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MEAN VALUES OF DERIVATIVES OF QUADRATIC PRIME

DIRICHLET L-FUNCTIONS IN FUNCTION FIELDS

Hwanyup Jung

Abstract. In this paper, we establish an asymptotic formula for mean

value of L(k)( 1
2
, χP ) averaging over P2g+1 and over P2g+2 as g → ∞ in

odd characteristic. We also give an asymptotic formula for mean value

of L(k)( 1
2
, χu) averaging over Ig+1 and over Fg+1 as g → ∞ in even

characteristic.

1. Introduction

The study on mean values of central values of derivative of quadratic Dirich-
let L-functions in function fields was initiated by Andrade and Rajagopal [3].
Let Fq[t] be the polynomial ring over a finite field Fq, where q is odd, and
denote by Hn the set of monic square-free polynomials in Fq[t] of degree n.
In [3], Andrade and Rajagopal gave an asymptotic formula for mean value of
L′′( 1

2 , χD) averaging over H2g+1 as g → ∞. Here, L(s, χD) is the quadratic
Dirichlet L-function associated to a quadratic character χD and L′′(s, χD)
is the second derivative of L(s, χD). It is shown by Bae and Jung [5] that
L′( 1

2 , χD) = (− ln q)g · L( 1
2 , χD) for any D ∈ H2g+1. Hence the moment of

L′( 1
2 , χD) over H2g+1 is a constant multiple of that of L( 1

2 , χD) over H2g+1.

Applying the results of Florea on k-th moment of L( 1
2 , χD) over H2g+1 ([7–9]),

they obtained the k-th moment of L′( 1
2 , χD) over H2g+1 for 1 ≤ k ≤ 4.

They also improved the error term and showed that there is an extra term
in the asymptotic formula of Andrade and Rajagopal [3] for the first moment
of L′′( 1

2 , χD). Andrade and Jung [2] established an asymptotic formula for

mean value of L(k)( 1
2 , χD) averaging over H2g+1 and over H2g+2 as g → ∞,

where L(k)(s, χD) is the k-th derivative of L(s, χD). Recently, Bae and Jung
[6] established an even characteristic analogue of the result of Andrade and
Jung. The aim of this paper is to give asymptotic formulas for mean values
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of central values of k-th derivative of prime Dirichlet L-functions in both odd
characteristic and even characteristic.

Let us fix some notations. Let k = Fq(t) be the rational function field over
a finite field Fq and A = Fq[t]. Denote by A+ the set of monic polynomials in
A and by P the set of monic irreducible polynomials in A. Write A+

n = {f ∈
A+ : deg(f) = n} and Pn = P ∩ A+

n . Let πq(n) = |Pn| be the number of monic
irreducible polynomials in A of degree n. The prime polynomial theorem says
that (see [10, Theorem 2.2])

(1.1) πq(n) =
qn

n
+O

(
q
n
2

n

)
.

Let ζA(s) be the zeta function of A defined by

ζA(s) =
∑
f∈A+

1

|f |s
, Re(s) > 1,

where |f | = qdeg(f). It is well known that ζA(s) = 1
1−q1−s .

2. Odd characteristic case

In this section we assume that q is odd. For any monic square-free polyno-
mial D in A, the quadratic Dirichlet L-function L(s, χD) attached to a qua-
dratic character χD is defined as follows:

L(s, χD) =
∑
f∈A+

χD(f)

|f |s
, Re(s) > 1.

Let Jk(n) =
∑n
m=1m

k for any positive integer n. We establish an asymptotic

formula for mean value of L(k)( 1
2 , χP ) averaging over P2g+1 and over P2g+2 as

g →∞.

