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MULTI-DERIVATIONS AND SOME APPROXIMATIONS

Abasalt Bodaghi and Hassan Feizabadi

Abstract. In this paper, we introduce the multi-derivations on rings and

present some examples of such derivations. Then, we unify the system

of functional equations defining a multi-derivation to a single formula.
Applying a fixed point theorem, we will establish the generalized Hyers–

Ulam stability of multi-derivations in Banach module whose upper bounds
are controlled by a general function. Moreover, we give some important

applications of this result to obtain the known stability outcomes.

1. Introduction

The first stability problem concerning of group homomorphisms was intro-
duced by Ulam [24] in 1940 as follows: Let G be a group and H be a metric
group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a
homomorphism φ : G→ H satisfies the inequality d(φ(xy), φ(x)φ(y)) < δ for all
x, y ∈ G, then there exists a homomorphism ψ : G→ H with d(φ(x), ψ(x)) < ε
for all x ∈ G? In case of a positive answer to the previous problem, we usually
say that the homomorphisms from G to H are stable or that the Cauchy func-
tional equation ϕ(xy) = ϕ(x)ϕ(y) is stable. In other words, for a functional
equation

F1(φ) = F2(φ)(1.1)

and a mapping ψ which is an approximate solution of (1.1), that is, F1(ψ) and
F2(ψ) are close in some sense, we may ask whether a solution φ of (1.1) exists
near to ψ.

The famous Ulam stability problem was partially solved by Hyers [15] for lin-
ear functional equation of Banach spaces. The Hyers’ theorem was generalized
by Aoki [2] for additive mappings, by Th. M. Rassias [21] and by J. M. Rassias
[20] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruţa [14] by replac-
ing the unbounded Cauchy difference by a general control function in the spirit
of Rassias approach. The terminology Hyers–Ulam stability originates from
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these historical backgrounds and this terminology is also applied to the cases
of other functional equations.

Throughout, for the set X, we denote

n-times︷ ︸︸ ︷
X ×X × · · · ×X by Xn. Let V be

an abelian group, W be a linear space, and n ≥ 2 be an integer. A mapping f :
V n → W is called multi-additive if it is additive (satisfies Cauchy’s functional
equation C(x+ y) = C(x) +C(y)) in each variable. A lot of information about
the structure of multi-additive mappings, their Ulam stabilities and related
topics are available in [5], [7], [8], [10], [11], [12], [16, Sections 13.4 and 17.2]
and [25].

The study of derivations in rings though initiated long back, but got im-
petus only after Posner [19] who in 1957 presented some significant results on
derivations in prime rings. The notion of derivation has also been generalized in
various directions such as Jordan derivation, left derivation, (θ, φ)-derivation,
generalized derivation, generalized Jordan derivation, higher derivations and
etc. The stability of derivations between operator algebras was first obtained
by Šemrl [22]. Badora [3] and Miura et al. [17] proved the Hyers–Ulam stabil-
ity of ring derivations on Banach algebras. For some results on the stability
of generalized derivations and (θ, ψ)-derivation, ternary quadratic derivations
and cubic derivation, we refer to [1], [4], [6], [13] and [18].

In this paper, we define the multi-derivations and indicate some examples.
We also describe and characterize the structure of such mappings. In other
words, we reduce the system of n equations defining the multi-derivations to
obtain a single equation. Furthermore, we prove the generalized Hyers-Ulam
stability for multi-derivations by using a fixed point result (Theorem 3.1) which
was proved in [9, Theorem 1].

2. Characterization of multi-derivations

Let R be a commutative ring andM be a bimodule over R. The operation
of ring R on M is called scalar multiplication, and here it is denoted as r · x
and x ·r (r ∈ R, x ∈M) to distinguish it from the ring multiplication operation
which is usually written by juxtaposition rs, where r, s ∈ R.

A derivation from R into an R-bimodule M is an additive mapping D :
R →M that satisfies

D(rs) = r ·D(s) +D(r) · s(2.1)

for all r, s ∈ R. For each x ∈M, we define a derivation adx via

adx(r) = r · x− x · r, (r ∈ R).

