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QUANTIZATION FOR A PROBABILITY DISTRIBUTION

GENERATED BY AN INFINITE ITERATED FUNCTION

SYSTEM

Lakshmi Roychowdhury and Mrinal Kanti Roychowdhury

Abstract. Quantization for probability distributions concerns the best
approximation of a d-dimensional probability distribution P by a discrete

probability with a given number n of supporting points. In this paper, we

have considered a probability measure generated by an infinite iterated
function system associated with a probability vector on R. For such a

probability measure P , an induction formula to determine the optimal
sets of n-means and the nth quantization error for every natural number

n is given. In addition, using the induction formula we give some results

and observations about the optimal sets of n-means for all n ≥ 2.

1. Introduction

Quantization is the process of converting a continuous analog signal into a
digital signal of k discrete levels, or converting a digital signal of n levels into
another digital signal of k levels, where k < n. It is must when analog quan-
tities are represented, processed, stored, or transmitted by a digital system,
or when data compression is required. It is a classic and still very active re-
search topic in source coding and information theory. A good survey about the
historical development of the theory has been provided by Gray and Neuhoff
in [8]. For more applied aspects of quantization the reader is referred to the
book of Gersho and Gray (see [4]). For mathematical treatment of quantization
one may consult Graf-Luschgy’s book (see [7]). Interested readers can also see
[1, 5, 9, 16]. Let Rd denote the d-dimensional Euclidean space equipped with
the Euclidean metric ‖ · ‖. Let P be a Borel probability measure on Rd. Then,
the nth quantization error for P , denoted by Vn := Vn(P ), is defined by

Vn(P ) = inf
α∈Dn

∫
min
a∈α
‖x− a‖2dP (x),
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where Dn := {α ⊂ Rd : 1 ≤ card(α) ≤ n}. The set α for which the infimum
occurs and contains no more than n points is called an optimal set of n-means
for P , and such a set exists if

∫
‖x‖2dP (x) < ∞ (see [5, 7, 9]). The set of all

optimal sets of n-means for a probability measure P is denoted by Cn(P ). It
is known that for a Borel probability measure P if the support of P contains
infinitely many elements, then an optimal set of n-means always has exactly
n-elements (see [7, Theorem 4.12]). Let α be a finite set and a ∈ α. Then, the
Voronoi cell, or Voronoi region M(a|α) is the set of all elements in Rd whose
distance to a is not greater than their distance to other elements in α, i.e.,

M(a|α) = {x ∈ Rd : ‖x− a‖ = min
b∈α
‖x− b‖}.

A Borel measurable partition {Aa : a ∈ α} of Rd is called a Voronoi partition
of Rd with respect to α (and P ) if Aa ⊂M(a|α) (P -a.e.) for every a ∈ α. The
following proposition is known (see [4, 9]).

Proposition 1.1. Let α be an optimal set of n-means, a ∈ α, and M(a|α) be
the Voronoi region generated by a ∈ α. Then, for every a ∈ α, (i) P (M(a|α)) >
0, (ii) P (∂M(a|α)) = 0, (iii) a = E(X : X ∈M(a|α)), and (iv) P -almost surely
the set {M(a|α) : a ∈ α} forms a Voronoi partition of Rd.

Since for a ∈ α, a = E(X : X ∈ M(a|α)) = 1
P (M(a|α))

∫
M(a|α) xdP (x), we

can say that the elements in an optimal set of n-means are also the centroids of
their own Voronoi regions with respect to the probability distribution P . For
details in this regard one can see [3, 14].

Let M denote either the set {1, 2, . . . , N} for some positive integer N ≥ 2, or
the set N of natural numbers. A collection {Sj : j ∈M} of similarity mappings,
or similitudes, on Rd with similarity ratios {sj : j ∈ M} is contractive if
sup{sj : j ∈M} < 1. If J is the limit set of the iterated function system, then
it is known that J satisfies the following invariance relation (see [10–12]):

J =
⋃
j∈M

Sj(J).

The iterated function system {Sj : j ∈ M} satisfies the open set condition
(OSC) if there exists a bounded nonempty open set U ⊂ Rd such that Sj(U) ⊂
U for all j ∈ M , and Si(U)

⋂
Sj(U) = ∅ for i, j ∈ M with i 6= j. Let (pj : j ∈

M) be a probability vector, with pj > 0 for all j ∈ M . Then, there exists a
unique Borel probability measure P on Rd (see [10–12], etc.) such that

P =
∑
j∈M

pjP ◦ S−1j ,

where P ◦ S−1j denotes the image measure of P with respect to Sj for j ∈ M .
Such a P has support the limit set J if M is finite, or the closure of J if M is
infinite.

Let P be a Borel probability measure on R generated by the two contractive
similarity mappings S1 and S2 associated with the probability vector ( 1

2 ,
1
2 )
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such that S1(x) = 1
3x and S2(x) = 1

3x + 2
3 for all x ∈ R. Then, P = 1

2P ◦
S−11 + 1

2P ◦ S
−1
2 and it has support the classical Cantor set generated by S1

and S2. For this probability measure Graf and Luschgy gave a closed formula
to determine the optimal sets of n-means and the nth quantization errors for
all n ≥ 2 (see [6]). Later for n ≥ 2, L. Roychowdhury gave an induction
formula to determine the optimal sets of n-means and the nth quantization
errors for a probability distribution P on R, given by P = 1

4P ◦S
−1
1 + 3

4P ◦S
−1
2

which has support the Cantor set generated by S1 and S2, where S1(x) = 1
4x

and S2(x) = 1
2x + 1

2 for all x ∈ R (see [13]). M. Roychowdhury (see [15])
gave an infinite extension of the result of Graf-Luschgy (see [6]). Çömez and
Roychowdhury (see [2]) gave a closed formula to determine the optimal sets of
n-means and the nth quantization error for a probability measure supported
by a Cantor dust.

In this paper, we made an infinite extension of the work of L. Roychowdhury
(see [13]). Let P be a Borel probability measure on R given by P = 1

4P ◦S
−1
1 +∑∞

j=2
3

2j+1P ◦ S−1j , i.e., P is generated by an infinite collection of similitudes

{Sj}∞j=1 associated with the probability vector ( 1
4 ,

3
23 ,

3
24 , . . .) such that Sj(x) =

1
2j+1x+1− 1

2j−1 for all x ∈ R, and for all j ∈ N. For this probability measure, in
this paper, we investigate the optimal sets of n-means and the nth quantization
errors for all n ∈ N. The arrangement of the paper is as follows: In Lemma 3.3
and Lemma 3.5, we obtain the optimal sets of n-means and the corresponding
quantization errors for n = 2 and n = 3; Proposition 3.8, Proposition 3.13,
Proposition 3.14, and Proposition 3.17 give some properties about the optimal
sets of n-means and the nth quantization errors. In Theorem 3.1 we state and
prove an induction formula to determine the optimal sets of n-means for all
n ≥ 2. In addition, using the induction formula we obtain some results and
observations about the optimal sets of n-means which are given in Section 4;
a tree diagram of the optimal sets of n-means for a certain range of n is also
given.

2. Preliminaries

By a word ω over the set N = {1, 2, 3, . . .} of natural numbers it is meant
that ω := ω1ω2 · · ·ωk ∈ Nk for some k ≥ 1. Here k is called the length
of the word ω and is denoted by |ω|. A word of length zero is called the
empty word and is denoted by ∅. Let N∗ denote the set of all words over the
alphabet N including the empty word ∅. For any two words ω := ω1ω2 · · ·ωk
and τ := τ1τ2 · · · τm ∈ N∗, where k,m ≥ 1, by ωτ it is meant the concatenation
of the words ω and τ , i.e., ωτ = ω1ω2 · · ·ωkτ1τ2 · · · τm. If ω := ω1ω2 · · ·ωk, we
write ω− := ω1ω2 · · ·ωk−1, where k ≥ 1, i.e., ω− is the word obtained from the
word ω by deleting the last letter of ω. For ω ∈ N∗, by (ω,∞) it is meant the
set of all words ω−(ω|ω| + j), obtained by concatenation of the word ω− with
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the word ω|ω| + j for j ∈ N, i.e.,

(ω,∞) = {ω−(ω|ω| + j) : j ∈ N}.

Let (pj)
∞
j=1 be a probability vector such that p1 = 1

4 and pj = 3
2j+1 for all

j ≥ 2. Let {Sj}∞j=1 be an infinite collection of similitudes associated with the
probability vector (pj)

∞
j=1 such that

Sj(x) =
1

2j+1
x+ 1− 1

2j−1

for all j ∈ N and for all x ∈ R. Then, as mentioned in the previous section,
there exists a unique Borel probability measure P on R such that

P =

∞∑
j=1

pjP ◦ S−1j ,

which has support lying in the closed interval [0, 1]. This paper deals with this
probability measure P . For ω = ω1ω2 · · ·ωn ∈ Nn, write

Sω := Sω1
◦ · · · ◦ Sωn , Jω := Sω(J), sω := sω1

· · · sωn , pω := pω1
· · · pωn ,

where J := J∅ = [0, 1]. We also assume p∅ = 1 and s∅ = 1. Then, for any
ω ∈ N∗, we write

J(ω,∞) :=
∞
∪
j=1

Jω−(ω|ω|+j) and

p(ω,∞) := P (J(ω,∞)) =

∞∑
j=1

P (Jω−(ω|ω|+j)) =

∞∑
j=1

pω−(ω|ω|+j).

Notice that for any k ∈ N, p(k,∞) = 1 −
∑k
j=1 pj , and for any word ω ∈ N∗,

p(ω,∞) = pω− −
∑w|ω|
j=1 pω−j . To avoid any confusion among the readers, we

would like to mention that in the paper dP (x) which is P (dx) is identified as
dP .

Lemma 2.1. Let f : R→ R+ be Borel measurable and k ∈ N. Then∫
fdP =

∑
ω∈Nk

pω

∫
f ◦ SωdP.

Proof. We know P =
∑∞
j=1 pjP ◦ S

−1
j , and so by induction P =

∑
ω∈Nk pωP ◦

S−1ω , and thus the lemma is yielded. �

Lemma 2.2. Let X be a random variable with probability distribution P . Then,
the expectation E(X) and the variance V := V (X) of the random variable X
are given by

E(X) =
4

7
and V (X) =

288

3577
= 0.0805144.
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Proof. Using Lemma 2.1, we have

E(X) =

∫
xdP

=
1

4

∫
S1(x)dP +

∞∑
j=2

3

2j+1

∫
Sj(x)dP

=
1

16

∫
xdP +

∞∑
j=2

3

2j+1

∫ ( 1

2j+1
x+ 1− 1

2j−1

)
dP

=
1

16
E(X) +

1

16
E(X) +

1

2
,

which implies E(X) = 4
7 . Now,

E(X2) =

∫
x2dP

=
1

4

∫
(
1

4
x)2dP +

∞∑
j=2

3

2j+1

∫ ( 1

2j+1
x+ 1− 1

2j−1

)2
dP

=
1

64
E(X2)+

∞∑
j=2

3

2j+1

∫ ( 1

4j+1
x2+

2

2j+1
(1− 1

2j−1
)x+(1− 1

2j−1
)2
)
dP

=
1

64
E(X2) +

3

448
E(X2) +

1

14
E(X) +

5

14

=
5

224
E(X2) +

39

98
,

which yields E(X2) = 208
511 . Thus, V (X) = E(X2) − (E(X))

2
= 288

3577 =
0.0805144, which is the lemma. �

Lemma 2.3. For any k ≥ 2, we have

E(X|X ∈ Jk ∪ Jk+1 ∪ · · · ) = 1− 8

7

1

2k
.

