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To predict rice blast, many machine learning methods 
have been proposed. As the quality and quantity of in-
put data are essential for machine learning techniques, 
this study develops three artificial neural network 
(ANN)-based rice blast prediction models by combin-
ing two ANN models, the feed-forward neural network 
(FFNN) and long short-term memory, with diverse 
input datasets, and compares their performance. The 
Blast_Weathe long short-term memory r_FFNN model 
had the highest recall score (66.3%) for rice blast pre-
diction. This model requires two types of input data: 
blast occurrence data for the last 3 years and weather 
data (daily maximum temperature, relative humidity, 
and precipitation) between January and July of the 
prediction year. This study showed that the perfor-
mance of an ANN-based disease prediction model was 
improved by applying suitable machine learning tech-
niques together with the optimization of hyperparame-
ter tuning involving input data. Moreover, we highlight 
the importance of the systematic collection of long-term 
disease data. 
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Rice blast disease, caused by Pyricularia oryzae Cavara, is 
one of the major constraints to rice production, causing sig-
nificant yield losses worldwide. (Katsantonis et al., 2017; 
Wang et al., 2015). Many studies have been conducted to 
understand the primary elements of the rice blast epidemic 
and predict the occurrence of this disease (Chung et al., 
2020; Jeon, 2019; Kim et al., 2015). It is well known that 
low temperature, high humidity, and excessive use of nitro-
gen fertilizers promote the occurrence of rice blast disease. 
An integrated disease management (IDM) program based 
on a proper understanding of rice blast epidemiology is 
unequivocally the most effective and efficient method for 
managing rice blast disease in the long term.

IDM is designed to minimize the impact of plant diseases 
below the level that could cause significant economic dam-
age by deploying all available methods that are optimal and 
realistic in the context of the rice-growing environments 
and population dynamics of pathogens. To properly apply 
various management techniques, it is essential to develop 
methods that can predict the risk of temporal and spatial 
occurrences using a plant disease prediction model. In oth-
er words, knowing when and to what extent plant diseases 
occur is crucial for effective plant disease management. 
This helps determine the optimal timing and order of ap-
plying proper disease management methods. In particular, 
owing to the acceleration of climate change and increasing 
occurrence of abnormal climate conditions, it is becoming 
more difficult to predict plant diseases. Therefore, various 
innovative methods have been proposed to cope with this 
situation (Juroszek and von Tiedemann, 2011).

Computer modeling has been developed and employed 
to predict plant disease epidemics using weather, environ-
mental, and agronomic data. Traditional plant disease pre-
diction models find statistical, empirical, and/or mechani-
cal relationships between these data and the occurrence 
of plant diseases, and simulate the key infection process 
based on them. These types of prediction models with ei-
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ther observed or predicted input data provide information 
on when and to what extent plant diseases would occur to 
determine optimal management measures. In particular, 
when the overall production cost increases due to unneces-
sary control activities or the control effect decreases owing 
to ill-timed control, an IDM based on accurate prediction is 
urgently required. These prediction models are utilized as 
an important component of IDM along with various plant 
disease management methods.

Recently, as the amount of agricultural data has exponen-
tially increased, many attempts have been made to model 
plant diseases using machine learning (Kim and Lee, 2020). 
Different algorithms, such as support vector machines 
(SVMs), artificial neural networks (ANNs), and random 
forest, have been used to create plant disease prediction 
models based on meteorological variables, including maxi-
mum and minimum temperatures, humidity, rainfall, and 
wind speed. Fenu and Malloci (2019) trained two different 
models using the ANN and SVM techniques to predict late 
blight in potatoes. They used 4-year meteorological data 
(hourly temperature, humidity, rainfall, wind speed, and so-
lar radiation) as input, and classified corresponding disease 
occurrence data in Southern Sardinia into three risk levels. 
The SVM model showed better performance for low- and 
high-risk levels, whereas the ANN model outperformed at 
the medium-risk level. Interestingly, the ANN model incor-
rectly classified 40 out of 49 high-risk cases as medium-
risk cases, although its overall accuracy was 96%. This was 
due to the imbalance of the training dataset, where most 
data were classified as low risk; thus, the overall accuracy 
was determined by the classification performance for the 
major class without profoundly considering the minor 
class. Bhatia et al. (2020) adopted the Extreme Learning 
Machine algorithm and found proper resampling tech-
niques can solve the problem of highly imbalanced dataset 
in plant disease occurrence.

