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A TRANSLATION OF AN ANALOGUE OF WIENER SPACE

WITH ITS APPLICATIONS ON THEIR PRODUCT SPACES

Dong Hyun Cho

Abstract. Let C[0, T ] denote an analogue of Weiner space, the space
of real-valued continuous on [0, T ]. In this paper, we investigate the

translation of time interval [0, T ] defining the analogue of Winer space

C[0, T ]. As applications of the result, we derive various relationships
between the analogue of Wiener space and its product spaces. Finally,

we express the analogue of Wiener measures on C[0, T ] as the analogue

of Wiener measures on C[0, s] and C[s, T ] with 0 < s < T .

1. Introduction and preliminaries

The physical phenomenon described by Robert Brown, known as the Brow-
nian motion, was the complex and erratic motion of grains of pollen suspended
in a liquid [4]. Since his description, it has become a significant object of study
in pure and applied mathematics. One of the approaches to this motion is the
analysis on a function space using an interesting measure. Wiener introduced
a Gaussian measure onto the space of continuous functions to describe this
measure which is now called the (classical) Wiener measure [11]. Let C0[a, b]
and C0[c, d] denote the classical Wiener spaces, the spaces of continuous real-
valued functions x1 and x2 on the intervals [a, b] and [c, d], respectively, with
x1(a) = 0 and x2(c) = 0 [6,12]. A translation of the time interval [a, b] onto an
arbitrary interval [c, d] has been used in various literatures [1–3, 6, 12] related
to the classical Wiener spaces, that is, there exists an isometric isomorphism
between C0[a, b] and C0[c, d] so that the two spaces are identified with each
other.

Let C[a, b] and C[c, d] denote the analogue of Wiener spaces, the spaces of
real-valued continuous functions on [a, b] and [c, d], respectively [5, 7–10]. In
this paper, we investigate a translation of the time interval [a, b] onto [c, d]
on the analogue of Wiener spaces C[a, b] and C[c, d] so that the spaces also
can be identified with each other. As applications of the result, we will derive
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relationships between an analogue of (one-dimensional) Wiener space and its
product space. In fact, we express the integrals on the product space C[0, s]×
C[s, T ] in terms of those on C[0, T ] using the relationships with 0 < s < T .
Finally, we express the analogue of Wiener measures on C[0, T ] as the analogue
of Wiener measures on C[0, s] and C[s, T ].

Now, we introduce a generalized analogue of Wiener space which is a finite
positive measure space as the our underlying space of this work.

Let αa,b be a function on [a, b] and let βa,b be a strictly increasing function

on [a, b]. For ~tk = (t0, t1, . . . , tk) with a = t0 < t1 < · · · < tk ≤ b, let

Ja,b~tk
: C[a, b]→ Rk+1 be the function given by

Ja,b~tk
(x) = (x(t0), x(t1), . . . , x(tk)).

For
∏k
j=0Bj ∈ B(Rk+1), the subset (Ja,b~tk

)−1(
∏k
j=0Bj) of C[a, b] is called an

interval I and let I be the set of all such intervals I. Let ϕa be a finite positive
measure on the Borel class B(R) of R. Define a premeasure ma,b;ϕa

on I by

ma,b;ϕa

[
(Ja,b~tk

)−1

( k∏
j=0

Bj

)]
=

∫
B0

∫
∏k

j=1 Bj

Wa,b
k (~tk, ~uk, u0)dmk

L(~uk)dϕa(u0),

where mL denotes the Lebesgue measure on B(R), and for u0 ∈ R, ~uk =
(u1, . . . , uk) ∈ Rk

Wa,b
k (~tk, ~uk, u0)(1)

=

[
1∏k

j=1 2π[βa,b(tj)− βa,b(tj−1)]

] 1
2

× exp

{
−1

2

k∑
j=1

[uj − αa,b(tj)− uj−1 + αa,b(tj−1)]2

βa,b(tj)− βa,b(tj−1)

}
.

Then, the Borel σ-algebra B(C[a, b]) of C[a, b] with the supremum norm, co-
incides with the smallest σ-algebra generated by I and there exists a unique
positive finite measure wa,b;ϕa on B(C[a, b]) with wa,b;ϕa(I) = ma,b;ϕa(I) for all
I ∈ I. This measure wa,b;ϕa is called a generalized analogue of Wiener measure
on (C[a, b],B(C[a, b])) according to αa,b, βa,b and ϕa [5, 7–10].

Theorem 1.1. If f : Rk+1 → C is a Borel measurable function, then the
following relation holds:∫

C[a,b]

f(x(t0), x(t1), . . . , x(tk))dwa,b;ϕa
(x)

∗
=

∫
R

∫
Rk

f(u0, u1, . . . , uk)Wa,b
k (~tk, ~uk, u0)dmk

L(~uk)dϕa(u0),

where
∗
= means that if either side exists, then both sides exist and they are

equal.
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2. A translation of the time interval

In this section, we will prove that the analogue of Wiener space is invariant
under a translation of the time interval.