Proof. We have

E(X|X ∈ Jk ∪ Jk+1 ∪ · · · ) =
1∑∞
j=k pj

∞∑
j=k

pjSj(
4

7
)

=
2k

3

( ∞∑
j=k

3

2j+1
(

1

2j+1

4

7
+ 1− 1

2j−1
)
)
,

which after simplification yields E(X|X ∈ Jk ∪ Jk+1 ∪ · · · ) = 1 − 8
7

1
2k
, which

is the lemma. �

The following notes are in order.
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Note 2.4. For k ∈ N, we have Sk( 4
7 ) = 1

2k+1
4
7 +1− 1

2k−1 . Thus, by Lemma 2.3,
for k ∈ N,

E(X|X ∈ Jk ∪ Jk+1 ∪ · · · ) = Sk(
4

7
) +

1

7

1

2k−2
= Sk(

4

7
) +

8

7
sk.

Since for any x0 ∈ R,
∫

(x − x0)2dP = V (X) + (x0 − E(X))2, we can deduce
that the optimal set of one-mean is the expected value and the corresponding
quantization error is the variance V of the random variable X. For ω ∈ Nk,
k ≥ 1, using Lemma 2.1, we have

E(X : X ∈ Jω) =
1

P (Jω)

∫
Jω

xdP =

∫
Jω

xd(P ◦ S−1ω (x))

=

∫
Sω(x)dP = E(Sω(X)).

Since Sj are similitudes, it is easy to see that E(Sj(X)) = Sj(E(X)) for j ∈ N,
and so by induction, E(Sω(X)) = Sω(E(X)) for ω ∈ Nk, k ≥ 1.

Note 2.5. For words β, γ, . . . , δ in N∗, by a(β, γ, . . . , δ) we denote the condi-
tional expectation of the random variable X given that X is in Jβ∪Jγ∪· · ·∪Jδ,
i.e.,

(1)

a(β, γ, . . . , δ) = E(X|X ∈ Jβ ∪ Jγ ∪ · · · ∪ Jδ)

=
1

P (Jβ ∪ · · · ∪ Jδ)

∫
Jβ∪···∪Jδ

xdP.

Then, by Note 2.4, for ω ∈ N∗, we have
a(ω) = Sω(E(X)) = Sω(

4

7
), and

a(ω,∞) = E(X|X ∈ Jω−(ω|ω|+1) ∪ Jω−(ω|ω|+2) ∪ · · · )

= Sω−(ω|ω|+1)(
4

7
) +

8

7
sω−(ω|ω|+1).

(2)

Moreover, for any ω ∈ N∗ and for any x0 ∈ R, it is easy to see that

∫
Jω

(x− x0)2dP = pω

∫
(x− x0)2d(P ◦ S−1ω )

= pω

(
s2ωV + (Sω(

4

7
)− x0)2

)
, and∫

J(ω,∞)

(x− x0)2dP =
∞∑
j=1

pω−(ω|ω|+j)

(
s2ω−(ω|ω|+j)V + (Sω−(ω|ω|+j)(

4

7
)− x0)2

)
.

(3)

The expressions (2) and (3) are useful to obtain the optimal sets and the
corresponding quantization errors with respect to the probability distribution
P .

The following lemma plays a vital role in the paper.
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Lemma 2.6. Let P be the probability measure as defined before and let ω ∈ Nk,
k ≥ 1. Then,∫

Jω

(x− a(ω))2dP = pωs
2
ωV, and∫

J(ω,∞)

(x− a(ω,∞))2dP =

{
43
9 pωs

2
ωV if ω|ω| ≥ 2,

43
3 pωs

2
ωV if ω|ω| = 1.

Proof. In the first equation of (3) put x0 = a(ω), and then
∫
Jω

(x−a(ω))2dP =

pωs
2
ωV . In the second equation of (3), put x0 = a(ω,∞), and then∫

J(ω,∞)

(x− a(ω,∞))2dP(4)

=

∞∑
j=1

pω−(ω|ω|+j)s
2
ω−(ω|ω|+j)

V

+

∞∑
j=1

pω−(ω|ω|+j)

(
Sω−(ω|ω|+j)(

4

7
)− a(ω,∞)

)2
.

Putting the values of a(ω,∞) from (2) we have

Sω−(ω|ω|+j)(
4

7
)− a(ω,∞)

= Sω−(ω|ω|+j)(
4

7
)− Sω−(ω|ω|+1)(

4

7
)− 8

7
sω−(ω|ω|+1)

= sω−
(
Sω|ω|+j(

4

7
)− Sω|ω|+1(

4

7
)− 8

7
sω|ω|+1

)
= sω−

( 1

2ω|ω|+j+1

4

7
− 1

2ω|ω|+j−1
− 1

2ω|ω|+1+1

4

7
+

1

2ω|ω|+1−1
− 8

7
sω|ω|+1

)
= sω

( 1

2j
4

7
− 4

2j
− 2

7
+ 2− 4

7

)
= sω

(8

7
− 24

7

1

2j

)
.

Moreover, for any j ≥ 1, sω−(ω|ω|+j) = sω
1
2j ; and pω−(ω|ω|+j) = pω

1
2j if ω|ω| ≥

2, and pω−(ω|ω|+j) = pω
3
2j if ω|ω| = 1. Thus if ω|ω| ≥ 2, putting the correspond-

ing values and making some simplification, we obtain
∞∑
j=1

pω−(ω|ω|+j)s
2
ω−(ω|ω|+j)

V =
1

7
pωs

2
ωV and

∞∑
j=1

pω−(ω|ω|+j)

(
Sω−(ω|ω|+j)(

4

7
)− a(ω,∞)

)2
= pωs

2
ω

∞∑
j=1

1

2j

(8

7
− 24

7

1

2j

)2
= pωs

2
ωV

292

63
,
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and then (4) yields
∫
J(ω,∞)

(x−a(ω,∞))2dP = 43
9 pωs

2
ωV . Similarly, if ω|ω| = 1,

one can obtain
∫
J(ω,∞)

(x − a(ω,∞))2dP = 43
3 pωs

2
ωV . Thus, the lemma is

yielded. �

Notation 2.7. For any ω ∈ Nk, k ≥ 1, set

E(a(ω)) :=

∫
Jω

(x− a(ω))2dP and

E(a(ω,∞)) :=

∫
J(ω,∞)

(x− a(ω,∞))2dP.
(5)

Let us now prove the following lemma.

Lemma 2.8. For any two nonempty words ω, τ ∈ N∗ if pω = pτ , then sω = sτ .

Proof. To prove the lemma, let us define a function c as follows:

c : N∗ \ {∅} → N ∪ {0} such that c(ω) = card({ωi : ωi 6= 1, 1 ≤ i ≤ |ω|}).
Let ω, τ ∈ N∗ with ω = ω1ω2 · · ·ωk and τ = τ1τ2 · · · τm for some k,m ≥ 1.
Then, pω = pτ implies

3c(ω)

2ω1+ω2+···+ωk+k
=

3c(τ)

2τ1+τ2+···+τm+m

yielding 3c(ω)−c(τ) = 2(ω1+ω2+···+ωk+k)−(τ1+τ2+···+τm+m) and so, c(ω) = c(τ)
and ω1 + ω2 + · · ·+ ωk + k = τ1 + τ2 + · · ·+ τm +m. Then,

sω =
1

2ω1+ω2+···+ωk+k
=

1

2τ1+τ2+···+τm+m
= sτ ,

which is the lemma. �

In the next section we state and prove the main result of the paper.

3. Main result

The following theorem gives the main result of the paper.

Theorem 3.1. For any n ≥ 2, let αn := {a(i) : 1 ≤ i ≤ n} be an optimal
set of n-means, i.e., αn ∈ Cn := Cn(P ). For ω ∈ Nk, k ≥ 1, let E(a(ω)) and
E(a(ω,∞)) be defined by (5). Set

Ẽ(a(i)) :=

{
E(a(ω)) if a(i) = a(ω) for some ω ∈ N∗,
E(a(ω,∞)) if a(i) = a(ω,∞) for some ω ∈ N∗,

and W (αn) := {a(j) : a(j) ∈ αn and Ẽ(a(j)) ≥ Ẽ(a(i)) for all 1 ≤ i ≤ n}.
Take any a(j) ∈W (αn), and write

αn+1(a(j))

:=

{
(αn \ {a(j)}) ∪ {a(ω−(ω|ω| + 1)), a(ω−(ω|ω| + 1),∞)} if a(j)=a(ω,∞),
(αn \ {a(j)}) ∪ {a(ω1), a(ω1,∞)} if a(j) = a(ω).
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Then, αn+1(a(j)) is an optimal set of (n+ 1)-means, and the number of such
sets is given by

card
( ⋃
αn∈Cn

{αn+1(a(j)) : a(j) ∈W (αn)}
)
.

Remark 3.2. Once an optimal set of n-means is known, by using (3) and
Lemma 2.6, the corresponding quantization error can easily be calculated.

To prove Theorem 3.1 we need some basic lemmas and propositions.

Lemma 3.3. Let α = {a1, a2} be an optimal set of two-means, a1 < a2. Then,
a1 = a(1) = 1

7 , a2 = a(1,∞) = 5
7 and the quantization error is V2 = 69

3577 =
0.0192899.

Proof. Let us first consider the two-point set β given by β = { 17 ,
5
7}. Since

S1(1) < 1
2 ( 1

7 + 5
7 ) < S2(0), by Lemma 2.6, we have∫

min
b∈β

(x− b)2dP =

∫
J1

(x− 1

7
)2dP +

∫
J(1,∞)

(x− 5

7
)2dP

= p1s
2
1(1 +

43

3
)V =

69

3577
= 0.0192899.

Since V2 is the quantization error for two-means, we have V2 ≤ 0.0192899. Let
α = {a1, a2} be an optimal set of two-means, a1 < a2. Since a1 and a2 are the
centroids of their own Voronoi regions, we have 0 < a1 < a2 < 1. Suppose that
a2 ≤ 5

8 . Then,

V2 ≥
∫
J3∪J4∪J5∪J6

(x− 5

8
)2dP =

647055

33488896
= 0.0193215 > V2,

which leads to a contradiction. So, we can assume that a2 > 5
8 implying

1
2 (a1 + a2) ≥ 1

2 (0 + 5
8 ) = 5

16 >
1
4 . Thus, we see that the Voronoi region of a2

does not contain any point from J1, and a1 ≥ a(1) = 1
7 . Suppose that a1 ≥ 7

16 .
Then, using (3), we have

V2 ≥
∫
J1

(x− a1)2dP ≥
∫
J1

(x− 7

16
)2dP

= p1

(
s21V + (S1(

4

7
)− 7

16
)2
)

=
12015

523264
= 0.0229616 > V2

which is a contradiction, and so 1
7 ≤ a1 <

7
16 . We now show that 1

2 (a1+a2) ≤ 1
2 .

For the sake of contradiction assume that 1
2 (a1+a2) > 1

2 . Then, if 1
2 (a1+a2) ≥

5
8 , we have a1 ≥ E(X : X ∈ J1 ∪ J2) = 2

5 , yielding

V2 ≥
∫
J1∪J2

(x− 2

5
)2dP =

171

5840
= 0.0292808 > V2,
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which is a contradiction. Next, assume that S2σ1(1) ≤ 1
2 (a1 +a2) ≤ S2σ2(0) for

some σ ∈ N∗. For definiteness sake, take σ = 1, and so S211(1) ≤ 1
2 (a1 + a2) ≤

S212(0). Then, a1 = E(X : X ∈ J1 ∪ J211) and a2 = E(X : X ∈ J(211,∞) ∪
J(21,∞) ∪ J(2,∞)) yielding

a1 =
P (J1)S1( 4

7 ) + P (J211)S211( 4
7 )

P (J1) + P (J211)
=

1363

7840
,

and

a2 =
p(211,∞)a(211,∞) + p(21,∞)a(21,∞) + p(2,∞)a(2,∞)

p(211,∞) + p(21,∞) + p(2,∞)
=

5007

6944
,

where p(211,∞) = p21−p211, p(21,∞) = p2−p21, p(2,∞) = 1−p1−p2, a(211,∞) =

S212( 4
7 ) + 8

7s212, a(21,∞) = S22( 4
7 ) + 8

7s22, and a(2,∞) = S3( 4
7 ) + 8

7s3. Thus,

V2 ≥
∫
J1∪J211

(x− 1363

7840
)2dP +

∫
A

(x− 5007

6944
)2dP

=
648995235322779

32296112614277120
= 0.0200952 > V2,

where A = J212∪J213∪J22∪J23∪J24∪J25∪J3∪J4∪J5∪J6∪J7∪J8∪J9∪J10,
which gives a contradiction. Similarly, we can show that for any other choice
of σ ∈ N∗, the assumption 1

2 (a1 + a2) > 1
2 will give a contradiction. Thus, we

have 1
2 (a1 + a2) ≤ 1

2 implying a1 ≤ a(1) = 1
7 . Again, we have seen a1 ≥ 1

7 .

