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STUDY OF GRADIENT SOLITONS IN THREE

DIMENSIONAL RIEMANNIAN MANIFOLDS

Gour Gopal Biswas and Uday Chand De

Abstract. We characterize a three-dimensional Riemannian manifold

endowed with a type of semi-symmetric metric P -connection. At first, it is
proven that if the metric of such a manifold is a gradient m-quasi-Einstein

metric, then either the gradient of the potential function ψ is collinear
with the vector field P or, λ = −(m+ 2) and the manifold is of constant

sectional curvature −1, provided Pψ 6= m. Next, it is shown that if the

metric of the manifold under consideration is a gradient ρ-Einstein soliton,
then the gradient of the potential function is collinear with the vector

field P . Also, we prove that if the metric of a 3-dimensional manifold

with semi-symmetric metric P -connection is a gradient ω-Ricci soliton,
then the manifold is of constant sectional curvature −1 and λ+ µ = −2.

Finally, we consider an example to verify our results.

1. Introduction

The examination of Ricci solitons on Riemannian and semi-Riemannian
manifolds is a significant topic in the area of differential geometry and in ma-
terial science too. Throughout the most recent couple of years, Ricci solitons
and their generalizations are getting of fast development by giving new proce-
dures in understanding the geometry and topology of Riemannian manifolds.
One more interest of concentrating on Ricci solitons and their generalizations
in various mathematical settings have impressively expanded, because of their
association with general relativity.

In reality, solitons are physically the waves that propagate with little loss of
energy and holds its shape and speed after colliding with another such wave.
Solitons are performed significant role in initial-value problems for nonlinear
partial differential equations describing wave propagation. It moreover ex-
plained the recurrence in the Fermi-Pasta-Ulam system.
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In 1982, Hamilton [29] introduced the Ricci flow (∂g∂t = −2Ric, Ric de-
notes the Ricci tensor). Later, Perelman used Ricci flow to prove century long
problem named ‘Poincaré conjecture’. A metric g of a complete Riemannian
manifold (N, g) is a Ricci soliton (see [8], [9], [12] and [38]) if there are a vector
field Z and a real constant λ such that

Ric+
1

2
£Zg = λg,

where £Z is the Lie differentiation along Z. If Z is a gradient of some smooth
function ψ, that is, Z = Dψ, where D denotes the gradient operator, then the
Ricci soliton is called a gradient Ricci soliton [13] and satisfies the equation

(1.1) Ric+Hψ = λg,

where Hψ is the Hessian operator of ψ. For constant function ψ, the equation
(1.1) reduces to Einstein equation (Ric = λg) and the metric becomes an
Einstein metric. On any compact manifold every Ricci soliton is a gradient
Ricci soliton [34].

A metric g of a Riemannian manifold (N, g) is called a gradient m-quasi-
Einstein metric (in short form, gradient m-QE metric) [15], which is a gener-
alization of a gradient Ricci soliton, if there are a smooth function ψ : N → R
and λ ∈ R such that

(1.2) Ric+Hψ − 1

m
dψ ⊗ dψ = λg,

where 0 < m ≤ ∞ is an integer. For m = ∞, the metric becomes a gradient
Ricci soliton. The left hand side of (1.2) is known as m-Bakry-Emery Ricci
tensor. The gradient m-QE metric is said to be shrinking, steady or, expanding
according as λ > 0, λ = 0 or, λ < 0. The metric of the warped product manifold
(N, g)× (Mm, h) with warping function exp(− ψ

m ) is an Einstein metric if and
only if h is an Einstein metric and g is a gradient m-QE metric. For details
about a gradient m-QE metric see [3], [14], [22] and [28].

In the similar way of Ricci flow, Catino and Mazzieri [17] introduced the

new type of geometric flow, known as gradient flow (∂g∂t = −2Ric+ τg, τ is the
scalar curvature). The gradient Einstein soliton is the self-similar solution of
the gradient flow, which is defined by

(1.3) Ric+Hψ =

(
λ+

1

2
τ

)
g.