Define φ : [c, d] → [a, b] by φ(t) = b−a
d−c (t − c) + a for t ∈ [c, d] and define

ψ : C[a, b]→ C[c, d] by

ψ(x)(t) = (x ◦ φ)(t) for x ∈ C[a, b] and t ∈ [c, d].

We note that ψ is an isometric isomorphism with the supremum norms. Let ϕc
be a positive finite measure on B(R), let αc,d = αa,b ◦φ, βc,d = βa,b ◦φ on [c, d]
and let wc,d;ϕc

denote the generalized analogue of Wiener measure on C[c, d]
according to αc,d, βc,d and ϕc.

We now have the following theorem.

Theorem 2.1. Suppose that ϕc = ϕa. Then we have for a Borel subset B of
C[c, d],

wc,d;ϕc
(B) = (wa,b;ϕa

◦ ψ−1)(B).(2)

Proof. Since all intervals of C[c, d] generate B(C[c, d]), it suffices to prove (2)
for which B is an interval of C[c, d]. For ~sk = (s0, s1, . . . , sk) with c = s0 <
s1 < · · · < sk ≤ d, let tj = φ(sj) for j = 0, 1, . . . , k and let ~tk = (t0, t1, . . . , tk).

Let Jc,d~sk : C[c, d]→ Rk+1 be the function given by

Jc,d~sk (y) = (y(s0), y(s1), . . . , y(sk))

for y ∈ C[c, d]. Then we have for
∏k
j=0Bj ∈ B(Rk+1)

ψ−1

[
(Jc,d~sk )−1

( k∏
j=0

Bj

)]
= (Jc,d~sk ◦ ψ)−1

( k∏
j=0

Bj

)
= {x ∈ C[a, b] : ψ(x)(sj) ∈ Bj for j = 0, 1, . . . , k}
= {x ∈ C[a, b] : x(tj) ∈ Bj for j = 0, 1, . . . , k}

= (Ja,b~tk
)−1

( k∏
j=0

Bj

)
which is an interval of C[a, b]. Since αc,d = αa,b◦φ, βc,d = βa,b◦φ and tj = φ(sj)
for j = 0, 1, . . . , k, it is not difficult to show

Wa,b
k (~tk, ~uk, u0) =Wc,d

k (~sk, ~uk, u0)

by (1), where ~uk = (u1, . . . , uk). Since ϕc = ϕa, we have by Theorem 1.1

(wa,b;ϕa
◦ ψ−1)

[
(Jc,d~sk )−1

( k∏
j=0

Bj

)]

= wa,b;ϕa

[
(Ja,b~tk

)−1

( k∏
j=0

Bj

)]
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=

∫
B0

∫
∏k

j=1 Bj

Wa,b
k (~tk, ~uk, u0)dmk

L(~uk)dϕa(u0)

=

∫
B0

∫
∏k

j=1 Bj

Wc,d
k (~sk, ~uk, u0)dmk

L(~uk)dϕc(u0)

= wc,d;ϕc

[
(Jc,d~sk )−1

( k∏
j=0

Bj

)]
,

which completes the proof. �

By Theorem 2.1, the measures wa,b;ϕa and wc,d;ϕc are identified with each
other if C[a, b] and C[c, d] have the same initial weight, and αa,b and βa,b are
linearly transformed from [a, b] onto [c, d]. Especially, if αa,b(t) = 0, βa,b(t) = t
for t ∈ [a, b] and ϕa = ϕc = δ0 which is the Dirac measure at 0, then C[a, b]
and C[c, d] are reduced to C0[a, b] and C0[c, d], respectively, so that C0[a, b] and
C0[c, d] are identified with each other as a special case of Theorem 2.1.

Theorem 2.2. Let F : C[c, d] → C be a function and suppose that ϕc = ϕa.
Then F is measurable on C[c, d] if and only if F ◦ ψ is measurable on C[a, b].
In this case, we have∫

C[a,b]

F (ψ(x))dwa,b;ϕa(x)
∗
=

∫
C[c,d]

F (x)dwc,d;ϕc(x).(3)

Proof. Since ψ is an isometric isomorphism, it is obvious that F ◦ψ is measur-
able on C[a, b] if F is measurable on C[c, d]. Conversely, suppose that F ◦ ψ is
measurable on C[a, b]. By the first part, F = (F ◦ ψ) ◦ ψ−1 is measurable on
C[c, d]. Now, (3) follows from (2) and the change of variable theorem. �

Let h be a real number. Define ψh : C[a, b]→ C[a+ h, b+ h] by

ψh(x)(t) = x(t− h) for x ∈ C[a, b] and t ∈ [a+ h, b+ h].