Thus, we deduce that a1 = 1
7 and the Voronoi region of a2 does not contain

any point from J1, i.e., a2 = a(1,∞) = 5
7 , and the corresponding quantization

error is V2 = 69
3577 = 0.0192899. This completes the proof of the lemma. �

Using the technique of Lemma 3.3, the following corollary can be proved.

Corollary 3.4. For any ω ∈ N∗, the set {a(ω1), a(ω1,∞)} forms a unique
optimal set two-means for the conditional measure of P on Jω, and the set
{a(ω−(ω|ω|+ 1)), a(ω−(ω|ω|+ 1),∞)} forms a unique optimal set of two-means
for the conditional measure of P on J(ω,∞).

Lemma 3.5. Let α be an optimal set of three-means. Then,

α = {a(1), a(2), a(2,∞)} = {1

7
,

4

7
,

6

7
}

and the quantization error is V3 = 57
14308 = 0.00398379.

Proof. Let us first consider a three-point set β given by β := { 17 ,
4
7 ,

6
7}. Since

J1 ⊂M( 1
7 |β), J2 ⊂M( 4

7 |β) and J(2,∞) ⊂M( 6
7 |β), by Lemma 2.6, we have∫

min
b∈β

(x− b)2dP =

∫
J1

(x− 1

7
)2dP +

∫
J2

(x− 4

7
)2dP +

∫
J(2,∞)

(x− 6

7
)2dP

= p1s
2
1V + p2s

2
2V (1 +

43

9
) =

57

14308
= 0.00398379.
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Since V3 is the quantization error for three-means, we have V3 ≤ 57
14308 =

0.00398379. Let α be an optimal set of three-means with α = {a1, a2, a3},
where a1 < a2 < a3. Since the optimal points are the centroids of their own
Voronoi regions, we have 0 < a1 < a2 < a3 < 1. If a1 >

1
4 , then

V3 ≥
∫
J1

(x− a1)2dP ≥
∫
J1

(x− 1

4
)2dP =

135

32704
= 0.00412794 > V3,

which gives a contradiction, and so a1 ≤ 1
4 . If a3 <

25
32 = S32(0), using (3), we

see that

V3 ≥
∫
J32∪J33∪

8
∪
j=4

Jj

(x− 25

32
)2dP =

8764935

2143289344
= 0.00408948 > V3,

which leads to a contradiction, and so 25
32 ≤ a3. Suppose that a2 ≤ 1

2−
1
32 = 15

32 .

Then, as 1
2 ( 15

32 + 25
32 ) = 5

8 = S2(1), we have

V3 ≥
∫
J2

(x− 15

32
)2dP =

18525

4186112
= 0.00442535 > V3,

which is a contradiction. Assume that 15
32 ≤ a2 <

1
2 . Then, 1

2 (a1 + a2) < 1
4

implying a1 ≤ 1
2 − a2 ≤

1
2 −

15
32 = 1

32 <
4
32 = S12(0). Again 1

2 ( 1
2 + 25

32 ) = 41
32 >

5
8 = S2(1). Thus, we have

V3 ≥
∫
J12∪J13

(x− 1

32
)2dP +

∫
J2

(x− 1

2
)2dP

=
162087

33488896
= 0.00484002 > V3,

which is a contradiction. So, we can assume that 1
2 ≤ a2. Suppose that

5
8 + 1

32 = 21
32 ≤ a2. Then, as 1

4 <
1
2 (a(1) + 21

32 ) < 1
2 , we have

V3 ≥
∫
J1

(x− a(1))2dP +

∫
J2

(x− 21

32
)2dP

=
129747

29302784
= 0.0044278 > V3,

which yields a contradiction. Next, suppose that 5
8 < a2 ≤ 5

8 + 1
32 = 21

32 . Then,
1
4 < 1

2 (a(1) + 5
8 ) < 1

2 . Moreover, 1
2 (a2 + a3) > 3

4 implying a3 >
3
2 − a2 ≥

3
2 −

21
32 = 27

32 >
13
16 = S3(1) leading to the following two cases:

Case A. 27
32 < a3 ≤ 113

128 = S41(1).

Then, 1
2 ( 21

32 + 27
32 ) = 3

4 = S3(0), and so

V3 ≥
∫
J1

(x− a(1))2dP +

∫
J2

(x− 5

8
)2dP

+

∫
J3

(x− 27

32
)2dP +

∫
J5∪J6∪J7

(x− 113

128
)2dP

=
60087981

15003025408
= 0.00400506 > V3,
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which gives a contradiction.
Case B. S41(1) = 113

128 ≤ a3.

Then, S31(1) < 1
2 ( 21

32 + 113
128 ) < S32(0), and so

V3 ≥
∫
J1

(x− a(1))2dP +

∫
J2

(x− 5

8
)2dP

+

∫
J31

(x− 21

32
)2dP +

∫
J32∪J33

(x− 113

128
)2dP

=
63174099

15003025408
= 0.00421076 > V3,

which leads to a contradiction.
Therefore, 1

2 ≤ a2 ≤ 5
8 . Suppose that S23(0) = 19

32 ≤ a2 ≤ 5
8 . Then, the

Voronoi region of a2 does not contain any point from J1, and 1
2 (a2 + a3) > 3

4

implying a3 >
3
2−a2 ≥

3
2−

5
8 = 7

8 , otherwise the quantization error can strictly

be reduced by moving the point a2 to a(2) = 4
7 . Thus, we have

min
19
32≤a2≤

5
8

∫
J2

(x− a2)2dP = p2

(
s22V + min

19
32≤a2≤

5
8

(S2(
4

7
)− a2)2

)
= p2

(
s22V + (a(2)− 19

32
)2
)

=
2757

4186112
.

The following two cases can arise:

Case I. 7
8 < a3 ≤ S42(0) = 57

64 .

Then, 1
2 ( 5

8 + 7
8 ) = 3

4 = S3(0). Write A := J42 ∪ J43 ∪
10
∪
j=5

Jj , and so

V3 ≥
∫
J1

(x− a(1))2dP + min
19
32≤a2≤

5
8

∫
J2

(x− a2)2dP

+

∫
J3

(x− 7

8
)2dP +

∫
A

(x− 57

64
)2dP

=
3839362137

960193626112
= 0.00399853 > V3,

which gives a contradiction.

Case II. S42(0) = 57
64 < a3.

Then, S311(1) = 193
256 <

1
2 ( 5

8 + 57
64 ) = 97

128 = S312(0). Write A :=
10
∪
j=2

J31j ∪
10
∪
j=2

J3j ∪ J41. Thus,

V3 ≥
∫
J1

(x− a(1))2dP + min
19
32≤a2≤

5
8

∫
J2

(x− a2)2dP

+

∫
J311

(x− 5

8
)2dP +

∫
A

(x− 57

64
)2dP
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=
1008051842887707

251708997923504128
= 0.00400483 > V3,

which leads to a contradiction.
Therefore, we can assume that 1

2 ≤ a2 ≤ 19
32 = S23(0). Again, we have seen

that 25
32 ≤ a3 ≤ 1. Then, notice that the Voronoi region of a2 does not contain

any point from J1. Moreover, 41
64 = 1

2 ( 1
2 + 25

32 ) ≤ 1
2 (a2 + a3) ≤ 1

2 ( 19
32 + 1) = 51

64
implying that the Voronoi region of a3 does not contain any point from J2.
Suppose that the Voronoi region of a2 contains points from J(2,∞). Then,
1
2 (a2 + a3) > 3

4 , which implies a3 >
3
2 − a2 ≥

3
2 −

19
32 = 29

32 = S4(1). Moreover,

min
1
2≤a2≤

19
32

∫
J2

(x− a2)2dP =

∫
J2

(x− a(2))2dP = p2s
2
2V.

Thus, we see that

V3 ≥
∫
J1

(x− a(1))2dP + p2s
2
2V +

∫
J3∪J4

(x− 29

32
)2dP

=
531801

117211136
= 0.00453712 > V3,

which gives a contradiction. Therefore, we can assume that the Voronoi region
of a2 does not contain any point from J(2,∞). Thus, we have proved that

J1 ⊂ M(a1|α), J2 ⊂ M(a2|α), and J3 ⊂ M(a3|α) yielding a1 = a(1) = 1
7 ,

a2 = a(2) = 4
7 , and a3 = a(2,∞) = 6

7 , and the corresponding quantization

error is V3 = 57
14308 = 0.00398379 (see Figure 1). Thus, the proof of the lemma

is complete. �

1
4

1
2

5
8

3
4

13
16

7
8

29
32

4
7

1
7

6
7

5
7

11
14

13
14

1
28

5
28

0 1

Figure 1. Optimal sets: of one-mean is { 47}; of two-

means is { 17 ,
5
7}; of three-means is { 17 ,

4
7 ,

6
7}; of four-means

is { 17 ,
4
7 ,

11
14 ,

13
14}; of five-means is { 1

28 ,
5
28 ,

4
7 ,

11
14 ,

13
14}.

We need the following two lemmas to prove Proposition 3.8.

Lemma 3.6. Let α4 be an optimal set of four-means. Then, α4 ∩ J1 6= ∅ and
α4 ∩ J(1,∞) 6= ∅, and α4 does not contain any point from the open interval

( 1
4 ,

1
2 ). Moreover, the Voronoi region of any point in α4 ∩ J1 does not contain

any point from J(1,∞) and the Voronoi region of any point in α4 ∩ J(1,∞) does
not contain any point from J1.

Proof. Let α4 := {0 < a1 < a2 < a3 < a4 < 1} be an optimal set of four-means.
Consider the set β := {a(1), a(2), a(3), a(3,∞)} of four points. Then,∫

min
a∈β

(x− a)2dP = p1s
2
1V + p2s

2
2V + p3s

3
3V (1 +

43

9
) =

237

114464
= 0.00207052.
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Since V4 is the quantization error for four-means, we have V4 ≤ 0.00207052. If
a1 ≥ 13

64 = S13(1), we have

V4 ≥
∫
J11∪J12

(x− 13

64
)2dP =

20277

9568256
= 0.00211919 > V4,

which is a contradiction. So, we can assume that a1 ≤ 13
64 . Then, the Voronoi

region of a1 does not contain any point from J(1,∞). If it does, then 1
2 (a1+a2) >

1
2 implies a2 ≥ 1− a1 ≥ 1− 13

64 = 51
64 which is a contradiction as

V4 ≥
∫
J1

(x− a(1))2dP +

∫
J2

(x− 51

64
)dP =

2436771

117211136
= 0.0207896 > V4.