Similarly, researchers have attempted to predict rice blast 
disease using machine learning. Kaundal et al. (2006) de-
veloped and compared rice blast prediction models using 
multiple regression, SVMs, and two ANN algorithms. Ma-
licdem and Fernandez (2015) developed rice blast predic-
tion models using the feed-forward neural network (FFNN) 
model, the simplest ANN structure that unidirectionally 
connects the input and output layers without a loop. Recent 
studies have used the long-short term memory (LSTM) 
structure to predict rice blast disease occurrence (Kim et 
al., 2018; Nettleton et al., 2019). LSTM was developed 
by Hochreiter and Schmidhuber (1996), and is considered 
to be a high-performance model among recurrent neural 
networks (RNNs). This is because LSTM solved the prob-

lem of long-term dependency in RNNs by using a variable 
called the cell state to selectively store information through 
the input, forget, and output gates (Hochreiter and Schmid-
huber, 1996). Using LSTM, Kim et al. (2018) developed 
region-specific models for the prediction of rice blast in 
Korea. Three-year rice blast occurrence and weather data 
(average temperature, relative humidity, and sunshine du-
ration) were used as input data to train the model for rice 
blast prediction over the next few years. In another study, 
two machine learning-based rice blast prediction models 
(M5Rules and LSTM) showed comparable performance to 
process-based models (Yoshino and WARM) (Nettleton et 
al., 2019).

Developing a plant disease prediction model using 
machine learning has many hurdles such as the low qual-
ity and quantity of disease occurrence data for training 
and validation, relatively low performance of the models 
developed in previous studies, and lack of information 
on optimal machine learning techniques for plant disease 
prediction. Although the LSTM sits in the center of interest 
for plant disease prediction these days, it is well known that 
LSTM generally performs well for sequences of up to 250-
500 timesteps to solve long-term dependency problems 
(Chemali et al., 2017), indicating it may not outperform the 
FFNN for rice blast epidemics with a sequence of much 
shorter timesteps. Therefore, the objectives of this study 
are to develop ANN-based rice blast prediction models us-
ing the limited quality and quantity of rice blast occurrence 
data available in Korea, and to compare the performance 
of the FFNN and LSTM models after optimizing hyper-
parameters of both models. In previous studies, historical 
rice blast occurrence and weather variables were used as 
inputs for model training without considering the perfor-
mance variation depending on hyperparameters (Kim et al., 
2018; Nettleton et al., 2019). In machine learning, hyper-
parameters determine the structure of the learning model, 
such as the learning rate, number of nodes and layers, and 
batch size; thus, optimizing them is crucial for model per-
formance (Probst et al., 2019). In this study, the number of 
observed years for rice blast occurrence, range of observed 
months, number of timesteps for weather variables, and 
type and combination of weather variables were included 
as hyperparameters to examine the variance in model per-
formance.

In the study, historical rice blast occurrence data and 
weather observation data were used as input data to train 
rice blast prediction models (Fig. 1). Historical rice blast 
occurrence data were obtained from the National Crop Pest 
Management System (NCPMS; https://ncpms.rda.go.kr) of 
the Rural Development Administration (RDA) of Korea. 
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We collected 2486 occurrence data from 150 RDA rice 
monitoring plots for 19 years (2002-2020). The rice blast 
intensity was recorded by measuring the infected leaf area 
ratio at 10-day intervals from the 20 May to the 20 Septem-
ber (30 September from 2006 to 2008). Excluding 13 miss-
ing data points, 656 data points with an infected leaf area 
ratio more than 0.2% were classified as class 1 (representing 
blast occurrence), whereas 1,817 data points with a ratio 
equal to or less than 0.2% were classified as class 0 (repre-
senting no blast occurrence). 