Let ϕa+h be a positive finite measure on B(R), let αa+h,b+h(t) = αa,b(t − h),
βa+h,b+h(t) = βa,b(t − h) for t ∈ [a + h, b + h] and let wa+h,b+h;ϕa+h

be the
generalized analogue of Wiener measure on C[a+h, b+h] according to αa+h,b+h,
βa+h,b+h and ϕa+h.

Letting c = a+ h, d = b+ h and φ(t) = t− h for t ∈ [a+ h, b+ h], we now
have the following corollaries by Theorems 2.1 and 2.2.

Corollary 2.3. Suppose that ϕa+h = ϕa. Then we have for a Borel subset B
of C[a+ h, b+ h]

wa+h,b+h;ϕa+h
(B) = (wa,b;ϕa

◦ ψ−1
h )(B).

Corollary 2.4. Let F : C[a + h, b + h] → C be a function and suppose that
ϕa+h = ϕa. Then F is measurable on C[a + h, b + h] if and only if F ◦ ψh is
measurable on C[a, b]. In this case, we have∫

C[a,b]

F (ψh(x))dwa,b;ϕa(x)
∗
=

∫
C[a+h,b+h]

F (x)dwa+h,b+h;ϕa+h
(x).
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In view of Theorem 2.1, we will consider C[0, T ] as the analogue of Wiener
space with the initial weight ϕ0 rather than C[a, b] with ϕa. Moreover we
replace αa,b and βa,b by α and β, respectively, which are defined on [0, T ] with
β being strictly increasing, unless otherwise specified.

Let 0 < s < T . Define H : C[0, s]× C[s, T ]→ C[0, T ] by

H(y, z)(t) = χ[0,s](t)y(t) + χ(s,T ](t)[y(s) + z(t)− z(s)]

for (y, z) ∈ C[0, s]× C[s, T ] and t ∈ [0, T ], and define Hi : C[0, T ] → C[0, s]×
C[s, T ](i = 1, 2) by

H1(x) = (x|[0,s], x|[s,T ]) and H2(x) = (x|[0,s], x|[s,T ] − x(s))

for x ∈ C[0, T ]. Then we have the following:

(P1) H and Hi(i = 1, 2) are continuous on each domain.
(P2) H ◦H1 = IC[0,T ] = H ◦H2, where IC[0,T ] denotes the identity function

on C[0, T ].
(P3) For (y, z) ∈ C[0, s]× C[s, T ], (H1 ◦H)(y, z) = (y, y(s) + z − z(s)) and

(H2 ◦H)(y, z) = (y, z − z(s)).
(P4) H is surjective and each Hi is injective.

We note that H is not injective and each Hi is not surjective.
The following theorem gives relationships among the analogue of Wiener

measures if we connect the time intervals [0, s] and [s, T ] onto [0, T ]. For the
relationships, let ϕs be a positive finite measure on B(R) and let C0[s, T ] denote
the space of continuous real-valued functions z on [s, T ] with z(s) = 0.

Theorem 2.5. Let w0,s;ϕ0
and ws,T ;ϕs

denote the generalized analogue of
Wiener measures on C[0, s] and C[s, T ] according to χ[0,s]α, χ[0,s]β, ϕ0 and
χ[s,T ]α, χ[s,T ]β, ϕs, respectively. Then we have for B ∈ B(C[0, T ])

[(w0,s;ϕ0
× ws,T ;ϕs

) ◦H−1](B) = ϕs(R)w0,T ;ϕ0
(B).(4)

In particular, if ϕs = δ0, then for all (y, z) ∈ C[0, s] × C0[s, T ] (hence for
w0,s;ϕ0

× ws,T ;δ0-a.e. (y, z) ∈ C[0, s]× C[s, T ]), we have

(H2 ◦H)(y, z) = (y, z).

In this case, H is bijective on C[0, s] × C0[s, T ] with H−1 = H2, and we have
for B ∈ B(C[0, s]× C[s, T ]) = B(C[0, s])× B(C[s, T ]),

(w0,s;ϕ0 × ws,T ;δ0)(B) = (w0,T ;ϕ0 ◦H−1
2 )(B)(5)

= (w0,T ;ϕ0
◦H)(B ∩ (C[0, s]× C0[s, T ])),

that is, w0,s;ϕ0 × ws,T ;δ0 = w0,T ;ϕ0 ◦H−1
2 = w0,T ;ϕ0 ◦H on C[0, s]× C0[s, T ].

Proof. Since all intervals of C[0, T ] generate B(C[0, T ]), it suffices to prove (4)
on the intervals. Without loss of generality, we have for ~tk+n = (t0, t1, . . . , tk,
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tk+1, . . . , tk+n) with 0 = t0 < t1 < · · · < tk = s < tk+1 < · · · < tk+n ≤ T and

for
∏k+n
j=0 Bj ∈ B(Rk+n+1)

H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]

= (J0,T
~tk+n

◦H)−1

(k+n∏
j=0

Bj

)
= {(y, z) ∈ C[0, s]× C[s, T ] : χ[0,s](tj)y(tj) + χ(s,T ](tj)[y(s) + z(tj)− z(s)]
∈ Bj for j = 0, 1, . . . , k, k + 1, . . . , k + n}

so that we have for y ∈ C[0, s] with y(tj) ∈ Bj (j = 0, 1, . . . , k)[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]
y

= {z ∈ C[s, T ] : y(s) + z(tj)− z(s) ∈ Bj for j = k + 1, . . . , k + n}.

