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QUANTIZATION FOR A PROBABILITY DISTRIBUTION
GENERATED BY AN INFINITE ITERATED FUNCTION
SYSTEM

LAKSHMI ROYCHOWDHURY AND MRINAL KANTI ROYCHOWDHURY

ABSTRACT. Quantization for probability distributions concerns the best
approximation of a d-dimensional probability distribution P by a discrete
probability with a given number n of supporting points. In this paper, we
have considered a probability measure generated by an infinite iterated
function system associated with a probability vector on R. For such a
probability measure P, an induction formula to determine the optimal
sets of n-means and the nth quantization error for every natural number
n is given. In addition, using the induction formula we give some results
and observations about the optimal sets of n-means for all n > 2.

1. Introduction

Quantization is the process of converting a continuous analog signal into a
digital signal of k discrete levels, or converting a digital signal of n levels into
another digital signal of k levels, where k < n. It is must when analog quan-
tities are represented, processed, stored, or transmitted by a digital system,
or when data compression is required. It is a classic and still very active re-
search topic in source coding and information theory. A good survey about the
historical development of the theory has been provided by Gray and Neuhoff
in [8]. For more applied aspects of quantization the reader is referred to the
book of Gersho and Gray (see [4]). For mathematical treatment of quantization
one may consult Graf-Luschgy’s book (see [7]). Interested readers can also see
[1,5,9,16]. Let R? denote the d-dimensional Euclidean space equipped with
the Euclidean metric || - ||. Let P be a Borel probability measure on R%. Then,
the nth quantization error for P, denoted by V,, := V,,(P), is defined by

Vo (P) = inf /min||x — a|*dP(x),
a€D, acx
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where D,, := {a C R?: 1 < card(a) < n}. The set a for which the infimum
occurs and contains no more than n points is called an optimal set of n-means
for P, and such a set exists if [ ||z|?dP(z) < oo (see [5,7,9]). The set of all
optimal sets of n-means for a probability measure P is denoted by C,(P). It
is known that for a Borel probability measure P if the support of P contains
infinitely many elements, then an optimal set of n-means always has exactly
n-elements (see [7, Theorem 4.12]). Let « be a finite set and a € o. Then, the
Voronoi cell, or Voronoi region M (a|a) is the set of all elements in R? whose
distance to a is not greater than their distance to other elements in «, i.e.,

M(ala) = {z € R?: ||z — al| = min |l — b]||}.
bea

A Borel measurable partition {4, : a € a} of R? is called a Voronoi partition
of R? with respect to a (and P) if A, C M(ala) (P-a.e.) for every a € a.. The
following proposition is known (see [4,9]).

Proposition 1.1. Let a be an optimal set of n-means, a € «, and M(a|a) be
the Voronoi region generated by a € o. Then, for every a € «, (i) P(M(a|a)) >
0, (if) P(OM(ala)) =0, (ili) a = E(X : X € M(a|w)), and (iv) P-almost surely
the set {M(a|) : a € a} forms a Voronoi partition of RY.

Since for a € a, a = F(X : X € M(a|a)) = WIM(MM xdP(z), we
can say that the elements in an optimal set of n-means are also the centroids of
their own Voronoi regions with respect to the probability distribution P. For
details in this regard one can see [3,14].

Let M denote either the set {1,2,..., N} for some positive integer N > 2, or
the set N of natural numbers. A collection {S; : j € M} of similarity mappings,
or similitudes, on R? with similarity ratios {s; : 7 € M} is contractive if
sup{s; : j € M} < 1. If J is the limit set of the iterated function system, then
it is known that J satisfies the following invariance relation (see [10-12]):

J=J 8;().
jeM
The iterated function system {S; : j € M} satisfies the open set condition
(OSC) if there exists a bounded nonempty open set U C R such that S;(U) C
U for all j € M, and S;(U)(S;(U) =0 for i,j € M with i # j. Let (p; : j €
M) be a probability vector, with p; > 0 for all j € M. Then, there exists a
unique Borel probability measure P on R? (see [10-12], etc.) such that

P= Z pJP o S{l,
jeM
where P o Sj_1 denotes the image measure of P with respect to S; for j € M.
Such a P has support the limit set J if M is finite, or the closure of .J if M is
infinite.
Let P be a Borel probability measure on R generated by the two contractive

similarity mappings S; and S associated with the probability vector (%, %)
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such that Sy(z) = 1z and Sy(z) = 22+ % for all z € R. Then, P = LPo
ST+ 3Po Sy and it has support the classical Cantor set generated by S)
and Ss5. For this probability measure Graf and Luschgy gave a closed formula
to determine the optimal sets of n-means and the nth quantization errors for
all n > 2 (see [6]). Later for n > 2, L. Roychowdhury gave an induction
formula to determine the optimal sets of n-means and the nth quantization
errors for a probability distribution P on R, given by P = %PoSfl + %Po S’;l
which has support the Cantor set generated by S; and Ss, where Sy (z) = %:1:
and Sy(z) = x + 3 for all z € R (see [13]). M. Roychowdhury (see [15])
gave an infinite extension of the result of Graf-Luschgy (see [6]). Comez and
Roychowdhury (see [2]) gave a closed formula to determine the optimal sets of
n-means and the nth quantization error for a probability measure supported
by a Cantor dust.

In this paper, we made an infinite extension of the work of L. Roychowdhury
(see [13]). Let P be a Borel probability measure on R given by P = 1Po Sy +
Z(;iz za‘%P o Sj_l, i.e., P is generated by an infinite collection of similitudes
{532, associated with the probability vector (§, 55, 5r, . . -) such that Sj(z) =
#x—&— 1— 2,%1 for all x € R, and for all j € N. For this probability measure, in
this paper, we investigate the optimal sets of n-means and the nth quantization
errors for all n € N. The arrangement of the paper is as follows: In Lemma 3.3
and Lemma 3.5, we obtain the optimal sets of n-means and the corresponding
quantization errors for n = 2 and n = 3; Proposition 3.8, Proposition 3.13,
Proposition 3.14, and Proposition 3.17 give some properties about the optimal
sets of n-means and the nth quantization errors. In Theorem 3.1 we state and
prove an induction formula to determine the optimal sets of n-means for all
n > 2. In addition, using the induction formula we obtain some results and
observations about the optimal sets of n-means which are given in Section 4;
a tree diagram of the optimal sets of n-means for a certain range of n is also
given.

2. Preliminaries

By a word w over the set N = {1,2,3,...} of natural numbers it is meant
that w := wiws---wp € NF for some k > 1. Here k is called the length
of the word w and is denoted by |w|. A word of length zero is called the
empty word and is denoted by (). Let N* denote the set of all words over the
alphabet N including the empty word (). For any two words w := wiws - - - Wk
and 7 := 7Ty - Ty € N*, where k,m > 1, by wr it is meant the concatenation
of the words w and 7, i.e., WT = WiWg - WET1T2 "+ Ton. If W= wWiws -+ - Wy, We
write w™ := wjws - - -wk_1, where k > 1, i.e., w™ is the word obtained from the
word w by deleting the last letter of w. For w € N*, by (w, 00) it is meant the
set of all words w™ (wj,| + j), obtained by concatenation of the word w™ with
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the word wy,,| +j for j € N, i.e.,
(w,oo) = {wi(w\m +]) SYNS N}
Let (pj)32; be a probability vector such that p; = 7 and p; = P for all

J > 2. Let {S;}32, be an infinite collection of similitudes associated with the
probability vector (p;)32, such that

1
=gt g
for all j € N and for all z € R. Then, as mentioned in the previous section,
there exists a unique Borel probability measure P on R such that

P:iijOS;17

Jj=1

Si(x)

which has support lying in the closed interval [0, 1]. This paper deals with this
probability measure P. For w = wiws - - - w, € N”, write

Sw 1= Swlo"'oSwna Jo = Sw('])7 Sw = Swy tSwpy Pw t= Pwr 7 Pugs

where J := Jy = [0,1]. We also assume py = 1 and sy = 1. Then, for any
w € N*, we write

J(w,00) = jL:Jl Juo= (@) +4) and

P(w,00) = P(J(w,oo)) = ZP(JW*(w‘w|+j)) = pr*(w‘MJrj)'
j=1 j=1
Notice that for any k¥ € N, px 0y = 1 — Z§:1 pj, and for any word w € N*,
Plw,o0) = Puw— — Z;U:‘“l' Pw-j- To avoid any confusion among the readers, we
would like to mention that in the paper dP(x) which is P(dz) is identified as
dP.

Lemma 2.1. Let f: R — R be Borel measurable and k € N. Then

/fdP: Z pw/foSde.

weNFE

Proof. We know P = Z;’il p;Po S;l, and so by induction P ="\« poP o
S 1, and thus the lemma is yielded. O

Lemma 2.2. Let X be a random variable with probability distribution P. Then,
the expectation E(X) and the variance V := V(X)) of the random variable X

are given by
4 288
E(X) = = and V(X) = g = 0.0805144.
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Proof. Using Lemma 2.1, we have

E(X) = / xdP

1 — 3
j=2

=~ 3 1

1

1GE(X) + 1 E(X) + 5

which implies E(X) = 3. Now,

E(X2)=/x2dP
L1 3 1

6

1

- 51 ) 4P

1 2
S Yap
21

1 1

_ 2 _ _
- EX +ZQJ-H/ 4J+1 2]+1(1 2j—1)x+(1 27—1

1 3 5
= —FB(X?) + --EB(X* B(X)+ —
64 ( )+448 ( )+14 ( )+14
5 39
= —E(XH+ =
224 ( )+98

which yields E(X?) = 208, Thus, V(X) = E(X?) — (B(X))? = 28

511
0.0805144, which is the lemma.

Lemma 2.3. For any k > 2, we have

(X‘XGJkUJkJrlU )71_77.