Such derivations are called inner.
Let R be a ring and M be a bimodule over R. Then, Rn is also a ring

with pointwise addition and multiplication. Moreover,Mn is an abelian group
with pointwise addition. It is easy to check that Mn is an Rn-module with
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the scalar multiplication

(r1, . . . , rn) • (x1, . . . , xn) = (r1 · x1, . . . , rn · xn)

for all r1, . . . , rn ∈ R and x1, . . . , xn ∈M. If D : R →M is a derivation, then
Dn : Rn →Mn defined by

Dn(r1, . . . , rn) := (D(r1), . . . , D(rn))(2.2)

is also a derivation.
From now on, N stands for the set of all positive integers, N0 := N ∪ {0},

R+ := [0,∞), n ∈ N. Let V and W be vector spaces over the rational numbers,
n ∈ N. In [10], Ciepliński proved that a mapping f : V n →W is multi-additive
if and only if the equation

f(x1 + x2) =
∑

j1,j2,...,jn∈{1,2}

f(xj11, xj22, . . . , xjnn),(2.3)

holds, where xi = (xi1, xi2, . . . , xin) ∈ V n for i = 1, 2.

Definition 2.1. LetR andM be as in the above. A mapping Dn : Rn →M is
called an n-derivation or a multi-derivation if Dn is a derivation in each variable,
that is

Dn(r1, . . . , ri−1, rir
′
i, ri+1, . . . , rn) = ri ·Dn(r1, . . . , ri−1, r

′
i, ri+1, . . . , rn)

+ Dn(r1, . . . , ri−1, ri, ri+1, . . . , rn) · r′i

for all i ∈ {1, . . . , n}.

By Definition 2.1, every multi-derivation Dn : Rn → M is also a multi-
additive mapping and so it satisfies (2.3). Here, we present some examples of
multi-derivations.

Example 2.2. Let A be an algebra. Then, it is an A-module where the
scalar multiplication and algebraic product coincide. Suppose that for each
j ∈ {1, . . . , n}, Dj : A → A is a derivation. It is easy to check that the
mapping D : An → A defined via

D(a1, . . . , an) :=

n∏
j=1

Dj(aj)

is a multi-derivation. Given now x1, . . . , xn ∈ M are fixed. We see that the
mappingDx1,...,xn : An →M defined byDx1,...,xn(a1, . . . , an) :=

∏n
j=1 adxj (aj)

is a multi-derivation, where M is an A-bimodule. For a typical case, let C(R)
and C∞(R) denote the algebra of all continuous and infinitely differentiable
functions f : R → R, respectively. Then, the mapping D : (C∞(R))n → C(R)
defined through D(g1, . . . , gn) :=

∏n
j=1 g

′
j is a multi-derivation, where g′j is the

derivative of gj .
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Example 2.3. (i) Let M be an m-smooth manifold, C∞(M) be the com-
mutative algebra of smooth real-valued functions f : M → R over R, and
X(M) be the set of all smooth vector fields on M . It is known that X(M)
is a C∞(M)-module and moreover Der(C∞(M)), the derivations of C∞(M),
can be identified with X(M) [23]. Then, for arbitrary smooth vector fields
X1, . . . , Xn on M , the mapping DX1,...,Xn : (C∞(M))n → C∞(M) defined by

DX1,...,Xn(f1, . . . , fn) :=

n∏
i=1

Xi(fi)

is a multi-derivation.
(ii) Let (M,ω) be a symplectic manifold, where ω is a non-degenerated 2-

form on M . For any smooth function f ∈ C∞(M), we define the Hamiltonian
vector field of f to be the smooth vector field Xf defined by Xf = ω̂−1(df),
where ω̂ : TM → T ∗M is the bundle isomorphism determined by ω [23].
Equivalently, Xfy ω = df (called interior multiplication by Xf ) or for any
vector field Y , ω(Xf , Y ) = df(Y ) = Y (f). In fact, Xfy ω can be obtained
from ω by inserting Xf into the first slot. Another common notation is

νy ω = iνω.