Theorem 2.1. Let k be a fixed positive integer. As g →∞, we have that
(1) ∑
P∈P2g+1

L(k)( 1
2 , χP )

(ln q)k

= 2k
q2g+1

2g + 1

(
(−1)kJk([ g2 ]) +

k∑
m=0

(
k

m

)
(−g)k−mJm([ g−12 ])

)
+O

(
gkq

3g
2

)
,

(2) ∑
P∈P2g+2

L(k)( 1
2 , χP )

(− ln q)k

= 2k−1
q2g+2

g + 1

(
Jk([ g2 ]) +

∑
a+b+c=k

(−1)b+ck!

a!b!c!

gaδ(b)( 1
2 )

(2 ln q)b
Jc([

g−1
2 ])

)
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− ζA(2)
q

3g
2 +1

2g + 2

(
(g + 1)kq[

g
2 ]−

1
2 + q[

g−1
2 ]

k∑
m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m

)
+O

(
gkq

3g
2

)
,

where δ(s) = 1−q−s
1−qs−1 .

2.1. Preparations for the proof

In this subsection we present some auxiliary lemmas which are needed in
proof of Theorem 2.1.

The following lemma is quoted from Rudnick [11, (2.5)], and it is proved by
using the explicit formula for L(s, χP ) and the Riemann hypothesis for curves.

Lemma 2.2. For any non-constant f ∈ A+, which is not a perfect square, we
have ∑

P∈Pn

χP (f)� q
n
2

n
deg(f).

Let k be a fixed positive integer. For h ∈ {g − 1, g}, m ∈ {0, 1, . . . , k} and
n ∈ {2g + 1, 2g + 2}, we define two sums Sh,m(Pn) and Th(Pn) as follows:

Sh,m(Pn) =

h∑
`=0

`mq−
`
2

∑
f∈A+

`

∑
P∈Pn

χP (f)

and

Th(Pn) = q−
h+1
2

h∑
`=0

∑
f∈A+

`

∑
P∈Pn

χP (f).

We first give an asymptotic formula of Sh,m(Pn).

Lemma 2.3. For h ∈ {g − 1, g}, m ∈ {0, 1, . . . , k} and n ∈ {2g + 1, 2g + 2},
we have

Sh,m(Pn) = 2mJm([h2 ])
qn

n
+O

(
gmq

3g
2

)
.

Proof. We split the sum Sh,m(Pn) over f with f being a square or a non-square
to obtain

Sh,m(Pn) = Sh,m(Pn)� + Sh,m(Pn) 6=�,(2.1)

where

Sh,m(Pn)� =

h∑
`=0

`mq−
`
2

∑
�=f∈A+

`

∑
P∈Pn

χP (f)
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and

Sh,m(Pn) 6=� =

h∑
`=0

`mq−
`
2

∑
� 6=f∈A+

`

∑
P∈Pn

χP (f).

For the contribution of non-squares, we use Lemma 2.2 to deduce that∣∣∣Sh,m(Pn) 6=�

∣∣∣� h∑
`=0

`mq−
`
2

∑
f∈A+

`

∣∣∣∣∣ ∑
P∈Pn

χP (f)

∣∣∣∣∣
� q

n
2

n

h∑
`=0

`m+1q
`
2 � gmq

3g
2 .(2.2)

For f ∈ A+
` with 0 ≤ ` ≤ h, if f is a square, that is, f = L2 for some L ∈ A+

α ,
then ` = 2α and χP (f) = χP (L2) = 1. Thus we have

Sh,m(Pn)� =

[h2 ]∑
α=0

(2α)mq−α
∑
L∈A+

α

∑
P∈Pn

χP (L2) = 2mJm([h2 ])πq(n).

Then, by the prime polynomial theorem (1.1), we deduce that

Sh,m(Pn)� = 2mJm([h2 ])
qn

n
+O(gmqg),(2.3)

since

2mJm([h2 ])
q
n
2

n
� gmqg.

Inserting (2.2) and (2.3) into (2.1), we complete the proof. �

We now give an asymptotic formula of Th(n).