Proof. We have

1 > 4
E(X|X € Ui U-) = = 3 0iSi(5)
Z] IcpJ =k 7
2k /S 3 1 4 1
=3 (ZanEmrti-50)
=
which after simplification yields E(X|X € Jy U Jgy1 U---) =1— ?%7

is the lemma.

The following notes are in order.

769

)2)dp

which
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Note 2.4. For k € N, we have Sy (%) = 54+ 2 41— 51+. Thus, by Lemma 2.3,
for k € N,
4 11 4 8

7) + ?W = Sk(7) + ?Sk

Since for any z¢ € R, [(z — x¢)%dP = V(X) + (z9 — E(X))?, we can deduce
that the optimal set of one-mean is the expected value and the corresponding
quantization error is the variance V of the random variable X. For w € N¥,
k > 1, using Lemma 2.1, we have

BE(X:X €)= %/} a:dP:/ 2d(P o S=X ()

EX|X € JkUdgg1 U---) = Si(

Jo
= [ Su(@)dP = E(S.(X)).

Since S; are similitudes, it is easy to see that E(S5;(X)) = S;(E(X)) for j € N,
and so by induction, E(S,,(X)) = S, (E(X)) for w € N¥ k> 1.
Note 2.5. For words 3,7,...,d in N*, by a(8,7,...,d) we denote the condi-
tional expectation of the random variable X given that X isin JgUJ,U---UJs,
ie.,

a(B,v,...,0) =EX|X € JgU Jy U---UJs)
(1) 1 /

P(JBUUJ(S) JgU--*UJ(s

Then, by Note 2.4, for w € N*, we have

() = Su(B(X)) = Su(2), and

(2) a(w,00) = E(X|X € Jw—(w|w\+1) U Jw—(w‘w‘+2) U---)

4 8
= Sw—(w‘w‘-i-l)(?) + ?sw—(w‘ﬂ-&-l)'

Moreover, for any w € N* and for any xg € R, it is easy to see that
/ (z — x0)%dP = p,, /(x —20)%d(Po S;1)
Jo
4
3) — (siv + (Su(z) — x0)2), and

o oo 4
/J (& =20)%dP =) P (o +9) <Si_(w‘w|+j)v + (S @+ (7) — 960)2)~

(w,00) j=1

The expressions (2) and (3) are useful to obtain the optimal sets and the
corresponding quantization errors with respect to the probability distribution
P.

The following lemma plays a vital role in the paper.
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Lemma 2.6. Let P be the probability measure as defined before and let w € NF,
k> 1. Then,

/ (x — a(w))?dP = p,s2V, and
Jw

/

Proof. In the first equation of (3) put 2o = a(w), and then [, (z —a(w))?dP =
Pws2V. In the second equation of (3), put g = a(w,00), and then

(4) /J (z — a(w, 00))?dP

(w,00)

4 .
TPwsoV if Wi > 2,

%pwsiv ifw‘w| =1

(z — a(w,00))?dP = {

(w,00)

o0

2
= pw’(w\w|+j)sw’(w\w\+j)v

<.
Il

1
S 4 2

+ pr’(wwﬂ') (SW(wwwj)(?) - a(w, 00)) .
j=1

Putting the values of a(w, c0) from (2) we have

4
Sw—(w\w|+j) (5) — alw, o)

7
4 4.8
= o @+ (5) = Som @41 (5) = 780 @u+1)
4 4.8
= Sw— (Sw\w\+j(?) - SwMJrl(?) - ?Sw\wﬁl)

1 4 1 1 4 1 8 )

=S, _ — — — — —3
“ (2W|w\+j+1 7 QWwl+i-t QWlwl+1+1 T + QWlwlt1-1 7 Wl tl

SRV T B PRYL I TR
“\oi7 21 7 7 “N\v 12/

Moreover, for any j > 1, S (wjw+i) = sw%; and Do (0w +4) = pw% if wyy >

2, and Do (w)o)+5) = pw% if wy,| = 1. Thus if w,,| > 2, putting the correspond-
ing values and making some simplification, we obtain

o0 1

2 2
pr’(w\w\Jrj)sw—(wMJrj)V = ?prwV and
=1

S 2 1 /8 2412
— 2
prf(w\wﬁj) (S 7(W|w\+j)(§) a(w,oo)) = PuwSy, : 27(? - 727)
j=1 j=1
292
=pusiV—r
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and then (4) yields fJ<w,oo>(x — a(w,00))2dP = £p,s2V. Similarly, if wy, =1,
one can obtain fJ( )(33 — a(w,00))?dP = %p,s2V. Thus, the lemma is
yielded. ’ O

Notation 2.7. For any w € N*, k > 1, set

E(a(w)) := /J (z — a(w))?dP and
(5) )
E(a(w,00)) := / (z — a(w,00))?dP.

J(w,00)

Let us now prove the following lemma.
Lemma 2.8. For any two nonempty words w, ™ € N* if p,, = p,, then s, = s,.

Proof. To prove the lemma, let us define a function c as follows:
c¢: N*\ {0} - NU{0} such that c(w) = card({w; : w; #1, 1 < < |wl|}).
Let w,7 € N* with w = wjws---wg and 7 = 7479 - - - Ty, for some k,m > 1.
Then, p,, = p, implies
3c(w) 3¢(7)

owitwa - Awrtk T QTIHTo AT M

yielding 3¢()=¢(7) = g(witwetetwpth)=(rtrattmmtm) and so, c(w) = ¢(r)
and wi +wes+---4+wg+k=711+7+ -+ 7n+m. Then,
1 1

T QuitwrtAwntk | gritmatodratm 0T

Sw
which is the lemma. O

In the next section we state and prove the main result of the paper.

3. Main result
The following theorem gives the main result of the paper.

Theorem 3.1. For any n > 2, let o, := {a(i) : 1 < i < n} be an optimal
set of n-means, i.e., a, € Cp = C,(P). For w € N¥, k> 1, let E(a(w)) and
E(a(w,00)) be defined by (5). Set

= oo | Ela(w)) if a(i) = a(w) for some w € N*,
Ela() := {E(a(w, 00)) if a(i) = a(w, 00) for some w € N*,

and W) = {a(j) : a(j) € an and E(a(j)) > E(a(i)) for all 1 < i < n}.
Take any a(j) € W(ay,), and write

Apt1 (a(J))

(an \{a(4)})

{) { (wi(w\w\ + 1))7 a(wi(wlwI + 1)700)} Zf a(j):a(w7oo>7

{a(wl), a(wl,00)} if a(j) = a(w).

- { (an \ {a(i)

U
U
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Then, ant1(a(j)) is an optimal set of (n + 1)-means, and the number of such
sets is given by

card( | {ans1(a(i)) : a(j) € Wan)}),

an€Cp

Remark 3.2. Once an optimal set of n-means is known, by using (3) and
Lemma 2.6, the corresponding quantization error can easily be calculated.

To prove Theorem 3.1 we need some basic lemmas and propositions.

Lemma 3.3. Let a = {a1, a2} be an optimal set of two-means, ay < az. Then,
a1 = a(l) = 1, ay = a(1,00) = 2 and the quantization error is Vo = 502 =
0.0192899.

1 5

Proof. Let us first consider the two-point set 3 given by § = {z,3}. Since

51(1) < 3(3 4+ 2) < 52(0), by Lemma 2.6, we have

2
: 2P — ERY / _ 5
/mbel[?(x b)“dP (z 7) dP + (z )“dP

J1 J(1,00) 7
43 69
=p1s2(1 4+ =)V = —— = 0.0192899.
psil+ )V =30

Since V5 is the quantization error for two-means, we have Vo < 0.0192899. Let
a = {a1,as} be an optimal set of two-means, a; < as. Since a1 and ay are the
centroids of their own Voronoi regions, we have 0 < a; < az < 1. Suppose that
as < % Then,

VQZ/ (x—§)2d _ 647055
J3UJ4UJsU g 8 33488896
5

which leads to a contradiction. So, we can assume that az > 3 implying
3(a1+az) > £(04 2) = 5 > ;. Thus, we see that the Voronoi region of as
does not contain any point from Jq, and a; > a(1) = % Suppose that a3 > 1—76.

Then, using (3), we have
Vo > / (z — a1)%dP > / (x— l)ZdP
7 7 16

4 7
_ 2 Il 2
= (2V+ (51(5) - 1))
12015

_ — 0.022961
523264 0229616 > 1%

which is a contradiction, and so % <a < %. We now show that %(al +ag) < %
For the sake of contradiction assume that %(al +ag) > % Then, if %(al +az) >
5, we have a1 > E(X : X € Jy U J,) = 2, yielding

171

2
Va > / (x — 2)%dP = —— = 0.0292808 > V5,
iU 5 5840

=0.0193215 > Vs,
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which is a contradiction. Next, assume that Sa,1(1) < 2 (a1+az) < S252(0) for
some o € N*. For definiteness sake, take 0 = 1, and so Sa11(1) < %(al +ag) <
5212(0). Then7 a] = E(X X e JJ U J211) and ag = E(X X € J(211,oo) U
J(QLOO) @] J(Qﬁoo)) yleldlng
P(J1)S1(2) + P(J211)S211(2) 1363

P(Jy) 4 P(Jo11) 7840’

a; =

and
P(211,00)@(211, 00) + P(a1,00)@(21, 00) + p2,00ya(2,00) 5007
D(211,00) T P(21,00) T P(2,00) 6944’

where P(211 o00) = P21 —DP211, P(21, oo) = P2 —D21, P(2,00) = 1 —P1—P2, @ (211 0) =
5212( )+ =8212, @ (21,00) 522( ) + 822, and a(2 OO) Sd( )+ £s3. Thus,

ag =

1
sz/ (%ﬁ)cuu/(x 5007 121
BUd T840 T 6944
648995235322779
= _ . 2 2
32006112614277100 0200952 > 12,

where A = .]212UJ213UJQQUJQgUJ24UJ25UJ3UJ4UJ5UJGUJ7UJ8UJ9UJ10,
which gives a contradiction. Similarly, we can show that for any other choice
of o € N*, the assumption %(al + ag) > % will give a contradiction. Thus, we
have %(al +az) < L implying a; < a(1) = . Again, we have seen a; > 1.