This is often read “ν into ω”. Then, the mapping

D : C∞(M)→ X(M)

f 7−→ Xf

is a derivation. In fact, for each f, g ∈ C∞(M) and Y ∈ C∞(M), we have

ω(Xfg, Y ) = Y (fg) = Y (f)g + fY (g)

= ω(Xf , Y )g + fω(Xg, Y )

= ω(Xfg + fXg, Y ).

Now, the non-degeneracy of ω implies that Xfg = Xfg + fXg. Consequently,
D(fg) = Xfg = Xfg + fXg = D(f)g + fD(g). Therefore, D is a derivation.

Suppose R is a ring and 1R (or briefly, 1) is its multiplicative identity and
also M is a bimodule over R. We have 1 · x = x · 1 = x for all x ∈ M.
With the previous assumptions, if D : R →M is a derivation, then D(1) = 0.
This is also valid for multi-derivations. In other words, for the multi-derivation
Dn : Rn →M, we have Dn(r) = 0 for any r ∈ Rn with at least one component
which is equal to 1. Indeed,

Dn(r1, . . . , rj−1, 1, rj+1, . . . , rn) = 1 ·Dn(r1, . . . , rj−1, 1, rj+1, . . . , rn)

+ Dn(r1, . . . , rj−1, 1, rj+1, . . . , rn) · 1,

and so Dn(r1, . . . , rj−1, 1, rj+1, . . . , rn) = 0.
Let n ∈ N with n ≥ 2 and rni = (ri1, ri2, . . . , rin) ∈ Rn, where i ∈ {1, 2}.

We will write rni simply ri when no confusion can arise.
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Let R be a commutative ring andM be a bimodule over R, and r1, r2 ∈ Rn.
For the multi-additive mapping Dn : Rn →M, we consider the equation

Dn(r1r2) =

n∑
k=0

∑
1≤j1<···<jk≤n

r1j1 · · · r1jk ·Djk
n (r1j1 , . . . , r1jk)(2.4)

· r21 · · · r̂2j1 · · · r̂2jk · · · r2n,

where the hats indicate omitted arguments, and

Djk
n (r1j1 , . . . , r1jk)(2.5)

:= Dn (r11, . . . , r1,j1−1, r2j1 , r1,j1+1, . . . , r1,jk−1, r2jk , r1,jk+1, . . . , r1n) .

Here, we adopt the convention that Dj0
n (r1j1 , . . . , r1jk) := Dn(r11, . . . , r1n), and

note that for k = n, we have

Djn
n (r1j1 , . . . , r1jk) := Dn(r21, . . . , r2n).

Therefore, the terms in sum (2.4) for k = 0 and k = n have the following form,
respectively:

Dn(r11, . . . , r1n) · r21 · · · r2n
and

r11 · · · r1n ·Dn(r21, . . . , r2n).

Put n := {1, . . . , n}, n ∈ N. For a subset T = {j1, . . . , ji} of n with 1 ≤
j1 < · · · < ji ≤ n and r = (r1, . . . , rn) ∈ Rn,

T r := (1, . . . , 1, rj1 , 1, . . . , 1, rji , 1, . . . , 1) ∈ Rn

denotes the vector which coincides with r in exactly those components, which
are indexed by the elements of T and whose other components are set equal 1.

We wish to show that a mapping Dn : Rn →M is a multi-derivation if and
only if it satisfies (2.3) and (2.4). In order to do this, we bring the following
lemma.

Lemma 2.4. Let R be a unital commutative ring and M be a bimodule over
R. If a multi-additive mapping Dn : Rn →M satisfies (2.4), then Dn(r) = 0
for any r ∈ Rn, at least with one component equal to 1.

Proof. We argue by induction on q that f (qr) = 0 for 0 ≤ q ≤ n − 1. For
q = 0, by putting r1 = r2 = (1, . . . , 1) in (2.4), we have

Dn(1, . . . , 1) = 2nDn(1, . . . , 1).(2.6)

It follows from (2.6) that Dn(1, . . . , 1) = 0. Assume that for each q−1r, we
have f (q−1r) = 0. We show that f (qr) = 0. Without loss of generality, we
assume that qr = (rj1 , . . . , rjq , 1, . . . , 1). Putting r1 =qr and r2 = (1, . . . , 1) in
(2.4) and then using our assumption, we have

Dn (qr) = 2n−qDn (qr) .
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Hence, Dn (qr) = 0. This shows that Dn(r) = 0 for any r ∈ Rn with at least
one component which is equal to 1. �

We now prove the main result of this section.