In [11], Bourguignon introduced the Ricci-Bourguignon flow (∂g∂t = −2(Ric
−ρτg), ρ ∈ R − {0}). A metric g of a Riemannian manifold Nn, dimN =
n ≥ 3, is said to be a gradient ρ-Einstein soliton (see [16] and [17]), which
is a generalization of a gradient Einstein soliton and self-similar solution of
Ricci-Bourguignon flow, if there are a ψ ∈ C∞(Nn) and λ ∈ R such that

(1.4) Ric+Hψ = (ρτ + λ)g = βg.



GRADIENT SOLITONS IN 3-DIMENSIONAL RIEMANNIAN MANIFOLDS 827

Gradient ρ-Einstein solitons have been investigated by several authors such
as [18, 31, 37] and many others. For different values of ρ, gradient ρ-Einstein
solitons have different names. They are

(i) a gradient Einstein soliton for ρ = 1
2 .

(ii) a gradient traceless Ricci soliton for ρ = 1
n .

(iii) a gradient Schouten soliton for ρ = 1
2(n−1) .

In [23], Cho and Kimura introduced the notion of an η-Ricci soliton, which
is a generalization of a Ricci soliton. An η-Ricci soliton on a Riemannian
manifold (N, g), denoted by (g, Z, λ, µ), is defined by

(1.5) Ric+
1

2
£Zg − µη ⊗ η = λg,

where η is a 1-form, λ and µ are real constants. Many authors have worked
on η-Ricci solitons ([2,5,6,10,25,32,35,36]). If Z = Dψ for some ψ ∈ C∞(N),
then the η-Ricci soliton is called a gradient η-Ricci soliton [7]. For a gradient
η-Ricci soliton, from (1.5) it follows that

(1.6) Ric+Hψ − µη ⊗ η = λg.

Let (Nn, g) be an n-dimensional Riemannian manifold equipped with Rie-

mannian metric g and ∇̆ be a linear connection on Nn. The torsion tensor T̆
of the linear connection ∇̆ is defined by

(1.7) T̆ (E,F ) = ∇̆EF − ∇̆FE − [E,F ]

for all E,F ∈ χ(Nn), the set of all smooth vector fields on Nn. The connection

∇̆ is called symmetric if the torsion tensor T̆ vanishes identically, otherwise, it is
non-symmetric. If ∇̆g = 0, then the connection is named as metric connection
and if ∇̆g 6= 0, then it is non-metric [21]. The Levi-Civita connection on a
Riemannian manifold Nn is a linear connection which is both symmetric and
metric connection. By fundamental theorem of Riemannian geometry every
Riemannian manifold admits a unique Levi-Civita connection.

In 1924, Frindmann and Schounten [27] introduced the notion of semi-

symmetric connection. A semi-symmetric connection ∇̆ on a Riemannian man-
ifold (Nn, g) is a particular type of non-symmetric connection whose torsion

tensor T̆ is of the form

(1.8) T̆ (E,F ) = ω(F )E − ω(E)F

for all E,F ∈ χ(Nn), where ω is a 1-form associated with the vector field
P on Nn by ω(E) = g(E,P ) for all E ∈ χ(Nn). A semi-symmetric metric

connection (shortly, SSM connection) ∇̆ on a Riemannian manifold (Nn, g) is

a semi-symmetric connection with ∇̆g = 0. The idea of SSM connection was
given by Hayden [30] in 1932. For instance about SSM connection, we cite

[1, 24, 26, 33, 40, 41]. In addition, if ∇̆P = 0, then the connection ∇̆ is called
semi-symmetric metric P -connection (briefly, SSM P -connection) [20].
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In this paper we characterize a 3-dimensional Riemannian manifold with
SSM P -connection admitting gradient m-QE metric, gradient ρ-Einstein soli-
tons, or gradient η-Ricci solitons. We provide the following results:

Theorem 1.1. If the metric of a 3-dimensional manifold (N3, g) with SSM
P -connection is a gradient m-QE metric, then either

(i) the gradient of the potential function is collinear with the vector field
P , or

(ii) λ = −(m+ 2) and the metric is expanding. In this case, the manifold
is of constant sectional curvature −1, provided Pψ 6= m.

Theorem 1.2. If the metric of a 3-dimensional manifold (N3, g) with SSM
P -connection is a gradient ρ-Einstein soliton, then the gradient of the potential
function is collinear with the vector field P .

