn)ug =q" hHZ > > xelf)

=0 D¢f€A+ PeP,
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Using Lemma 2.2, we obtain that

w3

h
_ht1 3g
<q 2% I < q*.
=0

h
(25) |Ta(Pa)yo| < g% >

=0 renf

Z xp(f)

PeP,

As in the proof of Lemma 2.3, if f € Azr is a square, then f = L? for some
L € A} with £ =2a and xp(f) = xp(L?) = 1. Thus we have

_hi3 (on
Ta(Pu)g = Ga(2)a™ % (g# = 1) my(m).
Then, by the prime polynomial theorem (1.1), we deduce that

_h+3

26) TP = G2 @ - 0T o (1),

since
h 3 9
O e
n )
We can complete the proof by inserting (2.5) and (2.6) into (2.4) and arranging

the terms. O

2.2. Proof of Theorem 2.1(1)

In this subsection, we give a proof of first part of Theorem 2.1. Let P €
Pygy+1. From Lemma 5.1 in [2], we have

(k) (1 g )
EBr) - S ot s X o)

In gk
(Ing) prt oy’
k k g—1 ,
(2.7 D ST SRS SR
m=0 £=0 fGAZ’
Summing (2.7) over Pyyy1, we obtain that
L(k)(la XP)
Z W = (_l)ksg,k(PQg-‘rl)
PeP2gi1 q
"k
(2.9 £ 32 (n) 2078 o)

It follows from Lemma 2.3 that

2g+1 3q
29) Sya(Payer) = (8D +0 (o)
and
2g+1 3g
210) Sy n(Pay) =2 (DL 40 (57%).
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Inserting (2.9) and (2.10) into (2.8) and arranging the terms, we complete the
proof.

2.3. Proof of Theorem 2.1(2)

In this subsection, we give a proof of second part of Theorem 2.1. Let
P € Pyy4o. From Lemma 6.1 in [2], we have

LU~c
o S Y )~ Y T el

feat £=0 reaf
!2@%@@V1
+ Lalblel (—Ing)? )q > xelf
a+b+c= Z—O f€A+
k k 1)
4 k m §(m) (,
(2.11) —EY ( )fz (S
m/) (—=lng)™
m=0 /=0 fEA+

Summing (2.11) over Pyg 2, we have

L¥ (3, xp) (—1)°k! (29)°6)(3)
——2 L = 8k (Pogya) + ' 2-8g-1,c(Pagi2)
PePag 42 ( In q) ’ g+ a+b+ZC=k alble! (_ln q)b o o
k k—m §(m) (1
k\g 1) )
(212) — (g —|— 1)k7;(]P29+2) - Z <m> (_Tq)iznfl(P%ﬂrQ).
m=0
It follows from Lemma 2.3 that
2942
k q k32
(2.13) Sy(Pagi2) = 2[5 +0 (607
and
c g—1 q29+2 c 29
(2.14) Sg-1.e(Pagiz) = 20|55~ +0 (g e ) .
It also follows from Lemma 2.4 that
2g+2
91_943 39
(215) E(P2g+2) = CA(2)C][2] 2 m + O (q 2 )
and
[Z5t]—2-1 q29+2 39
(2.16) Ty (Bagi2) = )= 74 S 10 (a%).

We can complete the proof by inserting (2.13), (2.14), (2.15) and (2.16) into
(2.12) and arranging terms.
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3. Even characteristic case

In this section ¢ will be assumed to be even. Let us first recall some basic
facts on the quadratic function fields of prime conductor briefly. For more
details, we refer [1, §2.2] or [4, §2.2, §2.3]. Let p : k — k be the additive
homomorphism defined by p(z) = 22 +z. For any u € k\ p(k), let K,, = k(z,),
where z,, is a zero of X2 + X 4+ u = 0. Fix an element £ € F, \ p(F,). Then
any separable quadratic extension K of k of prime conductor is of the form
K = K,,, where u € k can be uniquely normalized as follows:

A S
u:F-f—;agT%*l—Fa,

where P € P, 0 # A € A with deg(A) < deg(P), a € {0,¢}, ay € Fy and
as # 0 for s > 0. The infinite prime (1/T") of k splits, is inert or ramified
in K, according as s = 0and aa =0, s =0 and o = &, or s > 0. Then the
field K, is called real, inert imaginary, or ramified imaginary, respectively. The
discriminant D,, of K, is P2 if s = 0 and P?-(1/T)?* otherwise, and the genus
gu of K, is deg(P) — 1 if s = 0 and deg(P) + s — 1 otherwise.