Thus we have by Theorem 1.1

(w0,s;ϕ0
× ws,T ;ϕs

)

[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]

=

∫
C[0,s]

ws,T ;ϕs

[[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]
y

]
dw0,s;ϕ0(y)

=

∫
C[0,s]

χ∏k
j=0 Bj

(y(t0), y(t1), . . . , y(tk))

∫
C[s,T ]

χ∏k+n
j=k+1 Bj

(z(tk+1)− z(s)

+ y(s), . . . , z(tk+n)− z(s) + y(s))dws,T ;ϕs(z)dw0,s;ϕ0(y)

=

∫
C[0,s]

χ∏k
j=0 Bj

(y(t0), y(t1), . . . , y(tk))

∫
Rn+1

χ∏k+n
j=k+1 Bj

(uk+1 − uk

+ y(s), , . . . , uk+n − uk + y(s))Ws,T
n (~tn, ~un, uk)dmn

L(~un)dϕs(uk)dw0,s;ϕ0(y),

where ~tn = (tk, tk+1, . . . , tn), ~un = (uk+1, . . . , uk+n) and Ws,T
n is given by (1)

with replacing αa,b and βa,b by α and β, respectively. For j = k, k+1, . . . , k+n,
let vj = uj − uk + y(s). Then vk = y(s) = y(tk) so that we have by Theorem
1.1 and the change of variable theorem

(w0,s;ϕ0
× ws,T ;ϕs

)

[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]
=

∫
C[0,s]

χ∏k
j=0 Bj

(y(t0), y(t1), . . . , y(tk))

∫
Rn+1

χ∏k+n
j=k+1 Bj

(~vn)Ws,T
n (~tn, ~vn, vk)

dmn
L(~vn)dϕs(uk)dw0,s;ϕ0

(y)
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= ϕs(R)

∫
C[0,s]

χ∏k
j=0 Bj

(y(t0), y(t1), . . . , y(tk))

∫
Rn

χ∏k+n
j=k+1 Bj

(~vn)

×Ws,T
n (~tn, ~vn, y(tk))dmn

L(~vn)dw0,s;ϕ0(y),

where ~vn = (vk+1, . . . , vk+n). Renaming vk as a real variable and letting ~tk =
(t0, t1, . . . , tk), ~vk = (v1, . . . , vk) and ~vk+n = (v1, . . . , vk, vk+1, . . . , vk+n), we
have by Theorem 1.1

(w0,s;ϕ0
× ws,T ;ϕs

)

[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]
= ϕs(R)

∫
Rk+n+1

χB0(v0)χ∏k
j=1 Bj

(~vk)χ∏k+n
j=k+1 Bj

(~vn)W0,s
k (~tk, ~vk, v0)

×Ws,T
n (~tn, ~vn, vk)dmk+n

L (~vk+n)dϕ0(v0).

From (1), it is not difficult to show

W0,s
k (~tk, ~vk, v0)Ws,T

n (~tn, ~vn, vk) =W0,T
k+n(~tk+n, ~vk+n, v0)

so that we have

(w0,s;ϕ0 × ws,T ;ϕs)

[
H−1

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]]
= ϕs(R)

∫
B0

∫
∏k+n

j=1 Bj

W0,T
k+n(~tk+n, ~vk+n, v0)dmk+n

L (~vk+n)dϕ0(v0)

= ϕs(R)w0,T ;ϕ0

[
(J0,T
~tk+n

)−1

(k+n∏
j=0

Bj

)]
,

which completes the proof of (4).
To prove (5), suppose that ϕs = δ0. Then we have for all x ∈ C[0, T ] and

all (y, z) ∈ C[0, s]× C0[s, T ]

(H ◦H2)(x) = x and (H2 ◦H)(y, z) = (y, z − z(s)) = (y, z)

by (P2) so that H is bijective on C[0, s]×C0[s, T ] and H−1 = H2. Moreover,
it is not difficult to show

(w0,s;ϕ0
× ws,T ;δ0)(C[0, s]× C0[s, T ])(6)

= (w0,s;ϕ0 × ws,T ;δ0)(C[0, s]× C[s, T ])

so that we have for w0,s;ϕ0
× ws,T ;δ0 -a.e. (y, z) ∈ C[0, s]× C[s, T ]

(H2 ◦H)(y, z) = (y, z).