If a4 ≤ 53
64 , then

V4 ≥
∫

10
∪
j=4

Jj

(x− 53

64
)2dP =

292246431

137170518016
= 0.00213053 > V4,

which is a contradiction, and so 53
64 < a4. If a2 ≤ 1

4 , then

V4 ≥
∫
J2

(x− a(2))2dP +

∫
J(2,∞)

(x− a(2,∞))2dP

= (1 +
43

9
)p2s

2
2V =

39

14308
= 0.00272575 > V4,

which gives a contradiction. So, we can assume that 1
4 < a2. Suppose that

1
4 < a2 ≤ 3

8 . Then, 1
2 (a2 + a3) > 1

2 yielding a3 > 1 − a2 ≥ 1 − 3
8 = 5

8 . Thus,
the following two cases can arise:

Case 1. 5
8 < a3 ≤ 43

64 .

Then, as 53
64 < a4 and 1

2 ( 43
64 + 53

64 ) = 3
4 , we have

V4 ≥
∫
J2

(x− 5

8
)2dP +

∫
J3

(x− 53

64
)2dP +

∫
J(3,∞)

(x− a(3,∞))2dP

=
521811

234422272
= 0.00222594 > V4,

which is a contradiction.

Case 2. 43
64 ≤ a3.

Then, as S212(1) < 1
2 ( 3

8 + 43
64 ) = 67

128 = S213(0), we have

V4 ≥
∫
J211∪J212

(x− 3

8
)2dP +

∫
J22∪J23

(x− 43

64
)2dP

=
6099

2093056
= 0.00291392 > V4,

which leads to a contradiction.
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Thus, a contradiction arises to our assumption 1
4 < a2 ≤ 3

8 . Suppose that
3
8 ≤ a2 <

1
2 . Then, 1

2 (a1 + a2) < 1
4 implying a1 ≤ 1

2 − a2 ≤
1
2 −

3
8 = 1

8 < a(1),
and

min
{a1< 1

8<
3
8≤a2}

∫
J1

min
a∈{a1,a2}

(x− a)2dP ≥
∫
J1

(x− a(1))2dP =
9

7154
.

Since 53
64 < a4, the following three cases can arise:

Case I. a3 ≤ 43
64 and 53

64 < a4 ≤ 7
8 .

Then, as 1
2 ( 43

64 + 53
64 ) = 3

4 , we have

V4 ≥
∫
J1

(x− a(1))2dP +

∫
J3

(x− 53

64
)2dP +

∫
J4∪J5∪J6

(x− 7

8
)2dP

=
126459

58605568
= 0.0021578 > V4,

which gives a contradiction.

Case II. a3 ≤ 43
64 and 7

8 ≤ a4.

Then, as S31(1) < 1
2 ( 43

64 + 7
8 ) < S32(0),

V4 ≥
∫
J1

(x− a(1))2dP +

∫
J31

(x− 43

64
)2dP +

∫
J32∪J33

(x− 7

8
)2dP

=
4458897

1875378176
= 0.0023776 > V4,

which leads to a contradiction.

Case III. 43
64 ≤ a3.

Then, S22(1) < 1
2 ( 1

2 + 43
64 ) < S23(0) yielding

V4 ≥
∫
J1

(x− a(1))2dP +

∫
J21∪J22

(x− 1

2
)2dP +

∫
J23

(x− 43

64
)2dP

=
4496025

1875378176
= 0.0023974 > V4,

which is a contradiction.
Thus, a contradiction arises to our assumption 3

8 ≤ a2 <
1
2 , and so we can

assume 1
2 ≤ a2. Now, notice that 1

2 (a1 + a2) ≥ 1
2 (0 + 1

2 ) = 1
4 yielding the fact

that the Voronoi region of any point in α4 ∩ J(1,∞) does not contain any point

from J1. Moreover, we proved a1 <
1
4 and the Voronoi region of any point in

α4 ∩ J1 does not contain any point from J(1,∞). Thus, the proof of the lemma
is complete. �

Lemma 3.7. Let α5 be an optimal set of five-means. Then, α5 ∩ J1 6= ∅,
α5 ∩ J(1,∞) 6= ∅, and α5 does not contain any point from the open interval

( 1
4 ,

1
2 ). Moreover, the Voronoi region of any point in α5 ∩ J1 does not contain

any point from J(1,∞) and the Voronoi region of any point in α5 ∩ J(1,∞) does
not contain any point from J1.
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Proof. Let α5 := {0 < a1 < a2 < a3 < a4 < a5 < 1} be an optimal set of
five-means. Consider the set β := {a(11), a(11,∞), a(2), a(3), a(3,∞)} of five
points. Then,∫

min
a∈β

(x− a)2dP = p11s
2
11V (1 +

43

3
) + p2s

2
2V + p3s

3
3V (1 +

43

9
)

=
255

228928
= 0.00111389.

Since V5 is the quantization error for five-means, we have V5 ≤ 0.00111389. If
a5 ≤ 6

7 , then

V5 ≥
∫

10
∪
j=4

Jj

(x− 6

7
)2dP =

1160604105

960193626112
= 0.00120872 > V5,

which is a contradiction, and so 6
7 < a5. Suppose that a4 ≤ 11

16 . Consider the
following two cases:

Case 1. 6
7 ≤ a5 <

7
8 .

Then, S31(1) < 1
2 ( 11

16 + 6
7 ) < 25

32 = S32(0), yielding

V5 ≥
∫
J31

(x− 11

16
)2dP +

∫
J32∪J33

(x− 6

7
)2dP +

∫
6
∪
j=4

Jj

(x− 7

8
)2dP

=
2290131

1875378176
= 0.00122116 > V5,

which leads to a contradiction.

Case 2. 7
8 ≤ a5.

Then, S31(1) < 1
2 ( 11

16 + 7
8 ) = 25

32 = S32(0), yielding

V5 ≥
∫
J31

(x− 11

16
)2dP +

∫
10
∪
j=2

J3j

(x− 7

8
)2dP

=
651896011533

561850441793536
= 0.00116027 > V5,

which is a contradiction.
Hence, we can assume that 11

16 < a4. If a3 ≤ 1
4 , then

V5 ≥
∫
J2

(x− a(2))2dP +

∫
J(2,∞)

(x− a(2,∞))2dP

= (1 +
43

9
)p2s

2
2V =

39

14308
= 0.00272575 > V5,

which gives a contradiction. So, we can assume that 1
4 < a3. Suppose that

1
4 < a3 <

1
2 . The following two cases can arise:

Case (i). 1
4 < a3 ≤ 3

8 .
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Then, 1
2 (a3 + a4) > 1

2 implying a4 > 1− a3 ≥ 1− 3
8 = 5

8 , and so

V5 ≥
∫
J2

(x− 5

8
)2dP =

405

261632
= 0.00154798 > V5,

which is a contradiction.

Case (ii). 3
8 ≤ a3 <

1
2 .

Then, 1
2 (a2 + a3) < 1

4 implying a2 < 1 − a3 ≤ 1
2 −

3
8 = 1

8 . Moreover, as
11
16 < a4, we have S22(1) < 1

2 ( 1
2 + 11

16 ) = 19
32 = S23(0), and so

V5 ≥
∫
J12

(x− 1

8
)2dP +

∫
J21∪J22

(x− 1

2
)2dP +

∫
J23

(x− 11

16
)2dP

=
45399

33488896
= 0.00135564 > V5,

which yields a contradiction.
Hence, we can assume that 1

2 ≤ a3. If 3
8 ≤ a2, then

V5 ≥ min
{a1< 1

8<
3
8≤a2}

∫
J1

min
a∈{a1,a2}

(x− a)2dP

≥
∫
J1

(x− a(1))2dP =
9

7154
= 0.00125804 > V5,

which is a contradiction. Suppose that 1
4 < a2 ≤ 3

8 . Then, 1
2 (a2 + a3) > 1

2

implying a3 > 1− a2 ≥ 1− 3
8 = 5

8 , which yields

V5 ≥
∫
J2

(x− 5

8
)2dP =

405

261632
= 0.00154798 > V5,

leading to a contradiction. So, we can assume that a2 ≤ 1
4 . Thus, we have

proved that a2 ≤ 1
4 and 1

2 ≤ a3, yielding the fact that α5∩J1 6= ∅, α5∩J(1,∞) 6=
∅, and α5 does not contain any point from the open interval ( 1

4 ,
1
2 ). Since

1
2 (a2 + a3) ≥ 1

2 (0 + 1
2 ) = 1

4 , the Voronoi region of any point in α5 ∩ J(1,∞) does
not contain any point from J1. If the Voronoi region of a2 contains points from
J(1,∞), then 1

2 (a2 + a3) > 1
2 implying a3 > 1− a2 ≥ 1− 1

4 = 3
4 , and so

V5 ≥
∫
J2

(x− 3

4
)2dP =

813

65408
= 0.0124297 > V5,

which gives a contradiction. Thus, the proof of the lemma is complete. �

Proposition 3.8. Let αn be an optimal set of n-means for n ≥ 2. Then,
αn ∩ J1 6= ∅ and αn ∩ J(1,∞) 6= ∅, and αn does not contain any point from

the open interval ( 1
4 ,

1
2 ). Moreover, the Voronoi region of any point in αn ∩ J1

does not contain any point from J(1,∞) and the Voronoi region of any point in
αn ∩ J(1,∞) does not contain any point from J1.
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Proof. By Lemma 3.3, Lemma 3.5, Lemma 3.6, and Lemma 3.7, the proposition
is true for 2 ≤ n ≤ 5. We now prove the proposition for all n ≥ 6. Let αn :=
{0 < a1 < a2 < · · · < an < 1} be an optimal set of n-means for n ≥ 6. Con-
sider the set of six points β := {a(11), a(11,∞), a(21), a(21,∞), a(3), a(3,∞)}.
Then, the distortion error is∫

min
a∈β

(x− a)2dP = (1 +
43

3
)p11s

2
11V + (1 +

43

3
)p21s

2
21V + (1 +

43

9
)p3s

2
3V

=
1383

1831424
.

Since, Vn is the quantization error for n-means for n ≥ 6, we have Vn ≤ V6 ≤
1383

1831424 = 0.00075515. Proceeding in the similar way, as shown in the previous

lemmas, we have a1 <
1
4 and 1

2 < an. Let j = max{i : ai <
1
2}. Then, aj <

1
2 .

We show that aj ≤ 1
4 . Suppose that 1

4 < aj <
1
2 . Then, the following two cases

can arise:

Case 1. 3
8 ≤ aj <

1
2 .

Then, 1
2 (aj−1 + aj) <

1
4 implying aj−1 <

1
2 − aj ≤

1
2 −

3
8 = 1

8 = S12(0)
yielding

Vn ≥
∫

10
∪
j=2

J1j

(x− 1

8
)2dP =

13986897

17179869184
= 0.000814145 > Vn,

which is a contradiction.

Case 2. 1
4 < aj ≤ 3

8 .

Then, 1
2 (aj + aj+1) > 1

2 implying aj+1 > 1− aj ≥ 1− 3
8 = 5

8 yielding

Vn ≥
∫
J2

(x− 5

8
)2dP =

405

261632
= 0.00154798 > Vn,

which gives a contradiction.
Hence, we can assume that aj ≤ 1

2 . Thus, we have seen that αn ∩ J1 6= ∅,
αn ∩ J(1,∞) 6= ∅, and αn does not contain any point from the open interval

( 1
4 ,

1
2 ). Since 1

2 (aj + aj+1) ≥ 1
2 (0 + 1

2 ) = 1
4 , the Voronoi region of any point

in αn ∩ J(1,∞) does not contain any point from J1. Suppose that the Voronoi

region of aj contains points from J(1,∞). Then, 1
2 (aj + aj+1) > 1

2 implying

aj+1 > 1− a2 ≥ 1− 1
4 = 3

4 , and so

Vn ≥
∫
J2

(x− 3

4
)2dP =

813

65408
= 0.0124297 > Vn,

which is a contradiction. So, we can assume that the Voronoi region of any
point in αn ∩ J1 does not contain any point from J(1,∞). Thus, the proof of
the proposition is complete. �

We need the following lemmas to prove Proposition 3.13.
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Lemma 3.9. Let V (P, J2, {a, b}) be the quantization error due to the points a
and b on the set J2, where 1

2 ≤ a < b and b = 5
8 . Then, a = a(21, 22) and

V (P, J2, {a, b}) =

∫
J21∪J22

(x−a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP =

2403

10465280
.