=3 7 7
Thus, we deduce that a; = % and the Voronoi region of as does not contain
any point from J1, i.e., ag = a(l,00) = 2, and the corresponding quantization
error is Vo = ﬁ =0. 0192899 This completes the proof of the lemma. (|

Using the technique of Lemma 3.3, the following corollary can be proved.

Corollary 3.4. For any w € N*, the set {a(wl),a(wl,o0)} forms a unique
optimal set two-means for the conditional measure of P on J,, and the set
{a(w™ (W) + 1)), a(w™ (W), +1),00)} forms a unique optimal set of two-means
for the conditional measure of P on J, o)-

Lemma 3.5. Let a be an optimal set of three-means. Then,

146
= {a(1 2),a(2 =
o = {a(1),0(2),a(2,00)} = {3, 5}
and the quantization error is V3 = m = 0.00398379.

Proof. Let us first consider a three-point set 8 given by [ := {%, %, g} Since
Ji1 C M(%LB), Jo C M(%m) and Jig ) C M(g\ﬂ), by Lemma 2.6, we have

1 4 6
. _ 2 P = _T)\2 P / _ )2 P / _ )2 P
/rbnelél(l‘ b)°d ) (z 7) dP + Jg(a: 7) dP + J@,w)(m 7) d

43 o7
—) = ——— = 0.00398379.

2 2
— 182V v
U e A VETT
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Since V3 is the quantization error for three-means, we have V3 < % =
0.00398379. Let a be an optimal set of three-means with o = {a1, a9, a3z},
where a; < as < ag. Since the optimal points are the centroids of their own

Voronoi regions, we have 0 < a1 < as < az < 1. If a3 > i, then

1 135
Vs > —a1)%dpP > — 2)2dP = —— =0.00412794 > V5,
5= /J (@=a)ydp = /J @=3 32704 ;
which gives a contradiction, and so a; < 1. If a3 < % = 532(0), using (3), we
see that
25 8764935

Vs 2 — )2dP = — " — (.00408948 > V:
° LSQUJsgu,S4 7 = 5) 2143289344 3
p=

which leads to a contradiction, and so g—g < as. Suppose that as < %— 3% = %
1/15 | 25 5
Then, as 5(55 + 55) = g = S2(1), we have

15 18525
Vs > — )P = —— "~ =0.00442535 > V-
8= [,Z(z 52 4186112 -

which is a contradiction. Assume that é—g < ag < % Then, %(al +ag) < i
implying a1 < 3 —ap <1 -8 =21 <2 =5,50). Again (3 +22) =2 >

2 2
5 = S5(1). Thus, we have

1 1
v?,z/w @—4qu+/ﬁx—qu
J12UJ13 32 Jo 2

162087

33488896

which is a contradiction. So, we can assume that % < ay. Suppose that
1

5, 1 _ 21 1 21 1
3+ 35 = 35 <az. Then, as § < 5(a(l) + 53) < 5, we have

= 0.00484002 > V3,

21
Vs > / (x—a(l))2dp+/ (x — ==)%dP
Jl J2 32
129747
= —(.00442
20302784 0044218 >V,

which yields a contradiction. Next, suppose that g <ag < % + % = % Then,
< 3(a(1) + %) < 3. Moreover, 3(az + as) > 3 implying ag > 3 —ag >

— % = % > % = 53(1) leading to the following two cases:

Case Al. ?)’;;1 < C;;; < %7;83 =S4 (1).

Then, 5(55 + 55) = 3 = 53(0), and so

wzuﬂﬁpﬂu»mP+/xx—5mP

[SJ[SEENE

8

27 113
+/ (x — ==)%dP —|—/ (x — —)%dP
J: 32 JsUJsUJ7 128

60087981
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which gives a contradiction.
Case B. S41(1) = %g < as.
Then, Ss1(1) < 3(35 + 133) < S32(0), and so

Vi > /J(x—a(l))QdP+/](x—§)2dP

21 113
+/ (@ — 2y2gp +/ (z— Wygp
Jz1 32 J32UJ33 128

63174099
15003025408
which leads to a contradiction.
Therefore, % < ag < g. Suppose that Sa3(0) = % < ag < g. Then, the
Voronoi region of ay does not contain any point from Ji, and %(ag +asz) > %
implying ag > % —ag > % — g = %, otherwise the quantization error can strictly

be reduced by moving the point as to a(2) = %. Thus, we have

= 0.00421076 > V3,

4
min / (x — az)?dP = py (S%V + min (Sa(z) — a2)2)
<ax<i /g, 7

19 9 5
33 5@ 33 Sa2<y

19 2757
2 2
= Vit (a2) - 35)%) = fracs
bz (82 @ = 5%)) = sz
The following two cases can arise:

Case I. % < az < S42(0) = %.

) 10
Then, £(2 + 1) =3 = 95(0). Write A := Jyp U Jy3 Ujg5 J;, and so

Vi > / (x — a(1))2dP + min / (z — a3)2dP
J1 3<a2<3 J g,
7 57
+/ (x — <)%dP + / (x — =—)%dP
L8 R
3839362137
960193626112
which gives a contradiction.
Case II. Sg2(0) = 27 < aj.

as . 10
Then, 5311(1) = % < %(g + %) = % = 5312(0). Write A := ng J31j U

= 0.00399853 > V3,

10
‘U2 Jgj U Jy41. Thus,
j=

Vs > / (x —a(1))?dP + min / (z — ag)*dP
T RCERS QU

5 o7
—I—/ x—deP—l—/x——)QdP
JSM( 8) A( 64
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1008051842887707

= 251708997923504128
which leads to a contradiction.
Therefore, we can assume that <ag < % = S93(0). Again, we have seen

that 25 < a3 < 1. Then, notice that the Voronoi region of as does not contain
any point from J;. Moreover, s+ = 2(2 + 2) < L(az +a3) < 1(32+1) =2
implying that the Voronoi region of ag does not contain any point from Js.
Suppose that the Voronoi region of az contains points from Jio ). Then,

%(ag + asz) > , which implies a3 > S —qag > é - :1,)—3 = %’ = 54(1). Moreover,

min / (x —ap)?dP = [ (z—a(2))*dP = pysiV.
J2 J2

= 0.00400483 > Vs,

1 19
2502533

Thus, we see that

2
Vs > / (z— a(l))2dP +pgs§V + / (x — —9)2dP
J1 JaUJy 32
531801
= = . 4 12
Ti7211136 ~ 0U493712> Vs,

which gives a contradiction. Therefore, we can assume that the Voronoi region
of az does not contain any point from J(3 o). Thus, we have proved that
J1 C M(a1|a) Jy C M(az]a), and Jg C M(as|a) yielding a1 = a(1) = 1,

as = a(2) = 7, and az = a(2,00) = 7, and the corresponding quantization
error is V3 = m = 0.00398379 (see Figure 1). Thus, the proof of the lemma
is complete. O

1
28

® -~

ESE
[N
00|
IS

FIGURE 1. Optimal sets: of one-mean is {%}; of two-

means is {7, 7} of three-means is {7, 7,? ; of four-means

.of1 4 11 '13 5 4 11 13
is {7, %, 11 1—} of five-means is {%,%,7,ﬁ,ﬁ

We need the following two lemmas to prove Proposition 3.8.

Lemma 3.6. Let ay be an optimal set of four-means. Then, ay N J1 # 0 and
ay N Jaee) # 0, and oy does not contain any point from the open interval
(%, %) Moreover, the Voronoi region of any point in ay N Jy does not contain
any point from J(1 o) and the Voronoi region of any point in gy N J(1,o0) does

not contain any point from Ji.

Proof. Let ay := {0 < a1 < as < ag < agq < 1} be an optimal set of four-means.
Consider the set 8 := {a(1),a(2),a(3),a(3,00)} of four points. Then,
43 237

= 0.00207052.
o) = Tiis = 00020705

mlg(x—a) dP = p153V + pasaV + pasaV (1 + 9
ac
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Since V} is the quantization error for four-means, we have V; < 0.00207052. If
a; > é—i = S13(1), we have
13 20277

Viz / (x— —)?dP = ———— =0.00211919 > Vj,
Jnud, 64 9568256

which is a contradiction. So, we can assume that a; < ﬁ. Then, the Voronoi
region of a; does not contain any point from J(; ). If it does, then %(al +ag) >
1 impliesas >1—a7 >1— g = 21 which is a contradiction as

2 64
51 2436771
Vi> —a(1))*dP ~yap = =20 0.0207896 > V.
‘= /Jl (@ = a{l))"dP + /,2 (v =51 117211136 > V4

Ifas < Z—Z, then

53 202246431
Vaz — )P = T —0.00213053 > V,
' /b“ 5 =51 137170518016 > Vi,

j=4

which is a contradiction, and so % <ayg. Ifas < i, then

— Qa 2 Tr—a xXO 2
wz/bcc (2)””/‘1@@( (2, 00))2dP

=1+ %?’)pzsgv = % = 0.00272575 > Vi,
which gives a contradiction. So, we can assume that i < ag. Suppose that
i < as < %. Then, %(ag +ag) > % yielding a3 > 1—ag > 1 — % = % Thus,
the following two cases can arise:
Case 1. %<a3§§

64
53 1043 | 53\ _ 3
51 <aq and (55 + g;) = 7, we have

Vi > / (z — §)2dP +/ (z — g)QdP—k/ (z — a(3,00))*dP
J2 8 JS 64 .](3’&)

521811
T 234422272
which is a contradiction.
Case 2. g < as.
Then, as Sa12(1) < %(% + é—i) = % = S515(0), we have

Then, as

= 0.00222594 > V4,

4
Vi > / (x— 2)2ap +/ (z— 2)2ap
J211UJ212 8 J22UJ23 64
6099
5093056 0.00291392 > V4,

which leads to a contradiction.
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Thus, a contradiction arises to our assumption i < ag < %. Suppose that
% <as < % Then, %(al +ag) < i implying a; < % —ay < 5 — % = % < a(1),
and