Now, by (4) and (6), we have for B ∈ B(C[0, s])× B(C[s, T ])

(w0,s;ϕ0 × ws,T ;δ0)(B)

= [(w0,s;ϕ0
× ws,T ;δ0) ◦H2 ◦H](B ∩ (C[0, s]× C0[s, T ]))
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= [(w0,s;ϕ0
× ws,T ;δ0) ◦H−1 ◦H](B ∩ (C[0, s]× C0[s, T ]))

= (w0,T ;ϕ0
◦H)(B ∩ (C[0, s]× C0[s, T ]))

= (w0,T ;ϕ0 ◦H−1
2 )(B ∩ (C[0, s]× C0[s, T ])) = (w0,T ;ϕ0 ◦H−1

2 )(B)

since H−1
2 (C[0, s]× (C[s, T ]−C0[s, T ])) = ∅. Now, the proof is completed. �

Theorem 2.6. (a) Let G0 : C[0, T ] → C be a function. Then G0 is mea-
surable on C[0, T ] if and only if G0 ◦ H is measurable on C[0, s] × C[s, T ].
The measurability of G0 is also equivalent to the measurability of G0 ◦ H on
C[0, s]× C0[s, T ]. In this case, we have∫

C[0,T ]

G0(x)dw0,T ;ϕ0
(x)(7)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

G0(H(y, z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z).

(b) Let G1 : C[0, s]×C[s, T ]→ C be measurable. Then G1 ◦H2 and G1 are
measurable on C[0, T ] and C[0, s]× C0[s, T ], respectively, and∫

C[0,T ]

G1(H2(x))dw0,T ;ϕ0
(x)(8)

∗
=

∫
C[0,s]×C0[s,T ]

G1(y, z)d(w0,s;ϕ0 × ws,T ;δ0)(y, z)

∗
=

∫
C[0,s]×C[s,T ]

G1(y, z)d(w0,s;ϕ0 × ws,T ;δ0)(y, z).

(c) Let G2 : C[0, s]×C0[s, T ]→ C be a function. Then G2 is measurable on
C[0, s]×C0[s, T ] if and only if G2 ◦H2 is measurable on C[0, T ]. In this case,
the first equality of (8) holds.

Proof. Since H is continuous, G0 ◦ H is measurable on C[0, s] × C[s, T ] if
G0 is measurable on C[0, T ]. In this case, G0 ◦ H is also measurable on
C[0, s]×C0[s, T ] because C[0, s]×C0[s, T ] is a Borel subset of C[0, s]×C[s, T ].
Conversely, suppose that G0 ◦H is measurable on C[0, s]×C[s, T ] or C[0, s]×
C0[s, T ]. By (P2), we have for all x ∈ C[0, T ]

G0(x) = (G0 ◦H ◦H2)(x)

so that G0 is measurable on C[0, T ] because H2 is continuous. (7) follows from
Theorem 2.5 and the change of variable theorem, which proves (a). To prove
(b), suppose that G1 is measurable on C[0, s]×C[s, T ]. Since C[0, s]×C0[s, T ]
is a Borel subset of C[0, s]×C[s, T ], the measurability of G1 on C[0, s]×C0[s, T ]
follows. The measurability of G2 ◦H2 immediately follows from the continuity
of H2. (8) follows immediately from Theorem 2.5, which completes the proof
of (b). By similar argument as the proof of (a), (c) follows from Theorem 2.5,
instead of (P2), and the fact that for all (y, z) ∈ C[0, s]× C0[s, T ]

G2(y, z) = (G2 ◦H2 ◦H)(y, z),
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which completes the proof. �

Remark 2.7. (a) In (5), the measure w0,T ;ϕ0
◦H on C[0, s] × C[s, T ] may not

be equivalent to the measure on its subspace C[0, s]× C0[s, T ] since the space
C[0, T ] can be wholly covered by H[C[0, s] × (C[s, T ] − C0[s, T ])]. For more
details, see Example 3.1 in the next section.

(b) If ϕs 6= δ0, the integral in the right-hand side of (7) may not be reduced
to the integral on C[0, s]× C0[s, T ] since it is possible that ws,T ;ϕs

(C[s, T ]) 6=
ws,T ;ϕs

(C0[s, T ]). For an example, see Example 3.2 in the next section.
(c) The converse of Theorem 2.6(b) may not hold, that is, the measurablity

of G1 ◦H2 may not grantee the measurability of G1 on C[0, s] × C[s, T ] since
w0,s;ϕ0

×ws,T ;δ0 may not be a complete measure. Furthermore, the measurablity
of G1 on C[0, s] × C0[s, T ] also may not grantee the measurability of G1 on
C[0, s] × C[s, T ]. In this case, we can only assure the first equality of (8) by
comparing (b) with (c) in Theorem 2.6. For an example, see Example 3.3 in
the next section.

3. Applications and examples

In this section, we apply the results in the previous section to evaluate
various integrals on the generalized analogue of Wiener spaces.

We begin with this section giving counter examples.