Proof. Consider the set { 1120 ,
5
8}. Then, as S22(1) < 1

2 ( 11
20 + 5

8 ) < S23(0), and
V (P, J2, {a, b}) is the quantization error due to the points a and b on the set
J2, we have

V (P, J2, {a, b}) ≤
∫
J21∪J22

(x− 11

20
)2dP +

∫
J(22,∞)

(x− 5

8
)2dP

=
2403

10465280
= 0.000229616.

If 37
64 = S22(1) ≤ a, then

V (P, J2, {a, b}) ≥
∫
J21∪J22

(x− S22(1))2dP

=
6831

19136512
= 0.000356962 > V (P, J2, {a, b}),

which is a contradiction, and so we can assume that a < S22(1) = 37
64 . If the

Voronoi region of b contains points from J22, we must have 1
2 (a + b) < 37

64

implying a < 37
32 − b = 37

32 −
5
8 = 17

32 = S21(1), and so

V (P, J2, {a, b}) >
∫
J22

(x− 17

32
)2dP +

∫
10
∪
j=3

J2j

(x− 5

8
)2dP

=
276910245

962072674304
= 0.000287827,

yielding V (P, J2, {a, b}) > 0.000287827 > V (P, J2, {a, b}), which leads to a
contradiction. So, we can assume that the Voronoi region of b does not contain
any point from J22 yielding a ≥ a(21, 22) = 11

20 . If the Voronoi region of a

contains points from J23, we must have 1
2 (a + 5

8 ) > S23(0) = 19
32 implying

a > 19
16 −

5
8 = 9

16 = S22(0), and then

V (P, J2, {a, b}) >
∫
J21

(x− 9

16
)2dP +

∫
10
∪
j=3

J2j

(x− 5

8
)2dP

=
17716739853

70231305224192
= 0.000252263,

yielding V (P, J2, {a, b}) > 0.000252263 > V (P, J2, {a, b}), which leads to a
contradiction. So, the Voronoi region of a does not contain any point from J23
yielding a ≤ a(21, 22). Again, we proved a ≥ a(21, 22). Thus, a = a(21, 22)
and

V (P, J2, {a, b}) =

∫
J21∪J22

(x−a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP =

2403

10465280
.
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Thus, the proof of the lemma is complete. �

Lemma 3.10. Let α6 be an optimal set of six-means. Then, card(α6∩J1) = 2
and card(α6 ∩ J(1,∞)) = 4. Moreover, card(α6 ∩ J2) = 2.

Proof. Let α6 := {0 < a1 < a2 < a3 < a4 < a5 < a6 < 1} be an optimal set of
six-means. Consider the set of six points

β := {a(11), a(11,∞), a(21), a(21,∞), a(3), a(3,∞)}.
Then, the distortion error is∫

min
a∈β

(x− a)2dP = (1 +
43

3
)p11s

2
11V + (1 +

43

3
)p21s

2
21V + (1 +

43

9
)p3s

2
3V

=
1383

1831424
.

Since, V6 is the quantization error for six-means, we have V6 ≤ 1383
1831424 =

0.00075515. By Proposition 3.8, we have card(α6 ∩ J1) ≥ 1 and card(α6 ∩
J(1,∞)) ≥ 1. Moreover, the Voronoi region of any point in α6 ∩ J1 does not
contain any point from J(1,∞) and the Voronoi region of any point in α6∩J(1,∞)

does not contain any point from J1. Suppose that card(α6 ∩ J(1,∞)) = 2, and
then taking β2 = {a(2), a(2,∞)} we see that

V6 ≥
∫
J2∪J(2,∞)

min
a∈β2

(x− a)2dP =

∫
J2

(x− a(2))2dP +

∫
J(2,∞)

(x− a(2,∞))2dP

=
39

14308
= 0.00272575,

i.e., V6 ≥ 0.00272575 > V6, which yields a contradiction. Next, assume that
card(α6 ∩ J(1,∞)) = 3, and then taking β2 = {a(2), a(3), a(3,∞)}, we see that

V6 ≥
∫
J2

(x− a(2))2dP +

∫
J3

(x− a(3))2dP +

∫
J(3,∞)

(x− a(3,∞))2dP

=
93

114464
= 0.000812483 > V6,

which gives a contradiction. Thus, we can assume that card(α6 ∩ J(1,∞)) ≥ 4.
If card(α6 ∩ J1) = 1, then,

V6 ≥
∫
J1

(x− a(1))2dP =
9

7154
= 0.00125804 > V6,

which yields a contradiction, and so card(α6 ∩ J1) ≥ 2. Therefore, we can
assume that card(α6 ∩ J1) = 2 and card(α6 ∩ J(1,∞)) = 4. We now show that
card(α6 ∩ J2) = 2. By Proposition 3.8, the Voronoi region of any element
in α6 ∩ J1 does not contain any point from J(1,∞), and the Voronoi region
of any element in α6 ∩ J(1,∞) does not contain any point from J1. We have
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α6 ∩ J(1,∞) = { 12 ≤ a3 < a4 < a5 < a6 < 1}. The distortion error contributed
by the set β ∩ J(1,∞) = {a(21), a(21,∞), a(3), a(3,∞)} is given by∫

J(1,∞)

min
a∈β∩J(1,∞)

(x− a)2dP = (1 +
43

3
)p21s

2
21V + (1 +

43

9
)p3s

2
3V

=
831

1831424
= 0.000453745.

Let V (P, α6∩J(1,∞)) be the quantization error contributed by the set α6∩J(1,∞)

in the region J(1,∞). Then, we must have V (P, α6 ∩ J(1,∞)) ≤ 0.000453745. If

a6 ≤ 57
64 = S42(0), then

V (P, α6 ∩ J(1,∞)) ≥
∫

8
∪
j=5

Jj

(x− 57

64
)2dP =

145935

306184192
= 0.000476625

> V (P, α6 ∩ J(1,∞)),

which yields a contradiction, and so S42(0) = 57
64 < a6. If 3

4 < a4, then

V (P, α6 ∩ J(1,∞)) ≥
∫
J2

(x− a(2))2dP =
27

57232
= 0.000471764

> V (P, α6 ∩ J(1,∞)),

which yields a contradiction. So, we can assume that a4 <
3
4 . Suppose that

5
8 < a4 <

3
4 . Then, the following two cases can arise:

Case 1. 11
16 ≤ a4 <

3
4 .

Then, 1
2 (a3 + a4) < 5

8 implying a3 <
5
4 − a4 ≤

5
4 −

11
16 = 9

16 , and so

V (P, α6 ∩ J(1,∞)) ≥ min
{a3< 9

16<
11
16≤a4}

∫
J2

min
a∈{a3,a4}

(x− a)2dP

≥
∫
J2

(x− a(2))2dP =
27

57232
,

implying V (P, α6 ∩ J(1,∞)) ≥ 27
57232 = 0.000471764 > V (P, α6 ∩ J(1,∞)), which

gives a contradiction.

Case 2. 5
8 < a4 <

11
16 .

Then, 1
2 (a4 + a5) > 3

4 implying a5 >
3
2 − a4 ≥

3
2 −

11
16 = 13

16 . Then, the
following two subcases can arise:

Subcase (i). 27
32 ≤ a5.

Then, S31(1) = 49
64 = 1

2 ( 11
16 + 27

32 ) < S32(0), and so by Lemma 3.9,

V (P, α6 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J31

(x− 11

16
)2dP +

∫
J32

(x− 27

32
)2dP
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=
236721

334888960
= 0.000706864 > V (P, α6 ∩ J(1,∞)),

which gives a contradiction.

Subcase (ii). 13
16 < a5 <

27
32 .

Then, 1
2 (a5 + a6) > 7

8 implying a6 >
7
4 − a5 ≥

7
4 −

27
32 = 29

32 = S4(1). First,

assume that S4(1) < a6 < S5(0) = 15
16 . Then, using Lemma 3.9,

V (P, α6 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J3

(x− 13

16
)2dP+

∫
J4

(x− 29

32
)2dP+

∫
J5∪J6

(x− 15

16
)2dP

=
11529

23920640
= 0.000481969 > V (P, α6 ∩ J(1,∞)),

which leads to a contradiction. Next, assume that S5(0) = 15
16 ≤ a6. Then, as

S42(0) = 57
64 = 1

2 ( 27
32 + 15

16 ), using Lemma 3.9, we have

V (P, α6 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J3

(x− 13

16
)2dP+

∫
J41

(x− 27

32
)2dP+

∫
J42

(x− 15

16
)2dP

=
700899

1339555840
= 0.000523232 > V (P, α6 ∩ J(1,∞)),

which yields a contradiction.
Hence, by Case 1 and Case 2, we can assume that a4 ≤ 5

8 yielding card(α6∩
J2) = 2. Thus, the proof of the proposition is complete. �

Lemma 3.11. Let α7 be an optimal set of seven-means. Then, either (i)
card(α7 ∩ J1) = 3 and card(α7 ∩ J(1,∞)) = 4, or (ii) card(α7 ∩ J1) = 2 and
card(α7 ∩ J(1,∞)) = 5.

Proof. Let α7 := {0 < a1 < a2 < · · · < a7 < 1} be an optimal set of seven-
means. Consider the set of seven points

β := {a(11), a(12), a(12,∞), a(21), a(21,∞), a(3), a(3,∞)}.
Then, the distortion error due to the set β is∫

min
a∈β

(x− a)2dP = p11s
2
11V + (1 +

43

9
)p12s

2
12V

+ (1 +
43

3
)p21s

2
21V + (1 +

43

9
)p3s

2
3V

=
135

261632
.

Since, V7 is the quantization error for seven-means, we have V7 ≤ 135
261632 =

0.000515992. By Proposition 3.8, we have card(α7 ∩ J1) ≥ 1 and card(α7 ∩
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J(1,∞)) ≥ 1. Moreover, the Voronoi region of any point in α7 ∩ J1 does not
contain any point from J(1,∞) and the Voronoi region of any point in α7∩J(1,∞)

does not contain any point from J1. Suppose that card(α7 ∩ J(1,∞)) = 2, and
then taking β2 = {a(2), a(2,∞)} we see that

V7 ≥
∫
J2∪J(2,∞)

min
a∈β2

(x− a)2dP

=

∫
J2

(x− a(2))2dP +

∫
J(2,∞)

(x− a(2,∞))2dP =
39

14308
= 0.00272575,

i.e., V7 ≥ 0.00272575 > V7, which yields a contradiction. Next, assume that
card(α7 ∩ J(1,∞)) = 3, and then taking β2 = {a(2), a(3), a(3,∞)}, we see that

V7 ≥
∫
J2

(x− a(2))2dP +

∫
J3

(x− a(3))2dP +

∫
J(3,∞)

(x− a(3,∞))2dP

=
93

114464
= 0.000812483 > V7,

which gives a contradiction. Thus, we can assume that card(α7 ∩ J(1,∞)) ≥ 4.
If card(α7 ∩ J1) = 1, then,

V7 ≥
∫
J1

(x− a(1))2dP =
9

7154
= 0.00125804 > V7,

which gives a contradiction. So, we can assume that card(α7∩J1) ≥ 2. Thus, we
have either (i) card(α7∩J1) = 3 and card(α7∩J(1,∞)) = 4, or (ii) card(α7∩J1) =
2 and card(α7 ∩ J(1,∞)) = 5, which is the lemma. �

Lemma 3.12. Let α8 be an optimal set of eight-means. Then, card(α8∩J1) = 3
and card(α8 ∩ J(1,∞)) = 5.