9
. . 2 2
min min (x —a)“dP > z—a(l))*dP = ——.
{a1<$<E<ay} /Jl ae{m,az}( ) - /Jl( ( )) 7154
Since Z—i < a4, the following three cases can arise:
Case L. a3 < 32 and 22 < ay < 1.
Then, as 3(55 + 2%) = 2, we have
Vi > / (z — a(1))2dP+/ (z — Q)de +/ (z — Z)de
J1 J3 64 J1UJ5UJg 8
126459
= ———— =0.0021578 > V,
53605568 = Y4
which gives a contradiction.
Case II. a3 < g and % < aq.
Then, as S31(1) < 3(53 + I) < 532(0),
43 7
Vy > / (x —a(1))*dP +/ (v — —)QdP+/ (x — =)%dP
Ji J31 64 J32UJ33 8
4458897
=———— =(0.002
1875378176 O-00ZTT6 > Vi,
which leads to a contradiction.
Case III. g < as.
Then, Sz2(1) < 3(3 + 22) < S23(0) yielding
1 4
V> / (z —a(1))*dP +/ (z — 7)2dP+/ (z — E)de
J1 Ja1UJ22 2 Jas 64
4496025
= ————— =10.0023974 > V,,
1875378176 !

which is a contradiction.

Thus, a contradiction arises to our assumption % <as < %, and so we can
assume 1 < as. Now, notice that §(a; + az) > (0 + 1) = 1 yielding the fact
that the Voronoi region of any point in a4 N J(1 o) does not contain any point
from J;. Moreover, we proved a; < i and the Voronoi region of any point in
a4 N Jy does not contain any point from Ji; ). Thus, the proof of the lemma
is complete. O

Lemma 3.7. Let as be an optimal set of five-means. Then, as N Jy # 0,
as N Ja,ee) # 0, and as does not contain any point from the open interval
(i, %) Moreover, the Voronoi region of any point in as N Jy does not contain
any point from J(1 o) and the Voronoi region of any point in as N J(1,40) does
not contain any point from Ji.



780 L. ROYCHOWDHURY AND M. K. ROYCHOWDHURY

Proof. Let a5 := {0 < a1 < ag < a3 < a4 < a5 < 1} be an optimal set of
five-means. Consider the set § := {a(11),a(11,00),a(2),a(3),a(3,00)} of five
points. Then,

43 43
melg(x —a)?dP = p11s2, V(1 + 3) + pas3V + p3saV (1 + 5)
a
255
= == . 1 .
593928 0.00111389

Since V5 is the quantization error for five-means, we have V5 < 0.00111389. If
as < g, then

6 1160604105
Vs > / (x — 2)%dP = ———————— = 0.00120872 > V&,

Y T 960193626112

which is a contradiction, and so g < as. Suppose that ag < %. Consider the

following two cases:
6 7
Case 1. = <as < 3.

Then, S31(1) < (1% + £) < 22 = 535(0), yielding

11
Vs z/ (xf—)QdPJr/ (x7§)2dP+/6 (x—Z)ZdP
J31 16 J32UJ33 7 94 J; 8

2290131
1875378176
which leads to a contradiction.
Case 2. % < as.
Then, Ss31(1) < 3(15 + 2) = 22 = S52(0), yielding

= 0.00122116 > V&,

6
1 7
Vs > / (- —)QdP+/ (@ — Dy2qp
J31 ]‘6 jlgz .]3]‘ 8
651896011533
= = 0.00116027 > V:
561850441793536 > Vs,

which is a contradiction.
Hence, we can assume that % <ay. Ifaz < i, then

Vi > /JZ(x—a(Z)) dP—i—/J(z’oo)(x—a(Q,oo)) dp

43 39
= (14 —)p2s3V = —— = 0.00272575 > V;
R U VEN -V
which gives a contradiction. So, we can assume that % < ag. Suppose that

i <az < % The following two cases can arise:

Case (i). 3 <az < 3.
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Then, %(ag +a4) > % implying ag >1—a3 >1— % = %, and so

5 405
Vs> [ (o—2)2dP = — 0.00154798 > V2
5= /,2(96 3 261632 >

which is a contradiction.

Case (ii). 2 < a3 < 1.

Then, %(ag +a3) < i implying as < 1 — a3 < %f = é. Moreover, as
1% < a4, we have Spo(1) < 3(3 + 1%) = 22 = S53(0), and so

W

16
1 1 11
Vs > / (x — =)%dP +/ (z — 7)2dP+/ (x — —)%dP
Ji2 8 J21UJ22 2 Jos 16
45399
= — > —0.00135564 > V
33188806 > Vs

which yields a contradiction.
Hence, we can assume that % <as. If % < ag, then

Vs> min / min (z — a)?dP
{ar<§<i<as} Jj, a€{ar,az2}
9

> —a(1))2dP = —— = 0.00125804 > V&
—/Jl(“’ a(1) 154 > Vs

which is a contradiction. Suppose that i < ag < %. Then,
implying ag > 1—a9s > 1— % = %, which yields

%(ag + a3) > %

5 405
Vs> [ (- 2)2dP = — 0.00154798 > V;
5= /,f” 3 261632 >

leading to a contradiction. So, we can assume that as < i. Thus, we have

proved that ay < % and % < as, yielding the fact that asNJ1 # 0, asNJ(1,00) #
11 Si
7+3). Since
+(az +a3) > £(0+ 3) = %, the Voronoi region of any point in a5 N J(1,o) does
not contain any point from J;. If the Voronoi region of ay contains points from
J(1,00), then %(ag +az) > % implying azg > 1—as > 1 — % = %, and so
3 813
Vs > —2)2dP = —— = 0.0124297 > V&,
o= /,2 =3 65408 ’

(), and a5 does not contain any point from the open interval (

which gives a contradiction. Thus, the proof of the lemma is complete. O

Proposition 3.8. Let o, be an optimal set of n-means for n > 2. Then,
an NJr # 0 and a, N Jq,00) # 0, and o, does not contain any point from
the open interval (i, %) Moreover, the Voronoi region of any point in o, N Jy
does not contain any point from J1 o) and the Voronoi region of any point in

apn N J(1,00) does not contain any point from Jp.
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Proof. By Lemma 3.3, Lemma 3.5, Lemma 3.6, and Lemma 3.7, the proposition
is true for 2 < n < 5. We now prove the proposition for all n > 6. Let «,, :=
{0 <a; <as <- -+ <a, <1} be an optimal set of n-means for n > 6. Con-
sider the set of six points 8 := {a(11),a(11, 00), a(21),a(21, ), a(3), a(3,00)}.
Then, the distortion error is

. 43 43 43
min(z — a)?dP = (1 + §)p113%1V +(1+ §)p21531V +(1+ g)pgsgv

a€pB

1383

- 1831424°
Since, V,, is the quantization error for n-means for n > 6, we have V,, < Vg5 <
1813318432 7 = 0.00075515. Proceeding in the similar way, as shown in the previous
lemmas, we have a; < ; and 3 < a,. Let j = max{i:a; < 1}. Then, a; < 3.
We show that a; < %. Suppose that % <a; < % Then, the following two cases
can arise:

3 1
Case 1. s <a; <3

Then, 1(aj—1 + a;) < § implying a;_1 < 3+ —a; < 1 -3 =1 = 55(0)
yielding
1 13986897
v, > —2)2dP = ————_ —=0.000814145 > V,,,
= / w  (@-g) 17179869184

9,7
which is a contradiction.
Case 2. %<aj<§

— 8'
Then, 3(a; + aj41) > 3 implying a;41 > 1—a; > 1— 3 = 2 yielding

] T 261632

which gives a contradiction.

Hence, we can assume that a; < % Thus, we have seen that a, N J; # 0,
an N J(1,00) # 0, and «,, does not contain any point from the open interval
(1,1). Since i(a; +aj41) > 2(0+ 3) = 1, the Voronoi region of any point
in ay, N J(1,60) does not contain any point from .J;. Suppose that the Voronoi
region of a; contains points from J; o). Then, %(aj +aj1) > % implying

aj+1>1—a221—i:%,andso

4
Vo > / (x — §)2dP _ 406 0.00154798 > V,,,
Ja

3 813
Vs “3yegp = B3 0124207 > v,
> /J (=7 65408 -

which is a contradiction. So, we can assume that the Voronoi region of any
point in oy, N J1 does not contain any point from J(; ). Thus, the proof of
the proposition is complete. (I

We need the following lemmas to prove Proposition 3.13.
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Lemma 3.9. Let V(P, Jo,{a,b}) be the quantization error due to the points a
and b on the set Jo, where % <a<bandb= g. Then, a = a(21,22) and
5 2403
V (P, Jo,{a,b}) = —a(21,22))%dP — AP = ———.
O A e B e

J(22,00) 8

Proof. Consider the set {31, 2}. Then, as S22(1) < (3t + 2) < S23(0), and
V (P, Jz,{a,b}) is the quantization error due to the points a and b on the set

J2, we have

xaRbgmm)g/' @—15%P+/; (@ — 2y24p
J(22,00)

J21UJ22 20 8
2403
= —— =0.000229616.
10465280 0-000229616

If 271 = S92(1) < a, then

V (P, Jz,{a,b}) > / (z — S92(1))%dP

J21UJ22

6831
19136512
which is a contradiction, and so we can assume that a < Sas(1) = Z—Z. If the
Voronoi region of b contains points from Jys, we must have %(a +b) < ¥

= 0.000356962 > V (P, J, {a, b}),

64
implying a < 3T —b =37 — 2 = 1T = §,,(1), and so
17 5
V(P, Jz,{a,b}) > / (x — —=)%dP + / (x — =)%dP
Ja2 32 jL:J3 Ja2j 8
276910245

= 962072674304 000287827,

yielding V (P, Ja,{a,b}) > 0.000287827 > V (P, Ja,{a,b}), which leads to a

contradiction. So, we can assume that the Voronoi region of b does not contain
any point from Jso yielding a > a(21,22) = % If the Voronoi region of a
contains points from Jo3, we must have 1(a + 3) > S23(0) = 12 implying

2
a> % — 3 =2 = 95(0), and then

8 16 —
9 5
V(P, Js,{a,b >/ x——2dp+/ x — =)%dP
(P, Jo, {a,b}) (]21( 16) }jg-fzj( 8)
17716739853
=" —.0002522
70231305224192 0.000252263,

yielding V(P, Js, {a,b}) > 0.000252263 > V (P, Ja,{a,b}), which leads to a
contradiction. So, the Voronoi region of a does not contain any point from Jo3
yielding a < a(21,22). Again, we proved a > a(21,22). Thus, a = a(21,22)
and

V (P, J2,{a,b}) = /

J21UJ22

5., 2403

—a(21,22))*dP —=)PdP=———.
(z—a(21,22)) +/J(22,w>(x 5/ 10465280
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Thus, the proof of the lemma is complete. O

Lemma 3.10. Let ag be an optimal set of siz-means. Then, card(agNJy) = 2
and card(ag N J(1,00)) = 4. Moreover, card(ag N J2) = 2.