Theorem 2.5. Let R be a unital commutative ring and M be an R-module.
A mapping Dn : Rn →M is a multi-derivation if and only if it satisfies (2.3)
and (2.4).

Proof. Assume that Dn is a multi-derivation. It is shown in [10, Theorem 2]
that Dn satisfies equation (2.3). We prove that it satisfies equation (2.4) by
induction on n. For n = 1, it is trivial that Dn satisfies (2.1). If (2.4) is valid
for some positive integer n > 1, then

Dn+1(r1r2) = r1,n+1 ·Dn(r1r2) + Dn(r1r2) · r2,n+1

= r1,n+1 ·
n∑
k=0

∑
1≤j1<···<jk≤n

r1j1 · · · r1jk ·Djk
n (r1j1 , . . . , r1jk)

· r21 · · · r̂2j1 · · · r̂2jk · · · r2n

+

n∑
k=0

∑
1≤j1<···<jk≤n

r1j1 · · · r1jk ·Djk
n (r1j1 , . . . , r1jk)

· r21 · · · r̂2j1 · · · r̂2jk · · · r2n · r2,n+1

=

n+1∑
k=0

∑
1≤j1<···<jk≤n+1

r1j1 · · · r1jk ·D
jk
n+1(r1j1 , . . . , r1jk)

· r21 · · · r̂2j1 · · · r̂2jk · · · r2,n+1,

where Djk
n (r1j1 , . . . , r1jk) is defined by (2.5). This means that (2.4) holds for

n+ 1.
Conversely, suppose that Dn satisfies equations (2.3) and (2.4). By Theorem

2 from [10], Dn is multi-additive. Fix j ∈ {1, . . . , n}. Putting r2k = 1 for all
k ∈ {1, . . . , n}\{j} in (2.4) and using Lemma 2.4, we get

Dn (r11, . . . , r1,j−1, r1jr2j , r1,j+1, . . . , r1n)

= Dn (r111, . . . , r1,j−11, r1jr2j , r1,j+11, . . . , r1n1)

= r1j ·Dn (r11, . . . , r1,j−1, r1j , r1,j+1, . . . , r1n)

+ Dn (r11, . . . , r1,j−1, r1j , r1,j+1, . . . , r1n) · r2j .

Therefore, the above relation implies that Dn is derivation in the jth variable.
Since j is arbitrary, we obtain the desired result. �
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3. Stability results for multi-derivations

In this section, we prove the generalized Hyers–Ulam stability of multi-
derivations by a fixed point result (Theorem 3.1) in Banach spaces. Through-
out, for two sets X and Y , the set of all mappings from X to Y is denoted by
Y X .

In the following, we state a result in fixed point theory [9, Theorem 1] which
plays an important role in our work.

Theorem 3.1. Suppose the hypotheses

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S → S
and L1, . . . , Lj : S → R+,

(A2) T : Y S → Y S is an operator satisfying the inequality

‖T λ(x)− T µ(x)‖ ≤
j∑
i=1

Li(x) ‖λ(gi(x))− µ(gi(x))‖ , λ, µ ∈ Y S , x ∈ S,

(A3) Λ : RS+ → RS+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)), δ ∈ RS+, x ∈ S,

hold, and let a function θ : S → R+ and a mapping φ : S → Y satisfy the
following conditions:

‖T φ(x)− φ(x)‖ ≤ θ(x), θ∗(x) :=

∞∑
l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

‖φ(x)− ψ(x)‖ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S.

Let A be a Banach algebra. A Banach space X which is also a left A-module
is said to be a left Banach A-module if there is k > 0 such that

‖a · x‖ ≤ k‖a‖‖x‖, (a ∈ A, x ∈ X).

A right Banach A-module and a Banach A-module can be defined similarly.
Recall that X is a commutative Banach A-module if a · x = x · a for all a ∈ A,
x ∈ X.