Lemma 2.4. For h ∈ {g − 1, g} and n ∈ {2g + 1, 2g + 2}, we have

Th(Pn) = ζA(2)q[
h
2 ]−

h+3
2
qn

n
+O

(
q

3g
2

)
.

Proof. Splitting the sum Th(Pn) over f with f being a square or a non-square,
we can write

Th(Pn) = Th(Pn)� + Th(Pn)6=�,(2.4)

where

Th(Pn)� = q−
h+1
2

h∑
`=0

∑
�=f∈A+

`

∑
P∈Pn

χP (f)

and

Th(Pn) 6=� = q−
h+1
2

h∑
`=0

∑
� 6=f∈A+

`

∑
P∈Pn

χP (f).
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Using Lemma 2.2, we obtain that

|Th(Pn)6=�| � q−
h+1
2

h∑
`=0

∑
f∈A+

`

∣∣∣∣∣ ∑
P∈Pn

χP (f)

∣∣∣∣∣� q−
h+1
2
q
n
2

n

h∑
`=0

`q` � q
3g
2 .(2.5)

As in the proof of Lemma 2.3, if f ∈ A+
` is a square, then f = L2 for some

L ∈ A+
α with ` = 2α and χP (f) = χP (L2) = 1. Thus we have

Th(Pn)� = ζA(2)q−
h+3
2

(
q[
h
2 ] − 1

)
πq(n).

Then, by the prime polynomial theorem (1.1), we deduce that

Th(Pn)� = ζA(2)q−
h+3
2 (q[

h
2 ] − 1)

qn

n
+O

(
qg

g

)
,(2.6)

since

ζA(2)q−
h+3
2 (q[

h
2 ] − 1)

q
n
2

n
� qg

g
.

We can complete the proof by inserting (2.5) and (2.6) into (2.4) and arranging
the terms. �

2.2. Proof of Theorem 2.1(1)

In this subsection, we give a proof of first part of Theorem 2.1. Let P ∈
P2g+1. From Lemma 5.1 in [2], we have

L(k)( 1
2 , χP )

(ln q)k
=

g∑
`=0

(−`)kq− `2
∑
f∈A+

`

χP (f)

+

k∑
m=0

(
k

m

)
(−2g)k−m

g−1∑
`=0

`mq−
`
2

∑
f∈A+

`

χP (f).(2.7)

Summing (2.7) over P2g+1, we obtain that∑
P∈P2g+1

L(k)( 1
2 , χP )

(ln q)k
= (−1)kSg,k(P2g+1)

+

k∑
m=0

(
k

m

)
(−2g)k−mSg−1,m(P2g+1).(2.8)

It follows from Lemma 2.3 that

Sg,k(P2g+1) = 2kJk([ g2 ])
q2g+1

2g + 1
+O

(
gkq

3g
2

)
(2.9)

and

Sg−1,m(P2g+1) = 2mJm([ g−12 ])
q2g+1

2g + 1
+O

(
gmq

3g
2

)
.(2.10)
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Inserting (2.9) and (2.10) into (2.8) and arranging the terms, we complete the
proof.

2.3. Proof of Theorem 2.1(2)

In this subsection, we give a proof of second part of Theorem 2.1. Let
P ∈ P2g+2. From Lemma 6.1 in [2], we have

L(k)( 1
2 , χP )

(− ln q)k
=

g∑
`=0

`kq−
`
2

∑
f∈A+

`

χP (f)− (g + 1)kq−
g+1
2

g∑
`=0

∑
f∈A+

`

χP (f)

+
∑

a+b+c=k

k!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b

g−1∑
`=0

(−`)cq− `2
∑
f∈A+

`

χP (f)

− q−
g
2

k∑
m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m

g−1∑
`=0

∑
f∈A+

`

χP (f).(2.11)

Summing (2.11) over P2g+2, we have

∑
P∈P2g+2

L(k)( 1
2 , χP )

(− ln q)k
= Sg,k(P2g+2) +

∑
a+b+c=k

(−1)ck!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b
Sg−1,c(P2g+2)