Proof. Let α8 := {0 < a1 < a2 < · · · < a8 < 1} be an optimal set of eight-
means. Consider the set of eight points

β := {a(11), a(12), a(12,∞), a(21), a(21,∞), a(3), a(4), a(4,∞)}.
Then, the distortion error due to the set β is∫

min
a∈β

(x− a)2dP = p11s
2
11V + (1 +

43

9
)p12s

2
12V + (1 +

43

3
)p21s

2
21V

+ p3s
2
3V + (1 +

43

9
)p4s

2
4V

=
507

1831424
.

Since V8 is the quantization error for eight-means, we have V8 ≤ 507
1831424 =

0.000276834. By Proposition 3.8, we have card(α8 ∩ J1) ≥ 1 and card(α8 ∩
J(1,∞)) ≥ 1. Moreover, the Voronoi region of any point in α8 ∩ J1 does not
contain any point from J(1,∞) and the Voronoi region of any point in α8∩J(1,∞)
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does not contain any point from J1. Suppose that card(α8 ∩ J(1,∞)) = 2, and
then taking β2 = {a(2), a(2,∞)} we see that

V8 ≥
∫
J2∪J(2,∞)

min
a∈β2

(x− a)2dP

=

∫
J2

(x− a(2))2dP +

∫
J(2,∞)

(x− a(2,∞))2dP =
39

14308
= 0.00272575,

i.e., V8 ≥ 0.00272575 > V8, which yields a contradiction. Suppose that
card(α8 ∩ J(1,∞)) = 3, and then taking β3 = {a(2), a(3), a(3,∞)}, we see that

V8 ≥
∫
J2

(x− a(2))2dP +

∫
J3

(x− a(3))2dP +

∫
J(3,∞)

(x− a(3,∞))2dP

=
93

114464
= 0.000812483 > V8,

which gives a contradiction. Next, assume that card(α8∩J(1,∞)) = 4, and then
taking

β4 = {a(21), a(21,∞), a(3), a(3,∞)},
we see that

V8 ≥ (1 +
43

3
)p21s

2
21V + (1 +

43

9
)p3s

3
3V =

831

1831424
= 0.000453745 > V8,

which gives a contradiction. So, we can assume that card(α8 ∩ J(1,∞)) ≥ 5. If
card(α8 ∩ J1) = 1, then,

V8 ≥
∫
J1

(x− a(1))2dP =
9

7154
= 0.00125804 > V8,

which leads to a contradiction. If card(α8 ∩ J1) = 2, then taking β2 =
{a(11), a(11,∞)}, we see that

V8 ≥
∫
J1

min
a∈β2

(x− a)2dP = (1 +
43

3
)p11s

2
11V =

69

228928
= 0.000301405 > V8,

which is a contradiction. So, we can assume that card(α8 ∩ J1) ≥ 3. Since
card(α8 ∩ J1) ≥ 3 and card(α8 ∩ J(1,∞)) ≥ 5, we have card(α8 ∩ J1) = 3 and
card(α8 ∩ J(1,∞)) = 5, which is the lemma. �

Proposition 3.13. Let αn be an optimal set of n-means for P such that
card(αn ∩ J(k,∞)) ≥ 2 for some k ∈ N and n ∈ N. Then, αn ∩ Jk+1 6= ∅,
αn ∩ J(k+1,∞) 6= ∅, and αn does not contain any point from the open interval
(Sk+1(1), Sk+2(0)). Moreover, the Voronoi region of any point in αn ∩ Jk+1

does not contain any point from J(k+1,∞) and the Voronoi region of any point
in αn ∩ J(k+1,∞) does not contain any point from Jk+1.

Proof. By Proposition 3.8, since αn does not contain any point from ( 1
4 ,

1
2 ), the

Voronoi region of any point in αn ∩ J1 does not contain any point from J(1,∞),
and the Voronoi region of any point in αn ∩ J(1,∞) does not contain any point
from J1, to prove the proposition it is enough to prove it for k = 1, and then
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inductively the proposition will follow for all k ≥ 2. Fix k = 1. By Lemma 3.5,
it is clear that the proposition is true for n = 3. Let α4 := {0 < a1 < a2 <
a3 < a4 < 1} be an optimal set of four-means. In the proof of Lemma 3.6,
we have seen that 1

2 ≤ a2 yielding α4 ∩ J(1,∞) = { 12 ≤ a2 < a3 < a4 < 1},
i.e., card(α4 ∩ J(1,∞)) = 3 ≥ 2. We now prove the proposition for n = 4. Let
V (P, α4 ∩ J(1,∞)) be the quantization error contributed by the set α4 ∩ J(1,∞).
The distortion error due to the set β := {a(2), a(3), a(3,∞)} of three points on
J(1,∞) is given by∫

J(1,∞)

min
a∈β

(x− a)2dP = p2s
2
2V + (1 +

43

9
)p3s

2
3V =

93

114464
= 0.000812483,

and so V (P, α4 ∩ J(1,∞)) ≤ 0.000812483. If a2 ≥ 39
64 = S24(0), then

V (P, α4 ∩ J(1,∞)) ≥
∫
J21∪J22∪J23

(x− 39

64
)2dP =

269769

267911168
= 0.00100693

> V (P, α4 ∩ J(1,∞)),

which is a contradiction. So, we can assume that a2 < 39
64 . Suppose that

a3 ≤ 5
7 . Then, as S3(1) = 13

16 <
1
2 ( 5

7 + a(3,∞)) < 7
8 , we have

V (P, α4 ∩ J(1,∞)) ≥
∫
J3

(x− 5

7
)2dP +

∫
J(3,∞)

(x− a(3,∞))2dP

=
297

228928
= 0.00129735

implying V (P, α4 ∩ J(1,∞)) ≥ 0.00129735 > V (P, α4 ∩ J(1,∞)), which is a con-

tradiction. Next, suppose that 5
7 ≤ a3 ≤

3
4 . Then, as S2(1) < 1

2 (a(2) + 5
7 ) and

S3(1) < 1
2 ( 3

4 + a(3,∞)) < 7
8 = S4(0), we have

V (P, α4 ∩ J(1,∞)) ≥
∫
J2

(x− a(2))2dP +

∫
J3

(x− 3

4
)2dP

+

∫
J(3,∞)

(x− a(3,∞))2dP =
963

915712

yielding V (P, α4 ∩ J(1,∞)) ≥ 963
915712 = 0.00105164 > V (P, α4 ∩ J(1,∞)), which

gives a contradiction. Thus, we have 3
4 < a3. Since a2 ≤ 39

64 < 5
8 and 3

4 <
a3, the set α4 ∩ J(1,∞) does not contain any point from the open interval

(S2(1), S3(0)). Since 1
2 (a2 + a3) ≥ 1

2 ( 1
2 + 3

4 ) = 5
8 = S2(1), the Voronoi region

of any point in α4 ∩ J(2,∞) does not contain any point from J2. Suppose that
the Voronoi region of any point in α4 ∩ J2 contains points from J(2,∞). Then,
1
2 (a2 + a3) > 3

4 implying a3 >
3
2 − a2 ≥

3
2 −

39
64 = 57

64 , and so

V4 ≥
∫
J3

(x− 57

64
)2dP =

10155

4784128
= 0.00212264 > V4,

which leads to a contradiction. Hence, the Voronoi region of any point in α4∩J2
does not contain any point from J(2,∞). Thus, the proposition is true for n = 4.
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From the proof of Lemma 3.7, we see that if α5 = {0 < a1 < a2 < a3 < a4 <
a5 < 1} is an optimal set of five-means, then α5 ∩ J(1,∞) = { 12 ≤ a3 < a4 <
a5 < 1}. Thus, the proof of the proposition for n = 5 follows exactly in the
similar ways as the proof for n = 4 given above.

Now, we prove the proposition for n = 6. Let α6 := {0 < a1 < a2 < a3 <
a4 < a5 < a6 < 1} be an optimal set of six-means. Then, by Lemma 3.10, we
know that card(α6 ∩ J2) = 2, and card(α6 ∩ J(1,∞)) = 4. Thus, we see that
α6 ∩ J2 = {a3, a4} 6= ∅ and α6 ∩ J(2,∞) = {a5, a6} 6= ∅. As shown in the proof

of Lemma 3.10, we have α6 ∩ J(1,∞) = { 12 ≤ a3 < a4 < a5 < a6 < 1}, and if
V (P, α6 ∩ J(1,∞)) is the quantization error contributed by the set α6 ∩ J(1,∞)

in the region J(1,∞), then we have V (P, α6 ∩ J(1,∞)) ≤ 0.000453745. We now
show that the Voronoi region of any point in α6 ∩ J2 does not contain any
point from J(2,∞). If it does, then we must have 1

2 (a4 + a5) > 3
4 implying

a5 >
3
2 − a4 ≥

3
2 −

5
8 = 7

8 , and so

V (P, α6∩J(1,∞)) ≥
∫
J3

(x− 7

8
)2dP =

813

523264
= 0.00155371 > V (P, α6∩J(1,∞)),

which is a contradiction. Also, notice that the Voronoi region of any element
from α6 ∩ J(2,∞) does not contain any point from J2, if it does we must have
1
2 (a4 + a5) < 5

8 implying a4 <
5
4 − a5 ≤

5
4 −

3
4 = 1

2 , which is a contradiction as
1
2 ≤ a3 < a4.

Now, we prove the proposition for n = 7. Let α7 := {0 < a1 < a2 <
· · · < a7 < 1} be an optimal set of seven-means. By Lemma 3.11, first as-
sume that card(α7 ∩ J(1,∞)) = 4, i.e., 1

2 ≤ a4. Let V (P, α7 ∩ J(1,∞)) be the
quantization error contributed by the set α7 ∩ J(1,∞) in the region J(1,∞). Let
β := {a(11), a(12), a(12,∞), a(21), a(21,∞), a(3), a(3,∞)}. The distortion er-
ror due to the set β ∩ J(1,∞) := {a(21), a(21,∞), a(3), a(3,∞)} is given by∫

J(1,∞)

min
a∈β∩J(1,∞)

(x− a)2dP = (1 +
43

3
)p21s

2
21V + (1 +

43

9
)p3s

2
3V

=
831

1831424
= 0.000453745,

and so V (P, α7 ∩ J(1,∞)) ≤ 0.000453745. If a4 ≥ 77
128 = S23(1), then

V (P, α7 ∩ J(1,∞)) ≥
∫
J21∪J22∪J23

(x− 77

128
)2dP =

852849

1071644672
= 0.000795832

> V (P, α7 ∩ J(1,∞)),

which is a contradiction. So, we can assume that a4 <
77
128 = S23(1). Suppose

that 11
16 ≤ a5. Then, as 1

2 (a(2) + a5) ≥ 1
2 ( 4

7 + 11
16 ) > 5

8 , we have

V (P, α7 ∩ J(1,∞)) ≥
∫
J2

(x− a(2))2dP =
27

57232
= 0.000471764

> V (P, α7 ∩ J(1,∞)),
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which leads to a contradiction. So, we can assume that a5 ≤ 11
16 . Suppose that

5
8 < a5 ≤ 11

16 . Then, 1
2 (a5+a6) > 3

4 implying a6 >
3
2−a6 ≥

3
2−

11
16 = 13

16 = S3(1).
Then, the following two cases can arise:

Case (i). 27
32 ≤ a6.

Then, S31(1) = 49
64 = 1

2 ( 11
16 + 27

32 ) < S32(0), and so by Lemma 3.9,

V (P, α7 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J31

(x− 11

16
)2dP +

∫
J32

(x− 27

32
)2dP

=
236721

334888960
= 0.000706864 > V (P, α7 ∩ J(1,∞)),

which gives a contradiction.