Here and subsequently, it is assumed that A is a unital commutative Banach
algebra and X is a commutative Banach A-module. In addition, for a mapping
D : An → X, we consider the difference operators ΓD,ΛD : An ×An → X by

ΛD(a1, a2) := D(a1 + a2)−
∑

j1,j2,...,jn∈{1,2}

D(aj11, aj22, . . . , ajnn),



808 A. BODAGHI AND H. FEIZABADI

and

ΓD(a1, a2) := D(a1a2)−
n∑
k=1

∑
1≤j1≤···≤jk≤n

a1j1 · · · a1jk ·Djk
n (a1j1 , . . . , a1jk)

· a21 · · · â2j1 · · · â2jk · · · a2n,

where Djk
n (a1j1 , . . . , a1jk) is defined in (2.5) and ai = (ai1, . . . , ain).

We have the next stability result for multi-derivations.

Theorem 3.2. Let β ∈ {−1, 1} be fixed. Suppose that ψ : An×An×An×An →
R+ is a function satisfying the equality

lim
l→∞

(
1

2nβ

)l
ψ
(
2βla1, 2

βla2, 2
βla3, 2

βla4
)

= 0(3.1)

for all a1, a2, a3, a4 ∈ An and

Ψ(a) =:
1

2
β+1
2 n

∞∑
l=0

(
1

2nβ

)l
ψ
(

2βl+
β−1
2 a, 2βl+

β−1
2 a, 0, 0

)
<∞(3.2)

for all a ∈ An. Assume also D : An → X is a mapping satisfying the inequali-
ties

‖ΛD(a1, a2)‖ 6 ψ(a1, a2, 0, 0),(3.3)

and

‖ΓD(a3, a4)‖ 6 ψ(0, 0, a3, a4)(3.4)

for all ai’s in An. Then, there exists a multi-derivation Dn : An → X such
that

(3.5) ‖D(a)−Dn(a)‖ ≤ Ψ(a)

for all a ∈ An.

Proof. Putting a = a1 = a2 in (3.3), we have

‖D(2a)− 2nD(a)‖ ≤ ψ(a, a, 0, 0)(3.6)

for all a ∈ An. Set

θ(a) :=
1

2
β+1
2 n

ψ
(

2
β−1
2 a, 2

β−1
2 a, 0, 0

)
, and T θ(a) :=

1

2nβ
θ
(
2βa
) (

θ ∈ XA
n
)
.

Then, inequality (3.6) can be written as

‖D(a)− T D(a)‖ ≤ θ(a) (a ∈ An).(3.7)

Define Λη(x) := 1
2nβ

η(2βa) for all η ∈ RAn+ , a ∈ An. We now see that Λ has

the form described in (A3) with S = An, g1(a) = 2βa and L1(a) = 1
2nβ

for all

a ∈ An. Furthermore, for each λ, µ ∈ XAn and a ∈ An, we get

‖T λ(a)− T µ(a)‖=

∥∥∥∥ 1

2nβ
[
λ
(
2βa
)
− µ

(
2βa
)]∥∥∥∥ ≤ L1(a) ‖λ(g1(a))− µ(g1(a))‖ .
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The last relation shows that the hypothesis (A2) holds. By induction on l, one
can check that for any l ∈ N0 and a ∈ An, we have

Λlθ(a) :=

(
1

2nβ

)l
θ(2βla) =

(
1

2nβ

)l
ψ
(

2βl+
β−1
2 a, 2βl+

β−1
2 a, 0, 0

)
(3.8)

for all a ∈ An. Now, (3.2) and (3.8) necessitate that all assumptions of Theorem
3.1 are satisfied. Hence, there exists a mapping Dn : An → X such that

Dn(a) = lim
l→∞

(T lD)(a) =
1

2nβ
Dn(2βa) (a ∈ An),

and (3.5) holds. One can by induction on l show that∥∥Λ
(
T lD

)
(a1, a2)

∥∥ ≤ ( 1

2nβ

)l
ψ(2βla1, 2

βla2, 0, 0)(3.9)

for all a1, a2 ∈ An and l ∈ N0. It is clear that inequality (3.9) is valid for l = 0
by (3.3). Assume that (3.9) is true for an l ∈ N0. Then∥∥Λ