Example 3.1. Let B = C[0, s]× (C[s, T ]− C0[s, T ]). Then we have

(w0,T ;ϕ0
◦H)(B ∩ (C[0, s]× C0[s, T ])) = w0,T ;ϕ0

(∅) = 0

and

(w0,T ;ϕ0
◦H)(B) = w0,T ;ϕ0

(C[0, T ]) = ϕ0(R) > 0

so that by (5), we have

w0,s;ϕ0
× ws,T ;δ0 = w0,T ;ϕ0

◦H−1
2 6= w0,T ;ϕ0

◦H
on the whole space C[0, s]× C[s, T ]. Compare (5) with Remark 2.7(a).

Example 3.2. Let ϕs = δ0 + δ1 on B(R), where δ1 is the Dirac measure at 1.
Then we have

ws,T ;ϕs
(C[s, T ]) = ϕs(R) = δ0({0}) + δ1({1}) = 2

6= 1 = δ0({0}) = ws,T ;ϕs(C0[s, T ]),

which is an example of the assertion of Remark 2.7(b).

Example 3.3. Let B be a subset of R with 0 ∈ B and B 6∈ B(R). Define
Js,Ts : C[s, T ]→ R and K : R→ C[s, T ] by

Js,Ts (x) = x(s), K(x0)(t) = x0

for x ∈ C[s, T ], x0 ∈ R and t ∈ [s, T ]. Then we have for x0 ∈ R
(Js,Ts ◦K)(x0) = x0.(9)
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Let B0 = (Js,Ts )−1(B). We note that C0[s, T ] ⊆ B0 since 0 ∈ B. From (9), we
have K−1(B0) = B. Since K is continuous, B ∈ B(R) if B0 ∈ B(C[s, T ]) so
that B0 6∈ B(C[s, T ]). Now, define F : C[0, s]× C[s, T ]→ R by

F (y, z) = χC[0,s]×B0
(y, z) for (y, z) ∈ C[0, s]× C[s, T ].

Then F is not measurable on C[0, s]× C[s, T ] since

{z ∈ C[s, T ] : (0, z) ∈ C[0, s]×B0} = B0 6∈ B(C[s, T ]).

Since C0[s, T ] ⊆ B0, F ◦H2 ≡ 1 on C[0, T ] and F ≡ 1 on C[0, s]×C0[s, T ]. Now,
F ◦ H2 and F are measurable on C[0, T ] and C[0, s] × C0[s, T ], respectively.
This is an example of the assertion of Remark 2.7(c).

Theorem 3.4. Let F : C[0, s] → C be w0,s;ϕ0
-measurable. Then the function

F (x|[0,s]) is w0,T ;ϕ0
-measurable on C[0, T ] and∫

C[0,T ]

F (x|[0,s])dw0,T ;ϕ0
(x)

∗
=

∫
C[0,s]

F (y)dw0,s;ϕ0
(y),

where w0,T ;ϕ0
and w0,s;ϕ0

are as given in Theorem 2.5.

Proof. Let π1 be the projection from C[0, s] × C[s, T ] onto C[0, s]. Then we
have for x ∈ C[0, T ]

F (x|[0,s]) = (F ◦ π1 ◦H1)(x)

so that F (x|[0,s]) is w0,T ;ϕ0
-measurable on C[0, T ] since both H1 and π1 are

continuous. Now, we have by Theorem 2.6∫
C[0,T ]

F (x|[0,s])dw0,T ;ϕ0
(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

(F ◦ π1 ◦H1)(H(y, z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (y)d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

∗
=

∫
C[0,s]

F (y)dw0,s;ϕ0
(y),

which completes the proof. �

Theorem 3.5. Let F : C[s, T ]→ C be ws,T ;ϕs-measurable. Then the function
F (x|[s,T ]) is w0,T ;ϕ0-measurable on C[0, T ] and∫

C[0,T ]

F (x|[s,T ])dw0,T ;ϕ0
(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (y(s) + z − z(s))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z).
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Proof. Let π2 be the projection from C[0, s] × C[s, T ] onto C[s, T ]. Then we
have for x ∈ C[0, T ]

F (x|[s,T ]) = (F ◦ π2 ◦H1)(x)

so that F (x|[s,T ]) is w0,T ;ϕ0-measurable on C[0, T ] since π2 is continuous. Now,
we have by Theorem 2.6∫

C[0,T ]

F (x|[s,T ])dw0,T ;ϕ0(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

(F ◦ π2 ◦H1)(H(y, z))d(w0,s;ϕ0 × ws,T ;ϕs)(y, z)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (y(s) + z − z(s))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z),

which completes the proof. �

Theorem 3.6. Let F : C0[s, T ]→ C be ws,T ;ϕs
-measurable. Then the function

F (x|[s,T ] − x(s)) is w0,T ;ϕ0
-measurable on C[0, T ] and∫

C[0,T ]

F (x|[s,T ] − x(s))dw0,T ;ϕ0(x)
∗
=
ϕ0(R)

ϕs(R)

∫
C[s,T ]

F (z − z(s))dws,T ;ϕs(z).