For weather observation data, we obtained the daily 
maximum air temperature (°C), minimum air temperature 
(°C), precipitation (mm), relative humidity (%), and wind 
speed (m/s) data from 89 weather stations of the Korea 
Meteorological Administration from 2002 to 2020 (Fig. 1). 
To avoid biased learning toward specific data due to the 
difference in scale between input data (Sola and Sevilla, 
1997), weather data were min-max normalized when creat-
ing the training datasets. To match the weather observation 
data with the rice blast occurrence data, the nearest weather 
stations were selected using the haversine formula (Eq. 1). 
The haversine formula is used to determine the distance 
between two points using their coordinates (longitude 
and latitude), assuming the Earth as a sphere (Yang et al., 

2019), as follows:

, where d is the distance between sites 1 and 2, r is the ra-
dius of the earth, ϕ1 is the latitude of site 1, ϕ2 is the latitude 
of site 2, λ1 is the longitude of site 1, and λ2 is the longitude 
of site 2. Among 2,473 data points, seven outliers with 
distances of more than 36 km between the rice monitoring 
plot and weather station were eliminated from the sample 
data.

The models were developed in the following order. First, 
we constructed a Blast_FFNN model that uses only his-
torical rice blast occurrence data as input for training and 
conducted hyperparameter tuning for model optimization. 
Subsequently, we introduced an additional parallel layer 
using weather input data into the optimized Blast_FFNN 
model. Consequently, two new models, a Blast_Weather_
FFNN model in which weather data go through FFNN lay-
ers and a Blast_Weather_LSTM model in which weather 
data go through LSTM layers, were created and then went 

Fig. 1. Distribution map of National Crop Pest Management System (NCPMS) data and weather observation data used in the study. Blue 
dots indicate the NCPMS data of rice blast occurrence and red dots indicate the weather station sites for weather observation data.
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through sequential hyperparameter tuning processes. The 
hyperparameters considered in the optimization process for 
each model are listed in Table 1.

In the Blast_Weather_FFNN and Blast_Weather_LSTM 
models, hyperparameter tuning first determines the number 
of nodes (units) and activation functions of the parallel lay-
ers. Second, the input data of months, period, and weather_
variables, referring to the selected months to be included, 
the number of timesteps during the selected months, and 
combinations of weather variables, respectively, are deter-
mined based on the hyperparameter tuning. For example, 
in the case of period ‘4’ with the weather_variables of 
‘tmax’ and ‘prec’ for the months of ‘June-July,’ the 15-day 
(61 days for June-July divided by period 4) average values 
of daily maximum temperature and daily precipitation were 
used as input data. Selecting target months as input data al-
lowed us to examine whether weather conditions until July 
(approximately up to 50-70 days after transplanting in most 
rice cultivation areas in South Korea) have a significant 
effect on model performance. Additionally, selecting an 
appropriate period was important for model performance. 
The period of few sections may dilute the characteristics 
of the weather conditions affecting rice blast occurrence 
during the period, whereas the period of too many sections 
may result in outlier conditions that misrepresent the favor-
able weather conditions for rice blast. The development 

processes for the three models are illustrated in Fig. 2.
Since the number of Class 0 (no occurrence) was ap-

proximately three times more than class 1 (occurrence), the 
training and test sets were split according to the same ratio 
using stratified k-fold cross-validation with k = 10. Addi-
tionally, as the rice blast occurrence data used in the study 
were significantly imbalanced, we increased the number 
of class 1 samples using the random oversampling method 
(Batista et al., 2004), which randomly replicates the minor-
ity class dataset to a size comparable to that of the major 
class dataset. Focal loss was used as the loss function (Lin 
et al., 2017), and Adam optimizer was used as the opti-
mizer setting, with a learning rate of 10-3 (Kingma and Ba, 
2014). An appropriate number of epochs (100) was deter-
mined in the preliminary test. The models were developed 
using TensorFlow version 2.6.0, an open-source machine-
learning library developed by Google (Abadi et al., 2016).