Let F be the set of non-zero rational functions u € k such that u = %
for some P € Pand 0 # A € A with deg(A) < deg(P). Then, under the
correspondence u — K,,, F corresponds to the set of all real separable quadratic
extensions K, of k of prime conductor. For P € P, let Fp be the set of rational
functions u € F whose denominator is P. Then F is the disjoint union of Fp
with P € P. For u € Fp, the genus g, of K, is deg(P) — 1. For n > 1, let F,
be the union of Fp with P € P,. Then F,, corresponds to the set of all real
separable quadratic extensions K, of k of prime conductor with genus n — 1.
For a positive integer s, let G be the set of polynomials F(T) € A of the form

F(T)=a+) o1,
i=1

where a € {0,¢},a; € F, and o # 0. For any two subsets U, V of k, write
U+V={u+v:ueUwveV} LetZT=(FU{0})+G, where G = J,~, Gs.
Then, under the correspondence v — K,, Z corresponds to the set of all
ramified imaginary separable quadratic extensions K, of k of prime conductor.
For w € Fp + G, the genus g, of K,, is deg(P) + s — 1. Let Fy = {0}. For
any r > 0 and s > 1, let Z(, oy = F + Gs. If w € I, 4, the genus g, of K,
is 7+ s —1. For n > 1, let Z,, be the union of all Zi, ), where (r, s) runs over
all pairs of non-negative integers such that s > 0 and » + s = n. Then Z,
corresponds to the set of all ramified imaginary separable quadratic extensions
K, of k of prime conductor with genus n — 1.

Let u € k be normalized as above and x,, be the character defined by x.,(f) =
{#}. The L-function L(s, xu) associated to x is defined as follows:
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Xu(f)
[fls

We establish an asymptotic formula for mean value of L*) (1 55 Xu) averaging
over Zy41 and over Fg4q as g — oo.

L(S, Xu) =
feAt

Re(s) > 1.

Theorem 3.1. Let k be a fixed positive integer. As g — oo, we have that

(1)
Z L(k)(27Xu)

wers, (ma*
k
_2k1q9+< Y Je([£]) + kamg1)>
g (DRG] mZ( ) (1%5*]
+0(g"2¢),
(2)
L®) (4, xu)

u€;+1lnq)
29+2 g (—1)Ck' a(g(b( )
9+1< 5D a+b+cﬁ T (—2mgp T D)

k

3 1 km(m)l
-Gl (<g+1> ey ()

= Ing)™

where §(s) = 11 (;15 .

3.1. Preparations for the proof

In this subsection we present some auxiliary lemmas which are needed in
proof of Theorem 3.1.

The following lemma is quoted from Lemma 4.4 and Lemma 4.6 in [1].

Lemma 3.2. For f € A" with deg(f) < 2g + 1, which is not a perfect square
in A, we have

(3.1) > xulf)| < (Ing)g?
u€lgt

and

(3.2) > xlf) <<§.

u€Fgi1
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Let k be a fixed positive integer. For h € {g — 1,9} and m € {0,1,...,k},
we define three sums Sy, (Zg+1) and Spm(Fg+1), Th(Fg+1) as

Shm g+1 ng Z Z Xu(f)

feaf u€lgta

and

h
Sh m(fg-&-l) Zemq—é Z Z Xu(f)
£=0

feAf u€Fgt1
h+1
Ti(Fy) SY Y
£=0 feAJr uG]‘-g+1
We give an asymptotic formula of Sy, (Zg41).

Lemma 3.3. For he€ {g— 1,9} and m € {0,1,...,k}, we have
q2g+1

Shn(Tg1) = 2" T ([5]) +0(g"2¢).

Proof. We split the sum Sy, (Zg41) over f with f being a square or a non-

square to obtain

Sh m( g+1) Sh m( g+1) +Sh m( g+1)7$|ja

where

h
Shn@gr)g =" % 3 Y xulf)
=0

O=rfeA) u€Zgt1

and

h
Sh m( g+1)7gD = meq_% Z Z Xu(f)
£=0

O#feA) u€g+1

We use (3.1) to deduce that

h
Snm@ye)yo| <D 3 | Y )

£=0 O#feaf |u€lotr
(3.3) < (Ing)q szqz < g"q?.

For f € AZ’ with 0 < ¢ < h, if f is a square, that is, f = L? for some L € A},
then ¢ = 2a and . (f) = xu(L?) = 1 for any u € Z,1. Thus we have

Sh,m(zg+1)|:| = 2m‘]m([%]) |Ig+1|'
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From [1, Lemma 4.3], we have

2q2g+1 q29
Zg41l = ; oz )

2
Thus we get
q2g+1
(3.4) Shn(Zg1)g = 2" T ([3)) +0(g™ %)
Combining (3.3) and (3.4), we complete the proof. O

We give an asymptotic formula of Sy, (Fg41).

Lemma 3.4. For he€ {g— 1,9} and m € {0,1,...,k}, we have

2g+2
qg+

g+1

Snan(Fy) = 2" In(B) T +0 (97710 F).