(
T l+1D

)
(a1, a2)

∥∥
=

∥∥∥∥∥∥Λ
(
T l+1D

)
(a1 + a2)−

∑
j1,j2,...,jn∈{1,2}

Λ
(
T l+1D

)
(aj11, aj22, . . . , ajnn)

∥∥∥∥∥∥
=

1

2nβ

∥∥∥∥∥∥Λ
(
T lD

) (
2βa1 + 2βa2

)
−

∑
j1,j2,...,jn∈{1,2}

Λ
(
T lD

) (
2βaj11, 2

βaj22, . . . , 2
βajnn

)∥∥∥∥∥∥
=

1

2nβ
∥∥Λ
(
T lD

)
(a1, a2)

∥∥ ≤ ( 1

2nβ

)l+1

ψ
(

2β(l+1)a1, 2
β(l+1)a2, 0, 0

)
for all a1, a2 ∈ An. Letting l → ∞ in (3.9) and applying (3.1), we obtain
ΛDn(a1, a2) = 0 for all a1, a2 ∈ An. This means that the mapping Dn satisfies
(2.3). Finally, assume that D′n : An → X is another mapping satisfying equa-
tion (2.3) and inequality (3.5), and fix a ∈ An, j ∈ N. Then, by Lemma 2.4
and (3.2), we have

‖Dn(a)−D′n(a)‖

=

∥∥∥∥∥
(

1

2nβ

)j
Dn

(
2βja

)
−
(

1

2nβ

)j
D′n
(
2βja

)∥∥∥∥∥
≤
(

1

2nβ

)j (∥∥Dn

(
2βja

)
−D

(
2βja

)∥∥+
∥∥D′n (2βja)−D (2βja)∥∥)

≤ 2

(
1

2nβ

)j
Φ
(
2βja

)
≤ 2

(
1

2nβ

)j ∞∑
l=j

(
1

2nβ

)l
ψ
(

2βl+
β−1
2 a, 2βl+

β−1
2 a, 0, 0

)
.
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Consequently, letting j →∞ and using the fact that series (3.2) is convergent
for all a ∈ An, we obtain Dn(a) = D′n(a) for all a ∈ An. Similar to (3.9), we
have ∥∥Γ

(
T lD

)
(a3, a4)

∥∥ ≤ ( 1

2nβ

)l
ψ
(
0, 0, 2βla3, 2

βla4
)

(3.10)

for all a3, a4 ∈ An and l ∈ N0. Taking the limit as n → ∞, we see that Dn is
a multi-derivation and hence the proof is now complete. �

The following corollaries are abrupt effects relevant to the stability of multi-
derivations by using Theorem 3.2.

Corollary 3.3. Let δ > 0. Suppose that D : An → X is a mapping satisfying
the inequalities

‖ΛD(a1, a2)‖ ≤ δ and ‖ΓD(a1, a2)‖ ≤ δ

for all a1, a2 ∈ An. Then, there exists a multi-derivation Dn : An → X such
that

‖D(a)−Dn(a)‖ ≤ δ

2n − 1

for all a ∈ An.

Proof. It is sufficient to set ψ(a1, a2, a3, a4) = δ in Theorem 3.2 when β = 1. �

Corollary 3.4. Given θ > 0 and α > 0 such that α 6= n. If D : An → X is a
mapping satisfying the inequalities

‖ΛD(a1, a2)‖ ≤
2∑
k=1

n∑
j=1

‖akj‖α and ‖ΓD(a1, a2)‖ ≤
2∑
k=1

n∑
j=1

‖akj‖α

for all a1, a2 ∈ An, then there exists a multi-derivation Dn : An → X such that

‖D(a)−Dn(a)‖ ≤

{
2

2n−2α
∑n
j=1 ‖a1j‖α, α ∈ (0, n)

2
2α−2n

∑n
j=1 ‖a1j‖α, α ∈ (n,∞)

for all a = a1 ∈ An.

Proof. Putting ψ(a1, a2, a3, a4) =
∑4
k=1

∑n
j=1 ‖akj‖α in Theorem 3.2, one can

obtain the first and second inequalities for β = 1 and β = −1, respectively. �
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