Both accuracy and recall were used as measures to evalu-
ate the performance of the proposed models and optimize 
the hyperparameters. The prediction results of the classi-
fier were expressed in a confusion matrix, and four classes 
were defined: true-positive (TP) for correctly predicted 
class 1 data, false-positive (FP) for incorrectly predicted 
class 1 data, true-negative (TN) for correctly predicted class 
0 data, and false-negative (FN) for incorrectly predicted 
class 0 data. Accuracy indicates how often the classifier is 

Table 1. Features of the hyperparameters for each model compared in this study 

Model Hyperparameters Range
Blast_FFNNa Year_sizeb 1-9

Unitsc 22-25

Activation function Relu, sigmoid, tanh
Blast_Weather_FFNN Units 23-27

Activation function Relu, sigmoid, tanh
Monthsd Jan-Jul to May-Jul
Periode 2-30
Weather_variables Combinations of tmax, tmin, wspd, prec, rhum

Blast_Weather_LSTM Units 22-26

Activation function Relu, sigmoid, tanh
Months Jan-Jul to May-Jul
Period 2-30
Weather_variables Combinations of tmax, tmin, wspd, prec, rhum

FFNN, feed-forward neural network; LSTM, long short-term memory.
aAs indicated by the name, Blast_FFNN uses only historical rice blast occurrence data, while the Blast_Weather_FFNN and Blast_Weather_
LSTM models use both blast occurrence and weather data as inputs.
bThe number of consecutive years of rice blast occurrence observed in the past.
cThe number of nodes in each hidden layer.
dSelected months during which weather variables are used as input.
eThe number of timesteps during the selected months.
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correct and is calculated as the ratio of (TP + TN)/(TP + FP 
+ FN + TN). Accuracy has some constraints as a perfor-
mance indicator because model training is biased toward 
the major class when an ANN model is trained using an 
imbalanced dataset. In this case, even if the minor class is 
not predicted well, the overall accuracy can be high, since 
the major class is generally predicted well. Therefore, we 
used the recall indicator to evaluate model performance. 
Recall, also called sensitivity or the TP rate, indicates how 
often the classifier predicts the actual disease occurrence, 
calculated as the ratio of TP/(TP + FN). When it comes 
to plant disease management, it is necessary to predict the 
actual disease occurrence to inform farmers to implement 
appropriate disease control measures to reduce potential 
yield loss. Therefore, we selected hyperparameters with the 
maximum recall values, as shown in Table 2. Validation of 
the performance of each model was repeated 10 times, then 
the average value was obtained.

Experiments for selecting hyperparameters for each of 
the three models (i.e., Blast_FFNN, Blast_Weather_FFNN, 
and Blast_Weather_LSTM) verified that the performance 
of the models depends on the hyperparameters (Table 2). 
Recall increased as the year_size of the Blast_FFNN model 
increased from 1 to 3, indicating that a record of rice blast 
occurrence in recent years helps predict future occurrences. 

This is because the amount of initial inoculum of a year re-
sults from the overwintered inocula from the epidemics of 
the previous year(s). Moreover, local specific conditions, 
such as cultivars, climate, and soil, might influence the in-
herent disease proneness; thus, rice blast is more likely to 
occur where it normally occurs. Kim et al. (2018) used data 
from the past 3 years to examine the feasibility of predict-
ing the occurrence of rice blast. Larger year_size over 3 
years in our study reduced the number of training samples 
due to the presence of missing values. Additionally, un-
necessarily old data beyond three years in the past had little 
impact on prediction and became disruptive to learning. 
After tuning the remaining hyperparameters with 16 nodes 
for the hidden layers using the tanh and sigmoid activation 
functions, the Blast_FFNN model showed the maximum 
performance with a recall of 55.99%. 