In particular, we have∫
C[0,T ]

F (x|[s,T ] − x(s))dw0,T ;ϕ0
(x)

∗
= ϕ0(R)

∫
C0[s,T ]

F (z)dws,T ;δ0(z).

Proof. For x ∈ C[0, T ], we have

F (x|[s,T ] − x(s)) = (F ◦ π2 ◦H2)(x)

so that F (x|[s,T ]−x(s)) is w0,T ;ϕ0
-measurable on C[0, T ] by the same argument

as the proof of Theorem 3.5. Now, we have by Theorem 2.6∫
C[0,T ]

F (x|[s,T ] − x(s))dw0,T ;ϕ0
(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

(F ◦ π2 ◦H2)(H(y, z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (z − z(s))d(w0,s;ϕ0 × ws,T ;ϕs)(y, z)

∗
=
ϕ0(R)

ϕs(R)

∫
C[s,T ]

F (z − z(s))dws,T ;ϕs
(z).

Moreover, if ϕs = δ0, then we have by (8)∫
C[0,T ]

F (x|[s,T ] − x(s))dw0,T ;ϕ0
(x)

∗
=

1

δ0(R)

∫
C[0,s]×C0[s,T ]

F (z − z(s))d(w0,s;ϕ0
× ws,T ;δ0)(y, z)
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∗
= ϕ0(R)

∫
C0[s,T ]

F (z − 0)dws,T ;δ0(z)

= ϕ0(R)

∫
C0[s,T ]

F (z)dws,T ;δ0(z)

which proves the second equality of this theorem. �

Corollary 3.7. Let F : C[0, T ] → C be w0,T ;ϕ0
-measurable and suppose that

F (x1) = F (x2) for all x1, x2 ∈ C[0, T ] with x1|[0,s] = x2|[0,s]. Let F0,s(y) =
F (χ[0,s]y+χ(s,T ]y(s)) for y ∈ C[0, s]. Then F0,s is w0,s;ϕ0-measurable on C[0, s]
and ∫

C[0,T ]

F (x)dw0,T ;ϕ0(x)
∗
=

∫
C[0,s]

F0,s(y)dw0,s;ϕ0(y).

Proof. Define ι1 : C[0, s]→ C[0, s]×C[s, T ] by ι1(y) = (y, y(s)) for y ∈ C[0, s].
Then we have for y ∈ C[0, s]

F0,s(y) = (F ◦H)(y, y(s)) = (F ◦H ◦ ι1)(y)

so that F0,s is w0,s;ϕ0
-measurable on C[0, s] since ι1 is continuous. Now, we

have by Theorem 2.6∫
C[0,T ]

F (x)dw0,T ;ϕ0
(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (H(y, z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (H(y, y(s)))d(w0,s;ϕ0 × ws,T ;ϕs)(y, z)

∗
=

∫
C[0,s]

F0,s(y)dw0,s;ϕ0(y),

which completes the proof. �

Corollary 3.8. Let F : C[0, T ] → C be w0,T ;ϕ0-measurable and suppose that
F (x1) = F (x2) for all x1, x2 ∈ C[0, T ] with x1|[s,T ] − x1(s) = x2|[s,T ] − x2(s).
Let Fs,T (z) = F (χ[0,s]z(s) + χ(s,T ]z) for z ∈ C[s, T ]. Then Fs,T is ws,T ;ϕs-
measurable on C[s, T ] and∫

C[0,T ]

F (x)dw0,T ;ϕ0
(x)

∗
=
ϕ0(R)

ϕs(R)

∫
C[s,T ]

Fs,T (z)dws,T ;ϕs(z).

Proof. Define ι2 : C[s, T ]→ C[0, s]×C[s, T ] by ι2(z) = (z(s), z) for z ∈ C[s, T ].
Then we have for z ∈ C[s, T ]

Fs,T (z) = (F ◦H)(z(s), z) = (F ◦H ◦ ι2)(z)
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so that Fs,T is ws,T ;ϕs
-measurable since ι2 is continuous. By Theorem 2.6, we

have ∫
C[0,T ]

F (x)dw0,T ;ϕ0
(x)

∗
=

1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (H(y, z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

F (H(z(s), z))d(w0,s;ϕ0
× ws,T ;ϕs

)(y, z)

∗
=
ϕ0(R)

ϕs(R)

∫
C[s,T ]

Fs,T (z)dws,T ;ϕs(z),

which completes the proof. �

Remark 3.9. If we define F0,s in Corollary 3.7 by F0,s(y) = F (y∗) for y ∈ C[0, s],
where y∗ is an arbitrary continuous extension of y on [0, T ], we can obtain the
same results in the corollary. Similarly, if we define Fs,T in Corollary 3.8 by
Fs,T (z) = F (z∗) for z ∈ C[s, T ], where z∗ is an arbitrary continuous extension
of z on [0, T ], we can obtain the same results in the corollary.