Theorem 1.3. If the metric of a 3-dimensional manifold (N3, g) with SSM
P -connection is a gradient ω-Ricci soliton, then the manifold is of constant
sectional curvature −1 and λ+ µ = −2.

2. SSM P -connection on Riemannian manifolds

Let (Nn, g) be a Riemannian manifold and ∇ be the Levi-Civita connection
corresponding to the metric g. In 1970, Yano [39] obtained the relation between

SSM connection ∇̆ defined in (1.8) and Levi-Civita connection ∇, which is

(2.1) ∇̆EF = ∇EF + ω(F )E − g(E,F )P

for all E,F ∈ χ(Nn). From (2.1), it follows that the condition ∇̆P = 0 is
equivalent to

(2.2) ∇EP = ω(E)P − ω(P )E, ∀E ∈ χ(Nn).

We derive: E(ω(P )) = E(g(P, P )) = 2g(∇EP, P ) = 0 for all E ∈ χ(Nn). This
implies that the length of the vector field P is constant. Throughout the paper
we consider P as a unit vector field. In this situation, the equation (2.2) takes
the form

(2.3) ∇EP = ω(E)P − E
which implies

(2.4) (∇Eω)F = ω(E)ω(F )− g(E,F )

for all E,F ∈ χ(Nn). For a SSM P -connection, the following relations hold
[20]:

(2.5) K(E,F )P = ω(E)F − ω(F )E,

(2.6) K(P,E)F = ω(F )E − g(E,F )P,

(2.7) ω(K(E,F )W ) = ω(F )g(E,W )− ω(E)g(F,W ),
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(2.8) Ric(E,P ) = −(n− 1)ω(E), that is, QP = −(n− 1)P

for all E,F,W ∈ χ(Nn), K is the Riemannian curvature tensor corresponding
to the Levi-Civita connection and Q is the Ricci operator. The curvature tensor
K on a 3-dimensional manifold (N3, g) is given by

K(E,F )W = Ric(F,W )E −Ric(E,W )F + g(F,W )QE − g(E,W )QF

− τ

2
{g(F,W )E − g(E,W )F}(2.9)

for all E,F,W ∈ χ(N3). Replacing F and W by P in (2.9) and making use of
(2.5) and (2.8), we have

(2.10) QE =
(τ

2
+ 1
)
E −

(τ
2

+ 3
)
ω(E)P

for all E ∈ χ(N3). From above, it follows that if a 3-dimensional manifold
(N3, g) with SSM P -connection is Einstein if and only if τ = −6. In this case,
the manifold is of constant sectional curvature −1.

Lemma 2.1 ([19]). In a 3-dimensional manifold (N3, g) with SSM P -connec-
tion, we have

(2.11) Pτ = 2(τ + 6).

From (2.11), we see if the scalar curvature of (N3, g) with SSM P -connection
is constant, then τ = −6.

3. Proof of the main results

Proof of Theorem 1.1. Let the metric of a 3-dimensional Riemannian manifold
(N3, g) with SSM P -connection be a gradient m-QE metric.

By the equation (2.10), the equation (1.2) takes the form

∇EDψ = −
(τ

2
+ 1− λ

)
E +

(τ
2

+ 3
)
ω(E)P +

1

m
g(E,Dψ)Dψ.(3.1)

By (2.3) and (2.4), we obtain from (3.1)

∇F∇EDψ = − 1

2
(Fτ){E − ω(E)P} −

(τ
2

+ 1− λ
)
∇FE

+
(τ

2
+ 3
)
{ω(∇FE)P + 2ω(E)ω(F )P − g(E,F )P − ω(E)F}

+
1

m
{g(∇FE,Dψ) + g(E,∇FDψ)}Dψ

+
1

m
g(E,Dψ)

{
−
(τ

2
+ 1− λ

)
F +

(τ
2

+ 3
)
ω(F )P

}
+

1

m2
g(E,Dψ)g(F,Dψ)Dψ.(3.2)
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Interchanging E and F in (3.2), we have