Proof. Let ag :={0 < a; < as < asz <ayg < as < ag < 1} be an optimal set of
six-means. Consider the set of six points

B :={a(11),a(11,00),a(21),a(21,0),a(3),a(3,00)}.

Then, the distortion error is
I{;ﬂel;’al(x —a)?dP = (1+ 433)17115511/ +(1+ 4gg)pglsglV +(1+ 453)1035%V
1383
1831424
Since, Vg is the quantization error for six-means, we have Vg < 181;’% =
0.00075515. By Proposition 3.8, we have card(ag N J1) > 1 and card(ag N
J(Loo)) > 1. Moreover, the Voronoi region of any point in ag N J; does not
contain any point from J(; ) and the Voronoi region of any point in agNJ(1 o)
does not contain any point from .J;. Suppose that card(ag N J(1 )) = 2, and
then taking 2 = {a(2), a(2,00)} we see that

Ve > /J min (z — a)?dP = /J (z —a(2))*dP + / (z —a(2,00))*dP

2UJ(2,00) 1E52 J(2,00)
39
14308
i.e., Vg > 0.00272575 > Vg, which yields a contradiction. Next, assume that
card(ag N J(1,00)) = 3, and then taking 82 = {a(2),a(3),a(3,00)}, we see that

Vy > /J (x - a(2))%dP + /J (z — a(3))2dP + / (x — a(3,00))2dP

J(3,00)

= 0.00272575,

93
T 114464

which gives a contradiction. Thus, we can assume that card(as N J(1,00)) > 4.
If card(ag N J1) = 1, then,

= 0.000812483 > V%,

7154

which yields a contradiction, and so card(ag N J1) > 2. Therefore, we can
assume that card(ag N J1) = 2 and card(ag N J(1,00)) = 4. We now show that
card(ag N J2) = 2. By Proposition 3.8, the Voronoi region of any element
in ag N Jp does not contain any point from Ji; ), and the Voronoi region
of any element in ag N J(1 o) does not contain any point from J;. We have

9
Ve > / (z —a(1))2dP = —— = 0.00125804 > Vg,
J1
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ag N J(1,00) {% < a3 < a4 < as < ag < 1}. The distortion error contributed
by the set 5N J(1,00) = {a(21),a(21,00),a(3),a(3,00)} is given by

43 43
. _ 2 P=(1 i 2 1 43 9

831
1831424
Let V(P, agﬁJ(Loo)) be the quantization error contributed by the set agNJ(1,00)
in the region J(; o). Then, we must have V (P, ag N J(LOO)) < 0.000453745. If
Z = 542(0), then

= 0.000453745.

57 4 145935

P > — —)2dP = ———— = 0.00047662

V( ,aaﬂJu,oo))_/é Jj(:z: 64) 306184192 0.000476625
Jj=5

> V(P, ag N J(1 oo))

which yields a contradiction, and so S42(0) = < ag. If 3 < ay, then

27
V(P,agNJ > —a(2))2dP = —— = 0.000471764
(Pao 1 J10) 2 | (2= a(2)aP = o

> V(P as N J(1,00)),
which yields a contradiction. So, we can assume that a4 < %. Suppose that
§ <ayg < § Then, the following two cases can arise:
Case 1. g aq < g
Then, 2(@3 +a4) < é implying ag < 2 —ay < < 2 - i—é = 1%, and so

V(P,ag N J1,00)) > min / min  (z —a)?dP
J2

{as< L <1:<as} a€{as,as}

2
> / (r —a(2))2dP = 2L
s 57232

implying V(P, a6 N J(1,00)) > m = 0.000471764 > V (P, a6 N J(1,00)), Which
gives a contradiction.

Case 2. %<a4<%

Then, %(a4 +as) > 3 implying a5 > %— ag > 3 — % = % Then, the
following two subcases can arise:

Subcase (i). § < as.

Then, S31(1) = 9 = % 1—1 3—7) < S32(0), and so by Lemma 3.9,

[ V)

5
V(P a6 N J1,00)) (x —a(21,22)) dP+/ (xr — =)%*dP
J21UJ22 J(22,00) 8

11 2
+/ (xf—)zdPJr/ (v — 7) dP
Ta 16 Ta 32
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236721
334888960
which gives a contradiction.

= 0.000706864 > V (P, ag N J(1,0)),

Subcase (ii). 12 < a5 < 2.

Then, %(a5 + ag) > % implying ag > % —as > % — % = % = S4(1). First,

assume that Sy(1) < ag < S5(0) = 12. Then, using Lemma 3.9,
5
V(P,ag N Jg.o) = / (z — a(21,22))2dP + / (- 2)2ap
Ja1UJ22 J(22,00) 8
1 2 1
+/ (x—i’)ZdP+/ (x—3)2dp+/ (:z:—i’)QdP
16 L 32 Juge 16
11529
= 2" —0.000481969 > V (P, N J,
23920640 > V(P as 0 Ja,00),

which leads to a contradiction. Next, assume that S5(0) = % < ag. Then, as
S42(0) = 2% = (21 + 13), using Lemma 3.9, we have

64 2 16

5

V(P ag N J1,00)) > / (w—a(21,22))2d]3+/ (- 2)2dP
Ja1UJ22 J(22,00) 8

+/ (z — *)2dP+/ (x — ==)%dP+ | (z— —)%dP
J3 16 Ja1 32 J42 ]'6
700899
= 1330555840 0.000523232 > V (P, ag N J(l’oo)),

which yields a contradiction.
Hence, by Case 1 and Case 2, we can assume that a, < % yielding card(ag N
J2) = 2. Thus, the proof of the proposition is complete. O

Lemma 3.11. Let a7 be an optimal set of seven-means. Then, either (i)
card(ar N J1) = 3 and card(ar N J1,00)) = 4, or (ii) card(az N Jy) = 2 and
card(ar N J(1,00)) = 5.

Proof. Let a7 :== {0 < a; < as < --- < ay < 1} be an optimal set of seven-
means. Consider the set of seven points

B :={a(11),a(12), a(12,0), a(21), a(21, 0), a(3), a(3,c0)}.

Then, the distortion error due to the set 3 is

43
min(z — a)*dP = p11s5,V + (1 + j)plgsﬂv

acpf
43 43
+ (1 + §>p218%1V + (1 + §>p38§V
135
261632
Since, V7 is the quantization error for seven-means, we have V; < % =

0.000515992. By Proposition 3.8, we have card(ar; N J1) > 1 and card(ar N
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J(Loo)) > 1. Moreover, the Voronoi region of any point in a7 N J; does not
contain any point from J(; ) and the Voronoi region of any point in azNJ(1 o)
does not contain any point from J;. Suppose that card(az N J( «)) = 2, and
then taking 2 = {a(2), a(2,00)} we see that
Vz > / min (z — a)*dP
J2UJ (2,00 “EP2
39

- —a(2))2dP —a(2 2dP = —— =0.00272575
/]2(:1; CL( )) +/ (:1: Cl( 700)) 14308 )

i.e., V7 > 0.00272575 > V7, which yields a contradiction. Next, assume that
card(ar N J(1,00)) = 3, and then taking B2 = {a(2),a(3),a(3,00)}, we see that

Vi > /1 (2 — a(2))2dP + /] (& — a(3))2dP + / (& — a(3, 00))2dP

J(B,oo)

J(2,00)

93
T 114464

which gives a contradiction. Thus, we can assume that card(az N J(1,00)) > 4.
If card(ay N J1) = 1, then,

= 0.000812483 > V7,

9
Vo > —a(1))?2dP = —— = 0.00125804 > V-
2 [ @apar = o 2

which gives a contradiction. So, we can assume that card(az;N.J1) > 2. Thus, we
have either (i) card(azN.J1) = 3 and card(ar7NJ( o)) = 4, or (ii) card(azNJy) =
2 and card(ar7 N J(1,5)) = 5, which is the lemma. O

3

Lemma 3.12. Let ag be an optimal set of eight-means. Then, card(agNJy) =
and card(ag N J(1 o)) = 5.

Proof. Let ag := {0 < a1 < az < --- < ag < 1} be an optimal set of eight-
means. Consider the set of eight points

B = {a(11),a(12),a(12,0),a(21),a(21, 00), a(3),a(4), a(4,c0)}.