− (g + 1)kTg(P2g+2)−
k∑

m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m
Tg−1(P2g+2).(2.12)

It follows from Lemma 2.3 that

Sg,k(P2g+2) = 2kJk([ g2 ])
q2g+2

2g + 2
+O

(
gkq

3g
2

)
(2.13)

and

Sg−1,c(P2g+2) = 2cJc([
g−1
2 ])

q2g+2

2g + 2
+O

(
gcq

3g
2

)
.(2.14)

It also follows from Lemma 2.4 that

Tg(P2g+2) = ζA(2)q[
g
2 ]−

g+3
2
q2g+2

2g + 2
+O

(
q

3g
2

)
(2.15)

and

Tg−1(P2g+2) = ζA(2)q[
g−1
2 ]− g2−1

q2g+2

2g + 2
+O

(
q

3g
2

)
.(2.16)

We can complete the proof by inserting (2.13), (2.14), (2.15) and (2.16) into
(2.12) and arranging terms.
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3. Even characteristic case

In this section q will be assumed to be even. Let us first recall some basic
facts on the quadratic function fields of prime conductor briefly. For more
details, we refer [1, §2.2] or [4, §2.2, §2.3]. Let ℘ : k → k be the additive
homomorphism defined by ℘(x) = x2+x. For any u ∈ k\℘(k), let Ku = k(xu),
where xu is a zero of X2 + X + u = 0. Fix an element ξ ∈ Fq \ ℘(Fq). Then
any separable quadratic extension K of k of prime conductor is of the form
K = Ku, where u ∈ k can be uniquely normalized as follows:

u =
A

P
+

s∑
`=1

α`T
2`−1 + α,

where P ∈ P, 0 6= A ∈ A with deg(A) < deg(P ), α ∈ {0, ξ}, α` ∈ Fq and
αs 6= 0 for s > 0. The infinite prime (1/T ) of k splits, is inert or ramified
in Ku according as s = 0 and α = 0, s = 0 and α = ξ, or s > 0. Then the
field Ku is called real, inert imaginary, or ramified imaginary, respectively. The
discriminant Du of Ku is P 2 if s = 0 and P 2 · (1/T )2s otherwise, and the genus
gu of Ku is deg(P )− 1 if s = 0 and deg(P ) + s− 1 otherwise.

Let F be the set of non-zero rational functions u ∈ k such that u = A
P

for some P ∈ P and 0 6= A ∈ A with deg(A) < deg(P ). Then, under the
correspondence u 7→ Ku, F corresponds to the set of all real separable quadratic
extensions Ku of k of prime conductor. For P ∈ P, let FP be the set of rational
functions u ∈ F whose denominator is P . Then F is the disjoint union of FP
with P ∈ P. For u ∈ FP , the genus gu of Ku is deg(P )− 1. For n ≥ 1, let Fn
be the union of FP with P ∈ Pn. Then Fn corresponds to the set of all real
separable quadratic extensions Ku of k of prime conductor with genus n − 1.
For a positive integer s, let Gs be the set of polynomials F (T ) ∈ A of the form

F (T ) = α+

s∑
i=1

αiT
2i−1,

where α ∈ {0, ξ}, αi ∈ Fq and αs 6= 0. For any two subsets U , V of k, write
U + V = {u + v : u ∈ U, v ∈ V }. Let I = (F ∪ {0}) + G, where G =

⋃
s≥1 Gs.

Then, under the correspondence u 7→ Ku, I corresponds to the set of all
ramified imaginary separable quadratic extensions Ku of k of prime conductor.
For w ∈ FP + Gs, the genus gw of Kw is deg(P ) + s − 1. Let F0 = {0}. For
any r ≥ 0 and s ≥ 1, let I(r,s) = Fr + Gs. If w ∈ I(r,s), the genus gw of Kw

is r + s− 1. For n ≥ 1, let In be the union of all I(r,s), where (r, s) runs over
all pairs of non-negative integers such that s > 0 and r + s = n. Then In
corresponds to the set of all ramified imaginary separable quadratic extensions
Ku of k of prime conductor with genus n− 1.