Case (ii). 13
16 < a6 <

27
32 .

Then, 1
2 (a6 + a7) > 7

8 implying a7 >
7
4 − a6 ≥

7
4 −

27
32 = 29

32 = S4(1). First,

assume that S4(1) < a7 < S5(0) = 15
16 . Then, using Lemma 3.9,

V (P, α7 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J3

(x− 13

16
)2dP +

∫
J4

(x− 29

32
)2dP

+

∫
J5∪J6

(x− 15

16
)2dP

=
11529

23920640
= 0.000481969 > V (P, α7 ∩ J(1,∞)),

which leads to a contradiction. Next, assume that S5(0) = 15
16 ≤ a7. Then, as

S42(0) = 57
64 = 1

2 ( 27
32 + 15

16 ), using Lemma 3.9, we have

V (P, α7 ∩ J(1,∞)) ≥
∫
J21∪J22

(x− a(21, 22))2dP +

∫
J(22,∞)

(x− 5

8
)2dP

+

∫
J3

(x− 13

16
)2dP +

∫
J41

(x− 27

32
)2dP

+

∫
J42

(x− 15

16
)2dP

=
700899

1339555840
= 0.000523232 > V (P, α7 ∩ J(1,∞)),

which yields a contradiction.
Hence, by Case (i) and Case (ii), we can assume that a5 ≤ 5

8 . If a6 ≤ 3
4 ,

then as 13
16 = S3(1) = 1

2 ( 3
4 + 7

8 ) < 1
2 ( 3

4 + a(3,∞)) = 1
2 ( 3

4 + 13
14 ) < 7

8 , we have

V7 ≥
∫
J3

(x− 3

4
)2dP +

∫
J(3,∞)

(x− a(3,∞))dP
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=
531

915712
= 0.000579877 > V7,

which leads to a contradiction. So, we can assume that 3
4 < a6. Thus, it is

proved that α7 ∩ J2 6= ∅, α7 ∩ J(2,∞) 6= ∅, and α7 does not contain any point

from the open interval (S2(1), S3(0)). Since 1
2 (a5 + a6) ≥ 1

2 ( 1
2 + 3

4 ) = 5
8 , the

Voronoi region of any point in α7 ∩ J(2,∞) does not contain any point from J2.
If the Voronoi region of any point in α7 ∩ J2 contains points from J(2,∞), we

must have 1
2 (a5 + a6) > 3

4 implying a6 >
3
2 − a5 ≥

3
2 −

5
8 = 7

8 , and so

V (P, α7∩J(1,∞)) ≥
∫
J3

(x− 7

8
)2dP =

813

523264
= 0.00155371 > V (P, α7∩J(1,∞)),

which is a contradiction. Thus, the Voronoi region of any point in α7 ∩J2 does
not contain any point from J(2,∞) as well.

If we assume card(α7 ∩ J(1,∞)) = 5, with the help of Lemma 3.11, similarly
we can prove that the proposition is true. Notice that if we take n = 8, then by
Lemma 3.12, we have card(α8∩J(1,∞)) = 5. Thus, the proof of the proposition
for the case n = 8 is exactly same as the proof of the proposition for n = 7
with card(α7 ∩ J(1,∞)) = 5.

Now, we prove the proposition for any n ≥ 9. Let αn := {0 < a1 < a2 <
· · · < an < 1} be an optimal set of n-means for any n ≥ 9 such that card(αn ∩
J(1,∞)) ≥ 2. Let V (P, αn ∩ J(1,∞)) be the quantization error contributed by
the set αn ∩ J(1,∞) in the region J(1,∞). Let

β := {a(11), a(12), a(12,∞), a(21), a(22), a(22,∞), a(3), a(4), a(4,∞)}.
The distortion error due to the set

β ∩ J(1,∞) := {a(21), a(22), a(22,∞), a(3), a(4), a(4,∞)}
is given by∫

J(1,∞)

min
a∈β∩J(1,∞)

(x− a)2dP

= p21s
2
21V + (1 +

43

9
)p22s

2
22V + p3s

2
3V + (1 +

43

9
)p4s

2
4V =

915

7325696
,

and so V (P, αn ∩ J(1,∞)) ≤ 915
7325696 = 0.000124903. Suppose that αn does not

contain any point from J2. Since by Proposition 3.8, the Voronoi region of any
point in αn ∩ J1 does not contain any point from J(1,∞), we have

V (P, αn∩J(1,∞)) ≥
∫
J2

(x−5

8
)2dP =

405

261632
= 0.00154798 > V (P, αn∩J(1,∞)),

which leads to a contradiction. So, we can assume that αn ∩ J2 6= ∅. Let
j := max{i : ai ≤ 5

8 for all 1 ≤ i ≤ n}, and so aj ≤ 5
8 . We now show that

aj+1 ≥ 3
4 . Suppose that 5

8 < aj+1 <
3
4 . Then, the following two cases can

arise:

Case 1. 5
8 < aj+1 ≤ 11

16 .
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Then, 1
2 (aj+1 + aj+2) > 3

4 implying aj+2 >
3
2 − aj+1 ≥ 3

2 −
11
16 = 13

16 , and so

V (P, αn ∩ J(1,∞)) ≥
∫
J3

(x− 13

16
)2dP =

405

2093056
= 0.000193497

> V (P, αn ∩ J(1,∞)),

which is contradiction.

Case 2. 11
16 ≤ aj+1 <

3
4 .

Then, 1
2 (aj + aj+1) < 5

8 implying aj <
5
4 − aj+1 ≤ 5

4 −
11
16 = 9

16 = S22(0),
and so

V (P, αn ∩ J(1,∞)) ≥
∫
J22∪J23∪J24

(x− 9

16
)2dP =

99

524288
= 0.000188828

> V (P, αn ∩ J(1,∞)),

which gives a contradiction.
Thus, we have proved that αn ∩ J2 6= ∅, αn ∩ J(2,∞) 6= ∅, and αn does not

contain any point from the open interval (S2(1), S3(0)). Since 1
2 (aj + aj+1) ≥

1
2 ( 1

2 + 3
4 ) = 5

8 , the Voronoi region of any point in αn ∩ J(2,∞) does not contain
any point from J2. If the Voronoi region of any point in αn∩J2 contains points
from J(2,∞), we must have 1

2 (aj+aj+1) > 3
4 implying aj+1 >

3
2−aj ≥

3
2−

5
8 = 7

8 ,
and so

V (P, αn ∩ J(1,∞)) ≥
∫
J3

(x− 7

8
)2dP =

813

523264
= 0.00155371

> V (P, αn ∩ J(1,∞)),

which is a contradiction. Hence, the Voronoi region of any point in αn ∩ J2
does not contain any point from J(2,∞). Thus, the proof of the proposition is
complete. �

Proposition 3.14. Let αn be an optimal set of n-means for n ≥ 2. Then,
there exists a positive integer k such that αn ∩ Jj 6= ∅ for all 1 ≤ j ≤ k, and
card(αn ∩ J(k,∞)) = 1. Moreover, if nj := card(αj), where αj := αn ∩ Jj, then

n =
∑k
j=1 nj + 1, with

Vn =


p1s

2
1V + 43

3 p1s
2
1V if k = 1,

k∑
j=1

pjs
2
jVnj + 43

9 pks
2
kV if k ≥ 2.

Proof. Proposition 3.8 says that if αn is an optimal set of n-means for n ≥ 2,
then αn ∩J1 6= ∅, αn ∩J(1,∞) 6= ∅, and αn does not contain any point from the
open interval (S1(1), S2(0)). Proposition 3.13 says that if card(αn∩J(k,∞)) ≥ 2
for some k ∈ N, then αn ∩ Jk+1 6= ∅ and αn ∩ J(k+1,∞) 6= ∅. Moreover, αn
does not take any point from the open interval (Sk+1(1), Sk+2(0)). Thus, by
Induction Principle, we can say that if αn is an optimal set of n-means for
n ≥ 2, then there exists a positive integer k such that αn ∩ Jj 6= ∅ for all
1 ≤ j ≤ k and card(αn ∩ J(k,∞)) = 1.
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For a given n ≥ 2, write αj := αn ∩ Jj and nj := card(αj). Since αj are
disjoints for 1 ≤ j ≤ k, and αn does not contain any point from the open

intervals (S`(1), S`+1(0)) for 1 ≤ ` ≤ k, we have αn =
k
∪
j=1

αj ∪ {a(k,∞)} and

n = n1 + n2 + · · ·+ nk + 1. Then, using Lemma 2.1, we deduce

Vn =

∫
min
a∈αn

‖x− a‖2dP

=

k∑
j=1

∫
Jj

min
a∈αj

(x− a)2dP +

∫
J(k,∞)

(x− a(k,∞))2dP

=

k∑
j=1

pj

∫
min
a∈αj

(x− a)2d(P ◦ S−1j ) +

∫
J(k,∞)

(x− a(k,∞))2dP,

which yields

(6) Vn =

k∑
j=1

pjs
2
j

∫
min

a∈S−1
j (αj)

(x− a)2dP +
43

9
pks

2
kV.

We now show that S−1j (αj) is an optimal set of nj-means, where 1 ≤ j ≤ k. If

S−1j (αj) is not an optimal set of nj-means, then we can find a set β ⊂ R with

card(β) = nj such that
∫

min
b∈β

(x − b)2dP <
∫

min
a∈S−1

j (αj)
(x − a)2dP . But, then

Sj(β) ∪ (αn \ αj) is a set of cardinality n such that∫
min

a∈Sj(β)∪(αn\αj)
(x− a)2dP <

∫
min
a∈αn

(x− a)2dP,

which contradicts the optimality of αn. Thus, S−1j (αj) is an optimal set of

nj-means for 1 ≤ j ≤ k. Hence, by (6) we have

Vn =

k∑
j=1

pjs
2
jVnj +

43

9
pks

2
kV.

Thus, the proof of the proposition is yielded. �

We need the following lemma to prove the main theorem (Theorem 3.1) of
the paper.

Lemma 3.15. For any ω ∈ Nk, k ≥ 1, let E(a(ω)) and E(a(ω,∞)) be given
by (5). Then, for ω, τ ∈ Nk, k ≥ 1, we have

(i) E(a(ω)) > E(a(τ)) if and only if E(a(ω1)) +E(a(ω1,∞)) +E(a(τ)) <
E(a(ω)) + E(a(τ1)) + E(a(τ1,∞));

(ii) E(a(ω)) > E(a(τ,∞)) if and only if E(a(ω1)) + E(a(ω1,∞))+
E(a(τ,∞)) < E(a(ω)) + E(a(τ−(τ|τ | + 1))) + E(a(τ−(τ|τ | + 1),∞));

(iii) E(a(ω,∞)) > E(a(τ)) if and only if E(a(ω−(ω|ω|+1)))+E(a(ω−(ω|ω|+
1),∞)) + E(a(τ)) < E(a(ω,∞)) + E(a(τ1)) + E(a(τ1,∞));
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(iv) E(a(ω,∞)) > E(a(τ,∞)) if and only if E(a(ω−(ω|ω| + 1)))+

E(a(ω−(ω|ω| + 1),∞)) + E(a(τ,∞)) < E(a(ω,∞)) + E(a(τ−(τ|τ | +

1))) + E(a(τ−(τ|τ | + 1),∞)).

Proof. To prove (i), using Lemma 2.6, we see that

LHS = E(a(ω1)) + E(a(ω1,∞)) + E(a(τ))

= pω1s
2
ω1V (1 +

43

3
) + pτs

2
τV

=
1

64
pωs

2
ωV (1 +

43

3
) + pτs

2
τV,

RHS = E(a(ω)) + E(a(τ1)) + E(a(τ1,∞))

= pωs
2
ωV +

1

64
pτs

2
τV (1 +

43

3
).