Then, the distortion error due to the set 3 is

. 43 43
3161}31(95 —a)?dP = p11siV + (1+ 5)?128%2‘/ + (1 + §)P21S§1V

43
+ p3s3V + (1 + —)pasiV

9
507
1831424
Since Vg is the quantization error for eight-means, we have Vg < wgoﬁ =

0.000276834. By Proposition 3.8, we have card(as N Ji) > 1 and card(as N
J1,00)) > 1. Moreover, the Voronoi region of any point in ag N J; does not
contain any point from J(; ) and the Voronoi region of any point in agNJ( o)
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does not contain any point from .J;. Suppose that card(ag N J(1,oo)) =2, and
then taking 2 = {a(2), a(2,00)} we see that

Vs > / min (z — a)?dP
JQUJ(Q‘OO) a€fz

39

= — 2 — 2 = —_— =
—/]2(96 a(2)) dP+/ (x —a(2,00))°dP 14308 0.00272575,

ie., Vg > 0.00272575 > Vg, which yields a contradiction. Suppose that
card(ag N J(1,00)) = 3, and then taking 83 = {a(2),a(3),a(3,00)}, we see that

Ve > /J (z — a(2))2dP + /J (z — a(3))2dP + / (2 — a(3,00))2dP

J(3,00)

J(2,00)

93
T 114464

which gives a contradiction. Next, assume that card(agN J(1,oo)) = 4, and then
taking

= 0.000812483 > V5,

Ba = {a(21),a(21,00),a(3),a(3,00)},
we see that

43 43 831
Ve 2 (1 5)paashiV 4+ (L - )pssV = = 0.000453745 > Vg,

9 1831424
which gives a contradiction. So, we can assume that card(as N J(1 o)) > 5. If
card(ag N J1) = 1, then,

9

Vi > —a(1))?dP = —— = 0.00125804 > V&,
o2 [ @ apar = :

which leads to a contradiction. If card(ag N J1) = 2, then taking 5y =
{a(11),a(11,00)}, we see that
43 69
> in(z —a)?dP =(1+ — LV =

a2 | miple—a) L+ stV = 535958
which is a contradiction. So, we can assume that card(ag N Jy) > 3. Since
card(ag N Ji) > 3 and card(ag N J(1,00)) = 5, we have card(ag N J;) = 3 and
card(ag N J(1,00)) = 5, which is the lemma. O

= 0.000301405 > Vg,

Proposition 3.13. Let a, be an optimal set of n-means for P such that
card(on N J(g,00)) > 2 for some k € N and n € N. Then, o, N Jpq1 # 0,
an N Jkt1,00) # 0, and oy, does not contain any point from the open interval
(Sk+1(1), Sk+2(0)). Moreover, the Voronoi region of any point in oy, N Jgi1
does not contain any point from J41,00) and the Voronoi region of any point
in an N J(gy1,00) does not contain any point from Jii1.

Proof. By Proposition 3.8, since «,, does not contain any point from (%, %), the
Voronoi region of any point in a,, N J; does not contain any point from J(; ),
and the Voronoi region of any point in ay, N J(1, o) does not contain any point

from Ji, to prove the proposition it is enough to prove it for £ = 1, and then
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inductively the proposition will follow for all ¥ > 2. Fix k = 1. By Lemma 3.5,
it is clear that the proposition is true for n = 3. Let ay := {0 < a1 < a3 <
az < ag < 1} be an optimal set of four-means. In the proof of Lemma 3.6,
we have seen that % < ag yielding ay N J(1 o) = {% <ag < az < aq < 1},
i.e., card(cy N J(1,00)) = 3 > 2. We now prove the proposition for n = 4. Let
V (P, a4 N J(1,5)) be the quantization error contributed by the set ay N J(1 o).
The distortion error due to the set 5 := {a(2), a(3),a(3,00)} of three points on

J(1,00) 18 given by

43 9
. 2 2 2
—a)?dP = pas3V + (1 + —)p3s3V = = 0.000812483,
/J(Loo) il —a) P25V (L+ 3 )passV = g
and so V(P, g N J(1,00)) < 0.000812483. If ag > 32 = So4(0), then
39 269769
V(P as N J(1,00)) > / (x — =)?dP = —————— = 0.00100693
J21UJasUJog 64 267911168
> V(P7 oy N J(LOO)),
39

which is a contradiction. So, we can assume that ay < £. Suppose that
a3 < 3. Then, as S5(1) = 12 < (2 + a(3,00)) < §

]
V(P,asN J(l,oo)) > /

we have

(x — g)QdP + / (x — a(3,00))*dP

J3 J(3,00)
297
= =0.0012
593078 0.00129735

implying V(P, ay N J(1,00)) > 0.00129735 > V (P, g N J(1,00), Which is a con-
tradiction. Next, suppose that 2 < agz < 3. Then, as S3(1) < 3(a(2) + 2) and
S3(1) < 3(3 4 a(3,00)) < § = 54(0), we have

V(Pain o) 2 [ (a-a@Pap+ [ @-Drap
’ J2 Js 4

963
915712

yielding V(P as N J(1,00)) = gimes = 0.00105164 > V (P, s N J(1,00)), which
3

gives a contradiction. Thus, we have § < as. Since ag < % < % and % <

az, the set ay N J(1,o) does not contain any point from the open interval
(52(1),53(0)). Since 3(az +as) > $(3 + 3) = 2 = S2(1), the Voronoi region
of any point in ay N J(2 o) does not contain any point from J>. Suppose that

the Voronoi region of any point in aq N J2 contains points from Js o). Then,

1 3 . 3 3 _ 39 _ 57
5(az +az) > 7 implying az > 5 —as > 5 — 57 = ¢1, and so

+ /J(g,,,,@ (z —a(3,00))°dP =

57 10155
Vy > — —)2dP = ———— =0.00212264 > Vj,
‘= /J3 =& 4784128 !

which leads to a contradiction. Hence, the Voronoi region of any point in ayNJo
does not contain any point from Ji3 ). Thus, the proposition is true for n = 4.
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From the proof of Lemma 3.7, we see that if a5 = {0 < a1 < az < a3 < ag <
as < 1} is an optimal set of five-means, then as N J o) = {% <az < ag <
as < 1}. Thus, the proof of the proposition for n = 5 follows exactly in the
similar ways as the proof for n = 4 given above.

Now, we prove the proposition for n = 6. Let ag := {0 < a1 < a3 < a3z <
a4 < as < ag < 1} be an optimal set of six-means. Then, by Lemma 3.10, we
know that card(as N J2) = 2, and card(ag N J(1,00)) = 4. Thus, we see that
as N Jy = {ag,as} # 0 and a6 N J(2,00) = {as, a6} # 0. As shown in the proof
of Lemma 3.10, we have ag N J(1 ) = {% <az <ag <as<ag <1}, and if
V(P,a6 N J(1,)) is the quantization error contributed by the set as N J(1,00)
in the region J(; ), then we have V (P, as N J1,50)) < 0.000453745. We now
show that the Voronoi region of any point in ag N Jo does not contain any

1

point from J(3 oy. If it does, then we must have 5(as + as) > % implying

a5>%—a42%—§:%,andso
V (P, agNJ, ) > / (x—z)zdP _ 88 0.00155371 > V (P, agNJ, )
, (6 (1,00)) = 7 3 = 523264 = u. » &g (1,00) /5

which is a contradiction. Also, notice that the Voronoi region of any element
from ag N J(2,00) does not contain any point from Jp, if it does we must have
%(a4 +as) < % implying a4 < % —as < % — % = %, which is a contradiction as
% <asz < ay.

Now, we prove the proposition for n = 7. Let a7 := {0 < a1 < as <

- < ay < 1} be an optimal set of seven-means. By Lemma 3.11, first as-
sume that card(ar N J(1,00)) = 4, ie., % < ayg. Let V(P,ar N Jq,)) be the
quantization error contributed by the set a7 N J(1 ) in the region J; o). Let
B :={a(11),a(12), a(12,0), a(21), a(21, ), a(3), a(3,0)}. The distortion er-
ror due to the set N J(1 ) := {a(21),a(21,00),a(3),a(3,00)} is given by

) 43 43
/ min (2 —a)*dP = (1 + g)pglsglV + (14 = )p3s3V
J(1,00)

a€ANJ (1, 00) 9
831
= ——— =0.000453745
1831424 ’
and so V(P, ar N J(1,00)) < 0.000453745. If ag > 155 = Sa3(1), then
77 852849
V(P, a7 N T o)) > — —)2dP = ——————— =0.000795832
(a7 o)) 2 /JQIUJQQUJ% @~ 138) 1071644672

> V(P, a7 N J(l,oo))a
which is a contradiction. So, we can assume that ay < % = Sa3(1). Suppose
that 13 < as. Then, as £ (a(2) + as) > (2 + 1) > 3, we have
27
P a7z N > —a(2))?dP = ——~== = 0.000471764
V(P, a7 J(Loo))/b(x a(2)) 57232 0.00047176

> V(Pa a7 N J(l,oo))v
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which leads to a contradiction. So, we can assume that as < 715 Suppose that
5 1 : : 3 3_11 _
5 <as < 15- Then, 2(a5+a6) 2 1H.1p1y1ng ag > 5—06 > 5—15 = 16 = S53(1).
Then, the followmg two cases can arise:
W27
Case (i). 55 < a.
Then, 531(1) =49

49 = L(H + 27) < S35(0), and so by Lemma 3.9,

V(P7 a7 N J(l,oo)) > (:ZJ — CL(21, 22))2dp +/ (IE — §)2dp

J21UJ22 J(22,00) 8
+/ (:c——) dP+/ (x — 27) dP
Jan 16 Jas 32

236721
= 331988960 — 0.000706864 > V (P, a7 N J(LOO))’
which gives a contradiction.