Proof. We split the sum S, (Fg41) over f with f being a square or a non-
square to obtain

Shom(Fgt1) = Shom(Fg41)g + Sh,m(}—gnLl)#Da

where
h £
Shm(For)g =D "2 > > xulf)
=0 D:fGAZ' uEFg41
and
h £
Sh,m(]:g-i-l);ﬁ[\ = Zemq_i Z Z Xu(f)-
£=0 O#feAf u€Fg+1

Using (3.2), we have

h
Sh,m(}-ngl);éD‘ < meq_% Z Z Xu(f)

£=0 D;éfeAj uEFg41
qg h 3 1 39
(3.5) < > g < gl
£=0

As in the proof of Lemma 3.3, if f € AZ’ is a square, then f = L? for some
L € A} with £ = 2a and xp(f) = xp(L?) = 1. Thus we have

Sh,m(Fg—&-l)D = 2me([%D|}—g+l‘-
From [1, Lemma 4.3], we have

2g+2 39

q q:
F = +0 .
| g+1| g+1 (g)
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Thus we get
2942 .
_9gm nn 4 m—1 32
(3.6) Shan(For)n = 2" Im(3) = +0(gm1q%)
Combining (3.5) and (3.6), we complete the proof. O

We give an asymptotic formula of 75 (Fg41).
Lemma 3.5. Forhe {g—1,g9} and m € {0,1,...,k}, we have
3g
_ Gal2) oy nipryes 92
771(}-g+1)—g+1q TR 40 g |

Proof. Splitting the sum 7 (Fy41) over f with f being a square or a non-square,
we can write

771(]:g+1) = 771(-7:g+1)|:| + Th(]:g-i-l);g[p

where

h
T Fordo=a"7 > > > xlf)

£=0 D:fEAZ* u€Fgr1

and

h
77L(‘F9+1)¢D:q_%z Z Z Xu(f)-

£=0 D#fEAZ' u€EFg41

For the contribution of non-squares, we use (3.2) to deduce that

h
7774(]:9+1)75D‘ < q_% Z Z Z Xu(f)

=0 0Oxfen] |vEFg+1
_htlig h 39
2 2
(3.7) <€ - Y i< K
9 = g
As in the proof of Lemma 3.3, if f € AZ’ is a square, then f = L? for some
L € A} with £ =2 and xp(f) = xp(L?) = 1. Thus we have
e g3+t -1

flp:g-&-ﬂ-

7;L(]:g+1)|] =q q

From [1, Lemma 4.3], we have

2g+2 39
q q:
F, = +0|—|.
| g+1| g+1 ( q )
Thus we get

Ca(2) ggn (a4 q7
(3.8) 771(}-g+1)mzmq2g 2tz 10 g )
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Combining (3.7) and (3.8), we complete the proof. O

3.2. Proof of Theorem 3.1(1)

In this subsection, we give a proof of first part of Theorem 3.1. Let u € Z ;.
From Lemma 5.1 in [6], we have

L® (L, xy a L
ln2q Xe) Z 0F7% " xulf)

feaf

=0
k
(3.9) + )

m=0

<Z>(2g Z 5> xalf

=0 f€A+

Summing (3.9) over Z 41, we obtain that

L*F)(L v,
M = (_1)ksg,k(Ig+l)

k
werr,, (ng)
"k

(3.10) +> (m>(—2g)k‘msg_1,m(1g+1)-

m=0
It follows from Lemma 3.3 that

q2g+1

(3.11) Sgk(Tgr1) = 21Tk (14]) +0(g"%¢*)
and

1 1 q2'q+1 2 2
(3.12) Sg—1,m(Zg41) = 2" T ([457]) 7 +0(g™ "q™)

Inserting (3.11) and (3.12) into (3.10) and arranging the terms, we complete
the proof.

3.3. Proof of Theorem 3.1(2)

In this subsection, we give a proof of second part of Theorem 3.1. Let
u € Fyi1. From Lemma 6.1 in [6], we have

LK) Q’X“ k
Cng) Zf a5 > xulf) = (g+ D Z > xulf

feayf =0 feaf
a —1
(29)*8™ (3) S

+ > alblcl (—Ing)? Z )q > xulf)

a+b+c=k =0 f€A+

k k—m s(m) 1) 91
(3.13) —q 3 Z ( )5(2)2 > xulh)-
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Summing (3.13) over F,1, we obtain that

(k:) 1 _1)\c a (b) 1
R LT AR P D L ZC NN A

e (—Ing)F it alble!  (—Ingq)®
k k—mg(m) (1
k )
(3.14) —(g+ D Ty (Fgyr) = (m) g(Tq)m(g)E—l(ng)-
m=0
It follows from Lemma 3.4 that
2g+2
(3.15) Syrl(Fyrn) = (8D T +0 (907
and
2g+2 34
(3.16) ngl,c(]‘—g+1) — QCJC([%])Z 1 +0 (90—1q7>
It also follows from Lemma 3.4 that
Ca(2) 3919148 g%
317 T f = ——=q 2 +[2]+2 +O
( ) g( g+1) g+ 1q g
and
Ca(2) 89 o1 ¢
3].8 T? _F = — 2+[2]+2+O
( ) g 1( g+1) g+ 1(1 9

We finally complete the proof by inserting (3.15), (3.16), (3.17) and (3.18) into
(3.14) and arranging the terms.
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