∇E∇FDψ = − 1

2
(Eτ){F − ω(F )P} −

(τ
2

+ 1− λ
)
∇EF

+
(τ

2
+ 3
)
{ω(∇EF )P + 2ω(E)ω(F )P − g(E,F )P − ω(F )E}

+
1

m
{g(∇EF,Dψ) + g(F,∇EDψ)}Dψ

+
1

m
g(F,Dψ)

{
−
(τ

2
+ 1− λ

)
E +

(τ
2

+ 3
)
ω(E)P

}
+

1

m2
g(E,Dψ)g(F,Dψ)Dψ.(3.3)

Substituting the values (3.1)-(3.3) into K(E,F ) = [∇E ,∇F ]−∇[E,F ], we get

K(E,F )Dψ =
1

2
(Fτ){E − ω(E)P} − 1

2
(Eτ){F − ω(F )P}

+
(τ

2
+ 3
)
{ω(E)F − ω(F )E}

+
1

m

(τ
2

+ 1− λ
)
{(Eψ)F − (Fψ)E}

− 1

m

(τ
2

+ 3
)
{(Eψ)ω(F )− (Fψ)ω(E)}P.(3.4)

Contracting the above equation by (2.11) yields

Ric(F,Dψ)=
1

2
(Fτ)+

1

m

(
−τ

2
+ 1 + 2λ

)
(Fψ)− 1

m

(τ
2

+ 3
)

(Pψ)ω(F ).(3.5)

Taking inner product (3.4) with P , we have

(3.6) g(K(E,F )Dψ,P ) =
λ+ 2

m
{(Fψ)ω(E)− (Eψ)ω(F )}.

Using (2.5) in (3.6), it follows that

λ+m+ 2

m
{(Eψ)ω(F )− (Fψ)ω(E)} = 0,

which gives either, (Eψ)ω(F )− (Fψ)ω(E) = 0 or, λ+m = −2.

Case (i) In this case (Eψ)ω(F ) − (Fψ)ω(E) = 0, that is, Dψ = (Pψ)P .
Therefore the gradient of the potential function ψ is collinear with
the vector field P .

Case (ii) In this case λ + m = −2, that is, λ = −(m + 2) < 0. Therefore,
the metric is expanding. Taking F = P in the equation (3.5) and
in the view of (2.8) and (2.11), it follows that

(τ + 6)

(
1

m
(Pψ)− 1

)
= 0,

which implies τ = −6, provided Pψ 6= m. Hence, the manifold is
of constant sectional curvature −1, provided Pψ 6= m.

This finishes the proof. �
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Proof of Theorem 1.2. Let the metric of a 3-dimensional Riemannian manifold
(N3, g) with SSM P -connection be a gradient ρ-Einstein soliton.

In view of (1.4) and (2.10), it follows that

(3.7) ∇EDψ = −
(τ

2
+ 1
)
E +

(τ
2

+ 3
)
ω(E)P + βE.

By (2.3) and (2.4), we obtain from (3.7)

∇F∇EDψ = − 1

2
(Fτ){E − ω(E)P} −

(τ
2

+ 1
)
∇FE

+
(τ

2
+ 3
)
{ω(∇FE)P + 2ω(E)ω(F )P − g(E,F )P − ω(E)F}

+ (Fβ)E + β∇FE.(3.8)

Interchanging E and F in (3.8), we derive

∇E∇FDψ = − 1

2
(Eτ){F − ω(F )P} −

(τ
2

+ 1
)
∇EF

+
(τ

2
+ 3
)
{ω(∇EF )P + 2ω(E)ω(F )P − g(E,F )P − ω(F )E}

+ (Eβ)F + β∇EF.(3.9)

Putting the values (3.7)-(3.9) in K(E,F ) = [∇E ,∇F ]−∇[E,F ], we have

K(E,F )Dψ =
1

2
(Fτ){E − ω(E)P} − 1

2
(Eτ){F − ω(F )P}

+
(τ

2
+ 3
)
{ω(E)F − ω(F )E}+ (Eβ)F − (Fβ)E.(3.10)

Contracting the equation (3.10) and using (2.11), we infer

(3.11) Ric(F,Dψ) =
1

2
(Fτ)− 2(Fβ).

Taking inner product of (3.10) with P , we get

(3.12) g(K(E,F )Dψ,P ) = (Eβ)ω(F )− (Fβ)ω(E).