Let u ∈ k be normalized as above and χu be the character defined by χu(f) =
{uf }. The L-function L(s, χu) associated to χu is defined as follows:
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L(s, χu) =
∑
f∈A+

χu(f)

|f |s
, Re(s) > 1.

We establish an asymptotic formula for mean value of L(k)( 1
2 , χu) averaging

over Ig+1 and over Fg+1 as g →∞.

Theorem 3.1. Let k be a fixed positive integer. As g →∞, we have that
(1) ∑

u∈Ig+1

L(k)( 1
2 , χu)

(ln q)k

= 2k+1 q
2g+1

g

(
(−1)kJk([ g2 ]) +

k∑
m=0

(
k

m

)
(−g)k−mJm([ g−12 ])

)
+O(gk−2q2g),

(2) ∑
u∈Fg+1

L(k)( 1
2 , χu)

(− ln q)k

= 2k
q2g+2

g + 1

(
Jk([ g2 ]) +

∑
a+b+c=k

(−1)ck!

a!b!c!

gaδ(b)( 1
2 )

(−2 ln q)b
Jc([

g−1
2 ])

)

− ζA(2)
q

3g
2 + 3

2

g + 1

(
(g + 1)kq[

g
2 ] + q[

g−1
2 ]+ 1

2

k∑
m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m

)
+O

(
gk−1q

3g
2

)
,

where δ(s) = 1−q−s
1−qs−1 .

3.1. Preparations for the proof

In this subsection we present some auxiliary lemmas which are needed in
proof of Theorem 3.1.

The following lemma is quoted from Lemma 4.4 and Lemma 4.6 in [1].

Lemma 3.2. For f ∈ A+ with deg(f) ≤ 2g + 1, which is not a perfect square
in A, we have ∣∣∣∣∣∣

∑
u∈Ig+1

χu(f)

∣∣∣∣∣∣� (ln g)qg(3.1)

and ∣∣∣∣∣∣
∑

u∈Fg+1

χu(f)

∣∣∣∣∣∣� qg

g
.(3.2)
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Let k be a fixed positive integer. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , k},
we define three sums Sh,m(Ig+1) and Sh,m(Fg+1), Th(Fg+1) as

Sh,m(Ig+1) =

h∑
`=0

`mq−
`
2

∑
f∈A+

`

∑
u∈Ig+1

χu(f)

and

Sh,m(Fg+1) =

h∑
`=0

`mq−
`
2

∑
f∈A+

`

∑
u∈Fg+1

χu(f),

Th(Fg+1) = q−
h+1
2

h∑
`=0

∑
f∈A+

`

∑
u∈Fg+1

χu(f).

We give an asymptotic formula of Sh,m(Ig+1).

Lemma 3.3. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , k}, we have

Sh,m(Ig+1) = 2m+1Jm([h2 ])
q2g+1

g
+O(gm−2q2g).

Proof. We split the sum Sh,m(Ig+1) over f with f being a square or a non-
square to obtain

Sh,m(Ig+1) = Sh,m(Ig+1)� + Sh,m(Ig+1)6=�,

where

Sh,m(Ig+1)� =

h∑
`=0

`mq−
`
2

∑
�=f∈A+

`

∑
u∈Ig+1

χu(f)

and

Sh,m(Ig+1)6=� =

h∑
`=0

`mq−
`
2

∑
� 6=f∈A+

`

∑
u∈Ig+1

χu(f).