Thus, LHS < RHS if and only if 1
64pωs

2
ωV (1 + 43

3 ) + pτs
2
τV < pωs

2
ωV +

1
64pτs

2
τV (1 + 43

3 ), which yields pωs
2
ωV > pτs

2
τV , i.e., E(a(ω)) > E(a(τ)).

Thus (i) is proved. To prove (ii), let us first assume τ|τ | = 1. Notice that

pτ−(τ|τ|+1) = pτ−pτ|τ|+1 = 3
2pτ , and sτ−(τ|τ|+1) = sτ−sτ|τ|+1 = 1

2sτ , and then
using Lemma 2.6, we have

LHS = E(a(ω1)) + E(a(ω1,∞)) + E(a(τ,∞))

= pω1s
2
ω1V (1 +

43

3
) +

43

3
pτs

2
τV

=
1

64
pωs

2
ωV (1 +

43

3
) +

43

3
pτs

2
τV,

RHS = E(a(ω)) + E(a(τ−(τ|τ | + 1))) + E(a(τ−(τ|τ | + 1),∞))

= pωs
2
ωV + pτ−(τ|τ|+1)s

2
τ−(τ|τ|+1)V (1 +

43

9
)

= pωs
2
ωV + pτs

2
τV

3

8
(1 +

43

9
).

Thus, LHS < RHS if and only if 1
64pωs

2
ωV (1 + 43

3 ) + 43
3 pτs

2
τV < pωs

2
ωV +

pτs
2
τV

3
8 (1 + 43

9 ), which yields

pωs
2
ωV >

43

3
pτs

2
τV

(
43
3 −

3
8 (1 + 43

9 )
)

3
43

1− 1
64 (1 + 43

3 )
>

43

3
pτs

2
τV,

i.e., E(a(ω)) > E(a(τ,∞)). Thus, (ii) is proved under the assumption τ|τ | = 1.
Similarly by taking τ|τ | ≥ 2, we can prove (ii). Thus, the proof of (ii) is
complete. Proceeding in the similar way, (iii) and (iv) can be proved. This
concludes the proof of the lemma. �

The following proposition gives some properties of E(ω) for ω ∈ N∗.

Proposition 3.16. Let ω, τ be two nonempty words in N∗ with pω = pτ . Then,
the quantization error satisfies the following conditions:
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(i) E(a(ω)) = E(a(τ)).
(ii) If ω|ω| = τ|τ |, then E(a(ω,∞)) = E(a(τ,∞)).

(iii) If ω|ω| 6= τ|τ | = 1, then E(a(ω,∞)) = 1
3E(a(τ,∞)).

(iv) If 1 = ω|ω| 6= τ|τ |, then E(a(ω,∞)) = 3E(a(τ,∞)).

Proof. (i) By Lemma 2.8, pω = pτ implies sω = sτ , and so

E(a(ω)) = pωs
2
ωV = pτs

2
τV = E(a(τ)).

(ii) Here two cases can arise: ω|ω| = τ|τ | = 1 or ω|ω| = τ|τ | ≥ 2. In either
case, using Lemma 2.6 one can see that E(a(ω,∞)) = E(a(τ,∞)).

(iii) If ω|ω| 6= τ|τ | = 1, then, ω|ω| ≥ 2 and τ|τ | = 1, and so by Lemma 2.6 and
Lemma 2.8, we get

E(a(ω,∞)) =
43

9
pωs

2
ωV =

1

3

43

3
pτs

2
τV =

1

3
E(a(τ,∞)).

Due to symmetry (iv) follows from (iii), and thus the proof of the proposition
is complete. �

Proposition 3.17. Let αn be an optimal set of n-means for n ≥ 2. Then, for
c ∈ αn, we have c = a(ω), or c = a(ω,∞) for some ω ∈ N∗.

Proof. Let αn be an optimal set of n-means for n ≥ 2 such that c ∈ αn. By
Proposition 3.13, there exists a positive integer k1 such that αn ∩ Jj1 6= ∅ for
1 ≤ j1 ≤ k1, and card(αn ∩ J(k1,∞)) = 1, and αn does not contain any point
from the open intervals (S`(1), S`+1(0)) for 1 ≤ ` ≤ k1. If c ∈ αn∩J(k1,∞), then
c = a(k1,∞). If c ∈ αn∩Jj1 for some 1 ≤ j1 ≤ k1 with card(αn∩Jj1) = 1, then
c = a(j1). Suppose that c ∈ αn∩Jj1 for some 1 ≤ j1 ≤ k1 and card(αn∩Jj1) ≥
2. Then, as similarity mappings preserve the ratio of the distances of a point
from any other two points, using Proposition 3.13 again, there exists a positive
integer k2 such that αn∩Jj1j2 6= ∅ for 1 ≤ j2 ≤ k2, and card(αn∩J(j1k2,∞)) = 1,
and αn does not contain any point from the open intervals (Sj1`(1), Sj1(`+1)(0))
for 1 ≤ ` ≤ k2. If c ∈ αn ∩ J(j1k2,∞), then c = a(j1k2,∞). Suppose that
c ∈ αn ∩ Jj1j2 for some 1 ≤ j2 ≤ k2. If card(αn ∩ Jj1j2) = 1, then c = a(j1j2).
If card(αn ∩ Jj1j2) ≥ 2, proceeding inductively as before, we can find a word
ω ∈ N∗, such that either c ∈ αn∩Jω with card(αn∩Jω) = 1 implying c = a(ω),
or c ∈ αn ∩ J(ω,∞) with card(αn ∩ J(ω,∞)) = 1 implying c = a(ω,∞). Thus,
the proof of the proposition is complete. �

By Proposition 3.17, we can say that if αn is an optimal set of n-means
for any n ≥ 2, then the error contributed by any element c ∈ αn is given by
E(a(ω)) if c = a(ω), or by E(a(ω,∞)) if c = a(ω,∞), where ω ∈ N∗. We are
now ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.3 and Lemma 3.5, it is known that the op-
timal sets of two- and three-means are {a(1), a(1,∞)} and {a(1), a(2), a(2,∞)}.
Since

E(a(1,∞)) =
43

3
p1s

2
1V > p1s

2
1V = E(a(1)),
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the theorem is true for n = 2. For n ≥ 2, let αn be an optimal set of n-means.
Let αn := {a(i) : 1 ≤ i ≤ n}. Let Ẽ(a(i)) and W (αn) be defined as in the
hypothesis. If a(j) 6∈ W (αn), i.e., if a(j) ∈ αn \W (αn), then by Lemma 3.15,
the error ∑

a(i)∈(αn\{a(j)})

E(a(i)) + E(a(ω−(ω|ω| + 1))) + E(a(ω−(ω|ω| + 1),∞))

if a(j) = a(ω,∞), or∑
a(i)∈(αn\{a(j)})

E(a(i)) + E(a(ω1)) + E(a(ω1,∞)) if a(j) = a(ω),

obtained in this case is strictly greater than the corresponding error obtained in
the case when a(j) ∈W (αn). Hence for any a(j) ∈W (αn), the set αn+1(a(j)),
where

αn+1(a(j)) =

 (αn \ {a(j)}) ∪ {a(ω−(ω|ω| + 1)), a(ω−(ω|ω| + 1),∞)}
if a(j) = a(ω,∞),

(αn \ {a(j)}) ∪ {a(ω1), a(ω1,∞)} if a(j) = a(ω),

is an optimal set of (n+ 1)-means, and the number of such sets is

card
( ⋃
αn∈Cn

{αn+1(a(j)) : a(j) ∈W (αn)}
)
.

Thus, the proof of the theorem is complete. �

4. Results and observations about optimal sets of n-means

The results and observations of this section are due to the induction formula
given by Theorem 3.1.

Recall that the optimal set of one-mean consists of the expected value of the
random variable X, and the corresponding quantization error is its variance.
Let αn be an optimal set of n-means, i.e., αn ∈ Cn, and then for any a ∈ αn,
we have a = a(ω) or a = a(ω,∞) for some ω ∈ N∗. Theorem 3.1 implies that
if card(Cn) = k and card(Cn+1) = m, then either 1 ≤ k ≤ m, or 1 ≤ m ≤ k,
for example from Figure 2, we see that the number of α15 = 1, the number
of α16 = 3, the number of α17 = 3, and the number of α18 = 1. Thus, there
exists a sequence {nk}∞k=1 of positive integers such that for all n ≥ 1, we have
card(Cn) = nk, and then we write

Cn =

{
{αn} if nk = 1,

{αn,i : 1 ≤ i ≤ nk} if nk ≥ 2.

In addition, Theorem 3.1 implies that a single α ∈ Cn can produce multiple
distinct α ∈ Cn+1, and multiple distinct α ∈ Cn can produce one common
α ∈ Cn+1. For α ∈ Cn, by α→ β, it is meant that β ∈ Cn+1 and β is produced
from α. Thus, from Figure 2, we see that

{α18 → α19,1, α18 → α19,2, α18 → α19,3} ,
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α4

α5

α6

α7,1 α7,2

α8

α9

α10

α11,1 α11,2

α12

α13

α14,1 α14,2

α15

α16,1 α16,2 α16,3

α17,1 α17,2 α17,3

α18

α19,1 α19,2 α19,3

α20,1 α20,2 α20,3

α21

α22

α23,1 α23,2 α23,3 α23,4 α23,5

Figure 2. Tree diagram of the optimal sets from α4 to α23.

{{α19,1 → α20,1, α19,1 → α20,2} , {α19,2 → α20,1, α19,2 → α20,3} ,
{α19,3 → α20,2, α19,3 → α20,3}} ,
{α20,1 → α21, α20,2 → α21, α20,3 → α21} .

Again, we have

α15 = {a(111), a(111,∞), a(12), a(13), a(13,∞), a(21), a(22), a(23), a(23,∞),

a(31), a(32), a(32,∞), a(4), a(5), a(5,∞)}

with V15 =
27

598016
= 0.0000451493;

α16,1 = {a(111), a(111,∞), a(12), a(13), a(13,∞), a(211), a(211,∞),

a(22), a(23), a(23,∞), a(31), a(32), a(32,∞), a(4), a(5), a(5,∞)};
α16,2 = {a(111), a(111,∞), a(12), a(13), a(13,∞), a(21), a(22), a(23), a(23,∞),
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a(31), a(32), a(32,∞), a(41), a(41,∞), a(5), a(5,∞)}
α16,3 = {a(111), a(111,∞), a(121), a(121,∞), a(13), a(13,∞), a(21), a(22),

a(23), a(23,∞), a(31), a(32), a(32,∞), a(4), a(5), a(5,∞)}

with V16 =
4635

117211136
= 0.000039544;

α17,1 = {a(111), a(111,∞), a(12), a(13), a(13,∞), a(211), a(211,∞), a(22),

a(23), a(23,∞), a(31), a(32), a(32,∞), a(41), a(41,∞), a(5), a(5,∞)};
α17,2 = {a(111), a(111,∞), a(121), a(121,∞), a(13), a(13,∞), a(211), a(211,∞),

a(22), a(23), a(23,∞), a(31), a(32), a(32,∞), a(4), a(5), a(5,∞)},
α17,3 = {a(111), a(111,∞), a(121), a(121,∞), a(13), a(13,∞), a(21), a(22),

a(23), a(23,∞), a(31), a(32), a(32,∞), a(41), a(41,∞), a(5), a(5,∞)}

with V17 =
1989

58605568
= 0.0000339388;

α18 = {a(111), a(111,∞), a(121), a(121,∞), a(13), a(13,∞), a(211),

a(211,∞), a(22), a(23), a(23,∞), a(31), a(32), a(32,∞),

a(41), a(41,∞), a(5), a(5,∞)}

with V18 =
3321

117211136
= 0.0000283335;

and so on.
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