Applying Theorems 3.4, 3.5 and 3.6, we can easily obtain the following
examples.

Example 3.10. Let B0,s ∈ B(C[0, s]) and let

B0,T
0,s = {x ∈ C[0, T ] : x|[0,s] ∈ B0,s}.

Letting F = χB0,s
in Theorem 3.4, we have for x ∈ C[0, T ]

F (x|[0,s]) = χB0,s
(x|[0,s]) = χB0,T

0,s
(x)

so that B0,T
0,s ∈ B(C[0, T ]) and we have

w0,T ;ϕ0
(B0,T

0,s ) =

∫
C[0,T ]

χB0,s
(x|[0,s])dw0,T ;ϕ0

(x)

=

∫
C[0,s]

χB0,s
(y)dw0,s;ϕ0

(y) = w0,s;ϕ0
(B0,s).

Example 3.11. Let Bs,T ∈ B(C[s, T ]), let

B0,T
s,T = {x ∈ C[0, T ] : x|[s,T ] ∈ Bs,T }

and let

Bs,Ts,T = {(y, z) ∈ C[0, s]× C[s, T ] : y(s) + z − z(s) ∈ Bs,T }.

Letting F = χBs,T
in Theorem 3.5, we have for x ∈ C[0, T ]

F (x|[s,T ]) = χBs,T
(x|[s,T ]) = χB0,T

s,T
(x)
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so that B0,T
s,T ∈ B(C[0, T ]) and we have

w0,T ;ϕ0
(B0,T

s,T )

=

∫
C[0,T ]

χBs,T
(x|[s,T ])dw0,T ;ϕ0

(x)

=
1

ϕs(R)

∫
C[0,s]×C[s,T ]

χBs,T
(y(s) + z − z(s))d(w0,s;ϕ0

× ws,T ;ϕs
)(y, z)

=
1

ϕs(R)
(w0,s;ϕ0

× ws,T ;ϕs
)(Bs,Ts,T ).

Example 3.12. Let Bs,T ;0 ∈ B(C0[s, T ]), let

B0,T
s,T ;0 = {x ∈ C[0, T ] : x|[s,T ] − x(s) ∈ Bs,T ;0}

and let

Bs,Ts,T ;0 = {z ∈ C[s, T ] : z − z(s) ∈ Bs,T ;0}.

Letting F = χBs,T ;0
in Theorem 3.6, we have for x ∈ C[0, T ]

F (x|[s,T ] − x(s)) = χBs,T ;0
(x|[s,T ] − x(s)) = χB0,T

s,T ;0
(x)

so that B0,T
s,T ;0 ∈ B(C[0, T ]) and we have

w0,T ;ϕ0(B0,T
s,T ;0) =

∫
C[0,T ]

χBs,T ;0
(x|[s,T ] − x(s))dw0,T ;ϕ0(x)

=
ϕ0(R)

ϕs(R)

∫
C[s,T ]

χBs,T ;0
(z − z(s))dws,T ;ϕs

(z)

=
ϕ0(R)

ϕs(R)
ws,T ;ϕs(Bs,Ts,T ;0).

Letting ϕs = δ0, in particular, we have by Theorem 3.6

w0,T ;ϕ0
(B0,T

s,T ;0) = ϕ0(R)ws,T ;δ0(Bs,T ;0).

Remark 3.13. (a) In the study of analogue of Wiener space, the initial weight
plays a crucial role if it is not a probability measure, in particular, not the Dirac
measure at 0. Hence the relationships between w0,T ;ϕ0

and w0,s;ϕ0
× ws,T ;ϕs

are dominated by both ϕ0 and ϕs. For more details, see (7), Theorems 2.5,
3.5, 3.6, Corollary 3.8, Examples 3.11 and 3.12.

(b) In (8), Theorem 3.4, Corollary 3.7 and Example 3.10, each integral is
affected by the initial weight ϕ0 even if it is not appeared in the expression.
This is due to the fact that w0,s;ϕ0

and w0,T ;ϕ0
may not be probability measures,

but they have the same initial weight ϕ0.
(c) In Theorem 3.5, the transformation of integral on C[0, T ] to the space

C[0, s]×C[s, T ] is affected by ϕs so that it can not be reduced to the integral on
C[s, T ]. On the other hand, if ϕs = δ0 in Theorem 3.6, the same transformation
can be reduced to the integral on C[s, T ] (hence on C0[s, T ]) because the initial
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weights of paths in C[s, T ] are concentrated at 0, that is, ws,T ;δ0(C[s, T ]) =
ws,T ;δ0(C0[s, T ]).

(d) If α(t) = 0, β(t) = t for t ∈ [0, T ] and ϕ0 = δ0 = ϕs, the results of this
paper reduce to those on the classical Wiener spaces. We note that most of
literatures related to this topic on the classical Wiener space use similar results
of this paper without exact proofs.
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