We use (3.1) to deduce that∣∣∣Sh,m(Ig+1) 6=�

∣∣∣� h∑
`=0

`mq−
`
2

∑
�6=f∈A+

`

∣∣∣∣∣∣
∑

u∈Ig+1

χu(f)

∣∣∣∣∣∣
� (ln g)qg

h∑
`=0

`mq
`
2 � gmq

3g
2 .(3.3)

For f ∈ A+
` with 0 ≤ ` ≤ h, if f is a square, that is, f = L2 for some L ∈ A+

α ,
then ` = 2α and χu(f) = χu(L2) = 1 for any u ∈ Ig+1. Thus we have

Sh,m(Ig+1)� = 2mJm([h2 ])|Ig+1|.
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From [1, Lemma 4.3], we have

|Ig+1| =
2q2g+1

g
+O

(
q2g

g2

)
.

Thus we get

Sh,m(Ig+1)� = 2m+1Jm([h2 ])
q2g+1

g
+O(gm−2q2g).(3.4)

Combining (3.3) and (3.4), we complete the proof. �

We give an asymptotic formula of Sh,m(Fg+1).

Lemma 3.4. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , k}, we have

Sh,m(Fg+1) = 2mJm([h2 ])
q2g+2

g + 1
+O

(
gm−1q

3g
2

)
.

Proof. We split the sum Sh,m(Fg+1) over f with f being a square or a non-
square to obtain

Sh,m(Fg+1) = Sh,m(Fg+1)� + Sh,m(Fg+1)6=�,

where

Sh,m(Fg+1)� =

h∑
`=0

`mq−
`
2

∑
�=f∈A+

`

∑
u∈Fg+1

χu(f)

and

Sh,m(Fg+1) 6=� =

h∑
`=0

`mq−
`
2

∑
�6=f∈A+

`

∑
u∈Fg+1

χu(f).

Using (3.2), we have∣∣∣Sh,m(Fg+1) 6=�

∣∣∣� h∑
`=0

`mq−
`
2

∑
� 6=f∈A+

`

∣∣∣∣∣∣
∑

u∈Fg+1

χu(f)

∣∣∣∣∣∣
� qg

g

h∑
`=0

`mq
`
2 � gm−1q

3g
2 .(3.5)

As in the proof of Lemma 3.3, if f ∈ A+
` is a square, then f = L2 for some

L ∈ A+
α with ` = 2α and χP (f) = χP (L2) = 1. Thus we have

Sh,m(Fg+1)� = 2mJm([h2 ])|Fg+1|.

From [1, Lemma 4.3], we have

|Fg+1| =
q2g+2

g + 1
+O

(
q

3g
2

g

)
.
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Thus we get

Sh,m(Fg+1)� = 2mJm([h2 ])
q2g+2

g + 1
+O

(
gm−1q

3g
2

)
.(3.6)

Combining (3.5) and (3.6), we complete the proof. �

We give an asymptotic formula of Th(Fg+1).

Lemma 3.5. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , k}, we have

Th(Fg+1) =
ζA(2)

g + 1
q2g−

h
2 +[h2 ]+

3
2 +O

(
q

3g
2

g

)
.

Proof. Splitting the sum Th(Fg+1) over f with f being a square or a non-square,
we can write

Th(Fg+1) = Th(Fg+1)� + Th(Fg+1)6=�,

where

Th(Fg+1)� = q−
h+1
2

h∑
`=0

∑
�=f∈A+

`

∑
u∈Fg+1

χu(f)

and

Th(Fg+1) 6=� = q−
h+1
2

h∑
`=0

∑
� 6=f∈A+

`

∑
u∈Fg+1

χu(f).

For the contribution of non-squares, we use (3.2) to deduce that∣∣∣Th(Fg+1) 6=�

∣∣∣� q−
h+1
2

h∑
`=0

∑
�6=f∈A+

`

∣∣∣∣∣∣
∑

u∈Fg+1

χu(f)

∣∣∣∣∣∣
� q−

h+1
2 +g

g

h∑
`=0

q` � q
3g
2

g
.(3.7)

As in the proof of Lemma 3.3, if f ∈ A+
` is a square, then f = L2 for some

L ∈ A+
α with ` = 2α and χP (f) = χP (L2) = 1. Thus we have

Th(Fg+1)� = q−
h+1
2
q[
h
2 ]+1 − 1

q − 1
|Fg+1|.