Using (2.5) in the equation (3.12), we obtain

(3.13) (Eψ)ω(F )− (Fψ)ω(E) = (Eβ)ω(F )− (Fβ)ω(E).

Replacing F by P in (3.11) and making use of (2.8) and (2.11), we infer

Pψ − Pβ = −1

2
(τ + 6).

Setting F = P in (3.13) and using the above equation, we obtain

(3.14) Dβ = Dψ +
1

2
(τ + 6)P.

It is known that

(3.15) df(E) = g(Df,E) = (Ef),
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where d and D denote the exterior derivative and gradient operator, respec-
tively. Therefore we have

d2f(E,F ) =
1

2
[E(df(F ))− F (df(E))− df([E,F ])]

=
1

2
[g(∇EDf, F )− g(∇FDf,E)].(3.16)

By Poincare lemma (d2 = 0), the above equation implies

(3.17) g(∇EDf, F ) = g(∇FDf,E).

Taking covariant derivative of (3.14) along the vector field E and using (2.3),
we have

(3.18) ∇EDβ = ∇EDψ +
1

2
(Eτ)P +

1

2
(τ + 6)(ω(E)P − E),

which implies

g(∇EDβ,F ) = g(∇EDψ,F ) +
1

2
(Eτ)ω(F )

+
1

2
(τ + 6)[ω(E)ω(F )− g(E,F )].(3.19)

Interchanging E and F in (3.19) entails that

g(∇FDβ,E) = g(∇FDψ,E) +
1

2
(Fτ)ω(E)

+
1

2
(τ + 6)[ω(E)ω(F )− g(E,F )].(3.20)

Subtracting (3.20) from (3.19) and using (3.17), we provide

(Eτ)ω(F )− (Fτ)ω(E) = 0.

Since β = ρτ + λ, (Eβ)ω(F ) − (Fβ)ω(E) = ρ{(Eτ)ω(F ) − (Fτ)ω(E)} = 0.
In the view of (3.13), it follows that (Eψ)ω(F ) − (Fψ)ω(E) = 0, that is,
Dψ = (Pψ)P .

Hence the theorem follows. �

Proof of Theorem 1.3. Here we replace the 1-form η in the gradient η-Ricci
soliton by the 1-form ω which is the associated 1-form of the SSM P -connection.
Let the metric of a 3-dimensional manifold (N3, g) with SSM P -connection is
a gradient ω-Ricci soliton.

By (2.10), the equation (1.6) can be written as

(3.21) ∇EDψ = −
(τ

2
+ 1− λ

)
E +

(τ
2

+ 3 + µ
)
ω(E)P.

By direct computation, we have

K(E,F )Dψ =
1

2
(Fτ){E − ω(E)P} − 1

2
(Eτ){F − ω(F )P}

+
(τ

2
+ 3 + µ

)
{ω(E)F − ω(F )E}.(3.22)
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Contracting the equation (3.22), we obtain

(3.23) Ric(E,Dψ) =
1

2
(Eτ)− 2µω(E).

Taking inner product (3.22) with P , we get

g(K(E,F )Dψ,P ) = 0 =⇒ (Eψ)ω(F )− (Fψ)ω(E) = 0.

For F = P the above equation becomes

(3.24) Eψ = (Pψ)ω(E), that is, Dψ = (Pψ)P.

Using (3.24) and (2.8) in (3.23), we obtain

(3.25) − 2(Pψ)ω(E) =
1

2
(Eτ)− 2µω(E).

Setting E = P in (3.25) and making use of (2.11), we get

(3.26) Pψ = µ− 1

2
(τ + 6).

Using (3.26) in the equations (3.24) and (3.25), we infer

(3.27) Dψ =

(
µ− 1

2
(τ + 6)

)
P

and

(3.28) Eτ = 2(τ + 6)ω(E).

By (2.3) and (3.28), we obtain from (3.27)

∇EDψ = −(τ + 6)ω(E)P +

(
µ− 1

2
(τ + 6)

)
(ω(E)P − E).

Consider E = P in the above equation, it follows that

∇PDψ = −(τ + 6)P.

On the other hand, from (3.21), we have

∇PDψ = (λ+ µ+ 2)P.