Case (ii). % < ag <

Then, 3(ag +ar) > 1 1mply1ng a7 > T —ag> 7 — 2T =25 = 5,(1). First,
assume that S4(1) < ar < S5(0) = Then using Lemma 3 9

V(P,ar N J(l,oo)) > /

J21UJ22

(x — a(21,22))%dP + / (z — §)2dP
J(22,00) 8

/S(x— )2dP + /x——

+/ (x — —)%dP
JsUJg 16)

11529
= 93920640 0.000481969 > V (P, a7 N Ja, OO)),
which leads to a contradiction. Next, assume that S5(0) =

542( ): 57 __

5T — 1(Z + 15), using Lemma 3.9, we have

5
‘/(]D7 a7 N J(l,oo)) Z / ((ﬂ — CL(21, 22))2dp +/ (fﬂ — *)2dp
J21UJ22 J(22,00) 8

27 5
+/ T — — dP—i—/ T — dP
Ja( 16) J41( 32)

< ar. Then, as

= —orreeo s — U 23232 P
1339555810 0.000523232 > V (P, a7 N J(LOO))7
which yields a contradiction.

Hence, by Case (i) and Case (ii), we can assume that a5 < 2. If ag < 3,
then as 12 = S3(1) = 3(2 + %) <i(3+a(3,00)=1(3+12) <L wehave

Ve > /JS((E - 1) dP + /J(g,w)(x —a(3,00))dP

5
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531

915712
which leads to a contradiction. So, we can assume that % < ag. Thus, it is
proved that a7 N Ja # 0, a7 N J2,00) # 0, and a7 does not contain any point
from the open interval (S2(1),S3(0)). Since 3(as + ag) > 3(3 + 2) = 3, the
Voronoi region of any point in a7 N J(3 ) does not contain any point from J.
If the Voronoi region of any point in a7 N Jz contains points from Jio ), we

= 0.000579877 > V7,

must have %(a5 + ag) > % implying ag > % —as > % — % = %, and so
7 813
V(P > —-)%dP = = 0.00155371 P
( 7OZ7ﬁJ(1700)) /JS(SE 8) 523264 0.00155371 > V( ,OMQJ(LDO)),

which is a contradiction. Thus, the Voronoi region of any point in a7 N J does
not contain any point from Jiz o) as well.

If we assume card(az N J(1,00)) = 5, with the help of Lemma 3.11, similarly
we can prove that the proposition is true. Notice that if we take n = 8, then by
Lemma 3.12, we have card(agN J(1,00)) = 5. Thus, the proof of the proposition
for the case n = 8 is exactly same as the proof of the proposition for n = 7
with card(az N J1,00)) = 5.

Now, we prove the proposition for any n > 9. Let o, := {0 < a1 < az <
-++ < ap < 1} be an optimal set of n-means for any n > 9 such that card(a, N
J1,00)) = 2. Let V(P o, N J(1,00)) be the quantization error contributed by
the set ay, N J(1,00) in the region J(i o). Let

B = {a(11),a(12),a(12,0),a(21), a(22), a(22, ), a(3),a(4), a(4,00)}.
The distortion error due to the set
BN J(1,00) = {a(21),a(22),a(22,00), a(3),a(4),a(4,00)}

is given by

/ min  (z — a)*dP
J

(1,00) aGﬁﬂJ(l,oo)
43 43 915
— 2 1 e 2 2 1 o 2 —
P25V + (1 + 9 )p22855V + p3s3V + (1 + 9 )pasyV 7395696
and 50 V (P, ay N J(1,00)) < 7590256 = 0.000124903. Suppose that a;, does not

contain any point from Js. Since by Proposition 3.8, the Voronoi region of any
point in ay, N Jy does not contain any point from Ji; ), we have

5 405
V(P, anNJ(q o)) > —2)24p = =0.00154 V(P, anNJ(1 00))s
(Poction) > [ (3PP = 50 = 000154795 > V(P )
which leads to a contradiction. So, we can assume that a, N Js # 0. Let
ji=max{i : a; < % forall 1 < i < n}, and so a; < %. We now show that
ajp1 > %. Suppose that % < aj41 < % Then, the following two cases can
arise:

5 11
Case 1. 3 <aj+1 < 15
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Then, %(ajﬂ + aj+2) > % implying Qi+ > % —Gj+1 > % — % = %, and so
13 405
V(P N J, > — 5)2dP = ————— =0.000193497
(Pron 0 J(1.00)) 2 /J3 (@-16) 2093056

> V(P, ap N J(l,oo))>
which is contradiction.
Case 2. }—é <ajpr < %.
Then, 3(a; + aj41) < 3 implying a; < 2 —a;41 < 3 — 11 = 3 = 522(0),
and so

9
V(P an N J(1,00)) = / (x — —)%dP

J22UJ23UJ24 16
> V(P, ap N J(l,oo))7

which gives a contradiction.

Thus, we have proved that o, N Js # 0, a,, N J(2,00) # ¢, and «,, does not
contain any point from the open interval (S3(1), 53(0)). Since 3(a; + aj41) >
1i+3)= %, the Voronoi region of any point in a, N J(2 o) does not contain
any point from Js. If the Voronoi region of any point in «,, N J; contains points
from J(3 o), we must have %(aj—i—ajﬂ) > %implying i1 > %—a]— > %—% = %,
and so

99
T 5249288

= 0.000188828

7 813
V(P an N J(100)) > — 2)%dP =
(B 0n 1 J01.09) /Jg(x g/ 523264

> V(Pa o, N J(l,oo))7
which is a contradiction. Hence, the Voronoi region of any point in «, N Js

does not contain any point from J(3 o). Thus, the proof of the proposition is
complete. O

= 0.00155371

Proposition 3.14. Let a,, be an optimal set of n-means for n > 2. Then,
there exists a positive integer k such that o, N J; # 0 for all 1 < j < k, and
card(a, N Jiy,00)) = 1. Moreover, if n; := card(a;), where o := o, N Jj, then
n= Z?:l nj + 1, with

pisiV + PpisiV ifk =1,

_ k

Vi = > pisiVa, + BorsiV if k> 2.

j=1

Proof. Proposition 3.8 says that if a,, is an optimal set of n-means for n > 2,
then a, NJy # 0, o N J(1,00) # (), and c,, does not contain any point from the
open interval (S1(1), 92(0)). Proposition 3.13 says that if card (o, NJ o)) > 2
for some k € N, then a,, N Jp11 # 0 and a, N J(kt1,00) # (. Moreover, ay,
does not take any point from the open interval (Sk11(1),Sk+2(0)). Thus, by
Induction Principle, we can say that if «,, is an optimal set of n-means for
n > 2, then there exists a positive integer k such that «, N J; # 0 for all
1 <j <kand card(an, N J(g,00)) = 1.
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For a given n > 2, write a; := o, N J; and n; := card(e;). Since a; are

disjoints for 1 < j < k, and «, does not contain any point from the open
k

intervals (S¢(1), S¢+1(0)) for 1 < £ < k, we have a,, = U aj U {a(k,00)} and
j=

n=mni+mng+---+ng+ 1. Then, using Lemma 2.1, we deduce

Vi :/Helin |z — al/*dP

k
min(x — a)“dP + z — a(k,o0))?dP
> [ minte - /J(m)< (k. 0))

j: J; aco;

= Zp] min (z — a)*d(P o S; ') + / (x — a(k,00))?dP,
Jk,00)

aca;

which ylelds

43
(6) Vi = ij 55 mln (x —a)?dP + jkaiV-
(o)
We now show that Sj (aj) is an optimal set of nj;-means, where 1 < j < k. If
Sj_l(a ;) 1s not an optimal set of n;-means, then we can find a set 8 C R with

card(8) = n; such that fmm r—b)%dP < [ min  (z — a)?dP. But, then
a657 (o)

S;(B) U (o \ @) is a set of cardinality n such that
/ min (z — a)*dP < [ min (z — a)*dP,
a€S;(B)U(an\ay) acoy
which contradicts the optimality of a,. Thus, S} 1(ozj) is an optimal set of
n;-means for 1 < j < k. Hence, by (6) we have
k

43
Vo =Y pisiV, + —prsiV.
j:1p35] i T g PES
Thus, the proof of the proposition is yielded. (I

We need the following lemma to prove the main theorem (Theorem 3.1) of
the paper.

Lemma 3.15. For any w € N¥, k > 1, let E(a(w)) and E(a(w,0)) be given
by (5). Then, for w,7 € N¥, k> 1, we have
(i) E(a(w)) > E(a(r)) if and only if E(a(wl))+ E(a(wl, )+ E(a(r)) <

E(a(w)) + E(a(71)) + E(a(71, 00));
(a(w)) > E(a(r,0)) if and only if E(a(wl)) + FE(a(wl,o0))+
(a(r,00)) < E(a(w)) + E(a(t™ (77 + 1)) + E(a(r™ (7)7 + 1), 00));

(a(w, 00)) > E(a(r)) if and only if E(a(w™ (w)u|+1)))+E(a(w™ (W +
1),00)) + E(a(7)) < E(a(w,0)) + E(a(r1)) + E(a(r1,00));
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(iv) E(a(w,00)) > E(a(r,00)) if and only if E(a(w™ (w + 1))+
E(a(w™ (i +1),00)) + E(a(r,00)) < E(a(w,0)) + E(a(t™ (77| +
1)) + E(a(r™ (77 + 1), 00)).
Proof. To prove (i), using Lemma 2.6, we see that
LHS = E(a(wl)) + E(a(wl, 00)) + E(a(T))
43
= pw153,1V(1 + E) erTSiV
1, 13 )
= - Pw 1 - T 5
SV (4 D) sV
RHS = E(a(w)) + E(a(11)) + E(a(71, 0))
1, 43
Thus, LHS < RHS if and only if g;pus3V (1 + 22) + prs2V < pus2V +
&p-s2V(1 4+ 4), which yields p,s2V > prs2V, ie., E(a(w)) > E(a(r)).
Thus (i) is proved. To prove (ii), let us first assume 7/, = 1. Notice that
Pr=(r;)+1) = Pr=Pr, 41 = %p7'7 and Sr=(r,+1) = Sr=S7 41 = %87'7 and then
using Lemma 2.6, we have
LHS = E(a(wl)) + E(a(wl, 00)) + E(a(T, 00))

:pwsiV—i—

43 43

= pwlsilv(l + E) + Eprsgv

1, 43 43,
= 2 Pw V(1 Y - PT ‘/7

G105 (1+ 3)+ 5 Prés

RHS = E(a(w)) + E(a(t™ (117 + 1)) + E(a(t™ (1}7] + 1), 00))
43
= pwsiv +Pr(T,T|+1)33—(T‘,‘+1)V(1 + g)
3 43

= pwsiv +prsivg(1 + 5)

Thus, LHS < RHS if and only if &p,s2V(1+ 22) + Bp,;s2V < pusiV +
prs2V3(1+ 22), which yields

2y o 43 QV(%—g(H%))% B,
PusS,V > —Prs7 > —prsiV,

3 1-401+%) 3
ie., E(a(w)) > E(a(r,00)). Thus, (ii) is proved under the assumption 7, = 1.
Similarly by taking 7|, > 2, we can prove (ii). Thus, the proof of (ii) is
complete. Proceeding in the similar way, (iii) and (iv) can be proved. This
concludes the proof of the lemma. O

The following proposition gives some properties of F(w) for w € N*.