From [1, Lemma 4.3], we have

|Fg+1| =
q2g+2

g + 1
+O

(
q

3g
2

g

)
.

Thus we get

Th(Fg+1)� =
ζA(2)

g + 1
q2g−

h
2 +[h2 ]+

3
2 +O

(
q

3g
2

g

)
.(3.8)
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Combining (3.7) and (3.8), we complete the proof. �

3.2. Proof of Theorem 3.1(1)

In this subsection, we give a proof of first part of Theorem 3.1. Let u ∈ Ig+1.
From Lemma 5.1 in [6], we have

L(k)( 1
2 , χu)

(ln q)k
=

g∑
`=0

(−`)kq− `2
∑
f∈A+

`

χu(f)

+

k∑
m=0

(
k

m

)
(−2g)k−m

g−1∑
`=0

`mq−
`
2

∑
f∈A+

`

χu(f).(3.9)

Summing (3.9) over Ig+1, we obtain that∑
u∈Ig+1

L(k)( 1
2 , χu)

(ln q)k
= (−1)kSg,k(Ig+1)

+
k∑

m=0

(
k

m

)
(−2g)k−mSg−1,m(Ig+1).(3.10)

It follows from Lemma 3.3 that

Sg,k(Ig+1) = 2k+1Jk([ g2 ])
q2g+1

g
+O(gk−2q2g)(3.11)

and

Sg−1,m(Ig+1) = 2m+1Jm([ g−12 ])
q2g+1

g
+O(gm−2q2g).(3.12)

Inserting (3.11) and (3.12) into (3.10) and arranging the terms, we complete
the proof.

3.3. Proof of Theorem 3.1(2)

In this subsection, we give a proof of second part of Theorem 3.1. Let
u ∈ Fg+1. From Lemma 6.1 in [6], we have

L(k)( 1
2 , χu)

(− ln q)k
=

g∑
`=0

`kq−
`
2

∑
f∈A+

`

χu(f)− (g + 1)kq−
g+1
2

g∑
`=0

∑
f∈A+

`

χu(f)

+
∑

a+b+c=k

k!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b

g−1∑
`=0

(−`)cq− `2
∑
f∈A+

`

χu(f)

− q−
g
2

k∑
m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m

g−1∑
`=0

∑
f∈A+

`

χu(f).(3.13)
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Summing (3.13) over Fg+1, we obtain that∑
u∈Fg+1

L(k)( 1
2 , χu)

(− ln q)k
= Sg,k(Fg+1) +

∑
a+b+c=k

(−1)ck!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b
Sg−1,c(Fg+1)

− (g + 1)kTg(Fg+1)−
k∑

m=0

(
k

m

)
gk−mδ(m)( 1

2 )

(− ln q)m
Tg−1(Fg+1).(3.14)

It follows from Lemma 3.4 that

Sg,k(Fg+1) = 2kJk([ g2 ])
q2g+2

g + 1
+O

(
gk−1q

3g
2

)
(3.15)

and

Sg−1,c(Fg+1) = 2cJc([
g−1
2 ])

q2g+2

g + 1
+O

(
gc−1q

3g
2

)
.(3.16)

It also follows from Lemma 3.4 that

Tg(Fg+1) =
ζA(2)

g + 1
q

3g
2 +[ g2 ]+

3
2 +O

(
q

3g
2

g

)
(3.17)

and

Tg−1(Fg+1) =
ζA(2)

g + 1
q

3g
2 +[ g−1

2 ]+2 +O

(
q

3g
2

g

)
.(3.18)

We finally complete the proof by inserting (3.15), (3.16), (3.17) and (3.18) into
(3.14) and arranging the terms.
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