From the above two equations, we have −(τ + 6)P = (λ + µ + 2)P , that is,
τ = −λ − µ − 8. This implies, the scalar curvature is constant. Therefore,
from (2.11), it follows that τ = −6 and λ+ µ = −2. Hence, the manifold is of
constant sectional curvature −1.

This completes the proof. �

For µ = 0, the gradient η-Ricci soliton becomes a gradient Ricci soliton.
Putting µ = 0 and τ = −6 in (3.26), we have Pψ = 0. From (3.24), Dψ = 0,
that is, ψ = constant. Thus, we can state the following corollary:

Corollary 3.1. If the metric of a 3-dimensional manifold with SSM P -connec-
tion is a gradient Ricci soliton, then the manifold is of constant sectional cur-
vature −1 and the soliton is expanding.
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4. Example

We consider 3-dimensional manifold N3 = {(x, y, z) ∈ R3 : x > 0, z > 0}.
Let us define a Riemannian metric g on N3 as

g =
1

z2
(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz).

Let V1 = z ∂
∂x , V2 = z ∂

∂y , V3 = −z ∂
∂z . Then {V1, V2, V3} is an orthonormal

basis of (N3, g). We have

[V1, V2] = 0, [V1, V3] = V1, [V2, V3] = V2.

The Riemannian connection ∇ is given by

∇V1
V1 = −V3, ∇V1

V2 = 0, ∇V1
V3 = V1,

∇V2V1 = 0, ∇V2V2 = −V3, ∇V2V3 = V2,(4.1)

∇V3V1 = 0, ∇V3V2 = 0, ∇V3V3 = 0.

Putting these values in K(E,F )W = [∇E ,∇F ]−∇[E,F ], we get

K(V1, V2)V1 = V2, K(V1, V2)V2 = −V1, K(V1, V2)V3 = 0,

K(V1, V3)V1 = V3, K(V1, V3)V2 = 0, K(V1, V3)V3 = −V1,
K(V2, V3)V1 = 0, K(V2, V3)V2 = V3, K(V2, V3)V3 = −V2.

From the above expression we obtain

Ric(Vi, Vj) =

{
−2 if i = j,

0 if i 6= j,

for i, j = 1, 2, 3, which gives Ric = −2g and τ = −6. Hence, N3 is a manifold
of constant sectional curvature −1.

We define the semi-symmetric metric connection ∇̆ by

∇̆EF = ∇EF + ω(F )E − g(E,F )P,

where P = −V3 and ω(E) = g(E,P ) for all E,F ∈ χ(N3).
Now,

∇̆V1P = −∇̆V1V3

= −(∇V1
V3 + ω(V3)V1 + g(V1, V3)V3)

= −(V1 − V1) = 0.

Similarly, ∇̆V2
P = 0 and ∇̆V3

P = 0. So, ∇̆EP = 0 for all E ∈ χ(N3). Hence,

∇̆ is a SSM P -connection.
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Suppose let ψ = − lnx + ln z. Then Dψ = − z
xV1 − V3 with respect to the

metric g. With the help of (4.1), we get
∇V1

Dψ =
(
z2

x2 − 1
)
V1 + z

xV3,

∇V2
Dψ = −V2,

∇V3
Dψ = z

xV1.

We can easily verify that

Ric(E,F ) +Hψ(E,F )− g(E,Dψ)g(F,Dψ) = −3g(E,F )

for all E,F ∈ χ(N3). Hence, g is a gradient m-quasi-Einstein metric for m = 1
and λ = −3. Since λ < 0, the metric g is expanding. Also, λ = −(m+ 2) and
Dψ 6= (Pψ)P . Thus, Theorem 1.1 is verified.

Now consider ψ = − ln z. Then Dψ = V3. By direct computation

Hψ(E,F ) = g(E,F )− ω(E)ω(F )

for all E,F ∈ χ(N3). It is easy to verify that

Ric(E,F ) +Hψ(E,F ) + ω(E)ω(F ) = −g(E,F )

for all E,F ∈ χ(N3). Hence, g is a gradient ω-Ricci soliton for λ = −1 and
µ = −1. Thus, Theorem 1.3 is verified.

Acknowledgement. We would like to thank the referee and editor for review-
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the paper.
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