Proposition 3.16. Let w, T be two nonempty words in N* with p, = pr. Then,
the quantization error satisfies the following conditions:
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() Blaw)) = E(a(r).
(ii) If wy| = 77|, then E(a(w,o0)) = E(a(T,0)).
(i) 1f wie # 71| = 1, then E(a(w,00)) = LE(a(7,00)).
(iv) If 1 = wjy| # 7|7, then E(a(w,00)) = 3E(a(T,0)).
Proof. (i) By Lemma 2.8, p,, = p, implies s, = s,, and so
E(a(w)) = pusiV = prs7V = E(a(7)).

(ii) Here two cases can arise: wj,| = 7|r| = 1 or wj,| = 7|;| > 2. In either
case, using Lemma 2.6 one can see that F(a(w,00)) = E(a(T,00)).

(iii) If wy,| # 77| = 1, then, wy,| > 2 and 77 = 1, and so by Lemma 2.6 and
Lemma 2.8, we get

43 143 1
Elafw.00)) = 2pustv = 185, 2v = Lp(ar.00)).
Due to symmetry (iv) follows from (iii), and thus the proof of the proposition
is complete. (I

Proposition 3.17. Let a,, be an optimal set of n-means for n > 2. Then, for
¢ € oy, we have ¢ = a(w), or ¢ = a(w, 00) for some w € N*,

Proof. Let a,, be an optimal set of n-means for n > 2 such that ¢ € a,,. By
Proposition 3.13, there exists a positive integer ki such that o, N J;, # 0 for
1 < j1 < ki, and card(a, N J(, 0)) = 1, and «,, does not contain any point
from the open intervals (S(1), S¢41(0)) for 1 < £ < ky. If ¢ € @y NJ (g, o0y, then
¢ =a(ky,00). If c € a,,NJ;, for some 1 < jy; < ky with card(e,,NJj,) = 1, then
¢ = a(j1). Suppose that ¢ € a,,NJ}, for some 1 < j; < ky and card(a,, NJj,) >
2. Then, as similarity mappings preserve the ratio of the distances of a point
from any other two points, using Proposition 3.13 again, there exists a positive
integer ko such that oy, NJj, , # 0 for 1 < jo < ks, and card(a,NJ(j, ky,00)) = 1,
and «,, does not contain any point from the open intervals (.S;,¢(1), S;, (¢41)(0))
for 1 < £ < ky. If ¢ € ay N J(j,ky,00), then ¢ = a(jik2,00). Suppose that
¢ € ap N Jj, for some 1 < jy < ko. If card(a, N Jj,5,) = 1, then ¢ = a(j1j2).
If card(a, N Jj,5,) > 2, proceeding inductively as before, we can find a word
w € N*, such that either ¢ € v, N J,, with card(a,,NJ,) = 1 implying ¢ = a(w),
or ¢ € ap N Jy o0y With card(a, N J(y, o)) = 1 implying ¢ = a(w, 00). Thus,
the proof of the proposition is complete. O

By Proposition 3.17, we can say that if «, is an optimal set of n-means
for any n > 2, then the error contributed by any element ¢ € «,, is given by
E(a(w)) if ¢ = a(w), or by E(a(w,0)) if ¢ = a(w, 00), where w € N*. We are
now ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.3 and Lemma 3.5, it is known that the op-
timal sets of two- and three-means are {a(1),a(1,00)} and {a(1),a(2),a(2,00)}.
Since
43 9
E(a(l,00)) = EplslV > p1s7V = E(a(1)),
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the theorem is true for n = 2. For n > 2, let a,, be an optimal set of n-means.
Let a, := {a(i) : 1 <i < n}. Let E(a(i)) and W(a,) be defined as in the
hypothesis. If a(j) € W(an), ie., if a(j) € o, \ W(aw,), then by Lemma 3.15,
the error

> E(a(i)) + E(a(w™ (ww| +1))) + E(a(w™ (W]e| +1),00))
a(i)€(an\{a(5)})
if a(j) = a(w, 00), or

E(a(i)) + E(a(wl)) + E(a(wl, 00)) if a(j) = a(w),
a(i)€(am\{a(j)})
obtained in this case is strictly greater than the corresponding error obtained in
the case when a(j) € W(ay,). Hence for any a(j) € W(ay,), the set a,11(a(4)),
where
{a()}) U{a(w™ (Wi + 1)), a(w™ (Wi +1),00)}
an+1(a(j)) = ifa .7) za(w,oo),
(an \ {a(j)}) U{a(wl), a(wl, 00)} if a(j) = a(w),

is an optimal set of (n + 1)-means, and the number of such sets is

card( J {ans1(ali)) s ali) € Wian)}).

an€Cp
Thus, the proof of the theorem is complete. O

4. Results and observations about optimal sets of n-means

The results and observations of this section are due to the induction formula
given by Theorem 3.1.

Recall that the optimal set of one-mean consists of the expected value of the
random variable X, and the corresponding quantization error is its variance.
Let «,, be an optimal set of n-means, i.e., a,, € C,, and then for any a € ay,,
we have a = a(w) or a = a(w, c0) for some w € N*. Theorem 3.1 implies that
if card(C,) = k and card(C,+1) = m, then either 1 <k < m, or 1 < m < k,
for example from Figure 2, we see that the number of a5 = 1, the number
of a1g = 3, the number of a7 = 3, and the number of ayg = 1. Thus, there
exists a sequence {ny}22 ; of positive integers such that for all n > 1, we have
card(C,) = ng, and then we write
Cn _ { {O&n} lf ng = 1,

{on,; 11 <i<ng} ifng>2.
In addition, Theorem 3.1 implies that a single a € C,, can produce multiple
distinct @ € Cp41, and multiple distinct o € C,, can produce one common
a € Cpyq. For a € C,, by a — (3, it is meant that g € C,, 1 and S is produced
from «. Thus, from Figure 2, we see that

{a1g = Q191,18 —> (19,2, 0118 —7 0419.,3}a
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~
Qaq2 14,1 14,2
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a1 A2 ais

b 7 AN

Qaqo a16,1 a16,2 LA a16,3
} VAP =4

~ —~
ag 17,1 Q172 73

¥ Vs
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PAA AN
arz az2 a19,1 /92 ™93
b N A
Qs @20,1 a20,2 a20,3
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as azq
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ay ax
N

a23,1 23,2 a23,3 a23.4 23,5

FIGURE 2. Tree diagram of the optimal sets from a4 to ass.

{{a19,1 — (20,1, 19,1 —> azo,z} ) {a19,2 — (20,1, ™¥19,2 — azo,s},
{CY19,3 — (20,2, ¥19,3 — C¥20,3}}7
{0420,1 — 21, (20,2 —7 (21, (20,3 — 0621}-
Again, we have

a5 = {a(111),a(111, ), a(12), a(13), a(13, 00), a(21), a(22), a(23), a(23, c0),
a(31),a(32),a(32,00),a(4),a(5),a(5,00)}

27
=0. 451493,;
93016 0.0000451493;

a1 = {a(111),a(111, 00),a(12), a(13), a(13, 00), a(211), a(211, c0),
a(22),a(23), a(23, 00), a(31), a(32), a(32, 00), a(4), a(5), a(5, 00) };
age2 = {a(111),a(111, 00),a(12),a(13), a(13, ), a(21), a(22), a(23), a(23, x0),

with V5 =
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a(31),a(32),a(32,0),a(41),a(41, ), a(5),a(5,00) }
aie3 = {a(111),a(111, 00),a(121), a(121, 00), a(13), a(13, c0), a(21), a(22),
a(23),a(23,00),a(31),a(32),a(32,00), a(4),a(5),a(5,00)}

4635
ith Vig = ——2  — 0.000039544:
W V16 = 17911136 ’

ag71 = {a(111),a(111, 00),a(12), a(13), a(13, ), a(211), a(211, 00), a(22),
a(23), a(23,00),a(31),a(32),a(32,0),a(41),a(41, 00), a(5), a(5,00)};

ai7,2 = {a(111),a(111, 00), a(121), a(121, 00), a(13), a(13, 00), a(211), a(211, o),
0(22),a(23), (23, 50), a(31), a(32), a(32, 50), a(4), a(5), a(5, ) },

ag7,3 = {a(111),a(111,00),a(121), a(121, 00), a(13), a(13, c0), a(21), a(22),
a(23), a(23,00),a(31),a(32),a(32,00),a(41),a(41, 00), a(5), a(5,00) }

1989
ith Vis = ———2 _ — 0.0000339388:;
T = R 605568

a1s = {a(111),a(111, 00), a(121), a(121, 0), a(13), a(13, 00), a(211),
a(211, 00),a(22),a(23), a(23, c0), a(31), a(32), a(32, 00),
a(41), a(41,00), a(5),a(5,00)}
3321

ith Vig = —om
W VI8 = 917911136

= (0.0000283335;

and so on.
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