Using weather data in addition to rice blast occur-
rence data as input, the Blast_Weather_FFNN and Blast_
Weather_LSTM models showed higher performance with 
66.33% and 64.50% recall scores, respectively, compared 
to the Blast_FFNN model. As shown in previous studies 
(Fenu and Malloci, 2021; Kim et al., 2018), weather data is 
necessary to improve the prediction performance of ANN-
based rice blast models. We found that the months and pe-
riods, based on which the weather data are applied as input, 

Fig. 2. A flowchart of the development of Blast_Weather_FFNN and Blast_Weather_LSTM models used in this study. Blast_FFNN 
does not include weather data indicated as the light green box in the figure. FFNN, feed-forward neural network; LSTM, long short-term 
memory; NCPMS, National Crop Pest Management System.
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are important determining factors of model performance. 
The Blast_Weather_FFNN model showed the highest per-
formance with the months between January and July and 
a period of 20 (approximately 10-day averages), while the 
Blast_Weather_LSTM model was best parameterized with 
the months between March and July and a period of 24 
(approximately 6-day averages). Both models performed 
better when the weather data before planting were included 
as input, probably because it is related to the survival rate 
of the overwintered inocula from previous epidemics and 
thus determines the amount of initial inoculum of the pre-
diction year. Among the five weather variables used in this 
study, both models showed the highest performance when 
using daily maximum temperature, precipitation, and rela-
tive humidity. The optimal numbers of nodes were 8 and 
16 for Blast_Weather_FFNN and Blast_Weather_LSTM, 
respectively. In addition, the rectified linear unit (ReLU) 
activation function was selected for both models.

As a result, Blast_Weather_FFNN had higher perfor-
mance (a recall score of 66.33%) than Blast_Weather_
LSTM (a recall score of 64.50%). Since LSTM has a 
complex structure and more parameters compared to other 
ANN models, the relatively small quantity of NCPMS data 
for training likely affected the LSTM model to be underfit-
ted. In addition, as there was no clear time-series pattern 
appearing in weather data for less than a year, there might 
not be an added value of using LSTM. Thus, we concluded 

that it is more appropriate to use an FFNN with a limited 
amount of data and a weak time-series pattern. Further-
more, considering that LSTM requires more computing 
resources and a longer training time owing to its complex 
structure and process, other ANN models might be a better 
starting point to consider.

In this study, long-term NCPMS data were used to de-
velop an ANN-based rice blast prediction model. Govern-
ment-led data collection in more than 80 locations across 
the country for two decades has resulted in quality data that 
are eligible for various machine learning-based studies. 
Considering that Fenu and Malloci (2021) used only 2-5 
years of disease occurrence data, the new models devel-
oped in the current study using 19 years of data may show 
more robust performance in predicting interannual disease 
variation. Another promising fact is that the amount of data 
continues to increase with time, as data collection contin-
ues even at the moment. The quantity and quality of data 
are important in data-driven modeling research, such as 
machine learning-based studies. However, a chronic short-
age of disease survey data in most countries has led to very 
few studies assessing the amount of data required for the 
reliable prediction of rice blast occurrence using machine-
learning approaches. Examining this data requirement as-
pect requires a significant amount of data that exceeds what 
we used in the study. One way of securing sufficient data 
for such analyses is to generate artificial disease occurrence 

Table 2. Performances of rice blast prediction models after optimizing each hyperparameter 

Model Hyperparameters
Validation

Optimal valuesa

Accuracy (%) Recall (%)
Blast_FFNN Year_size 67.93-75.26 40.06-55.77 3

Units 72.24-73.09 52.78-55.99 16, 16b

Activation function 72.62-73.07 55.19-55.99 Tanh, sigmoid
Blast_Weather_FFNN Units 69.32-70.68 56.35-65.35 8

Activation function 70.48-71.31 64.52-65.92 Relu
Months 70.62-70.87 63.23-65.08 Jan-Jul
Period 70.39-71.41 62.03-66.41 20
Weather_variables 69.86-71.59 63.47-66.33 tmax, prec, rhum

Blast_Weather_LSTM Units 70.99-71.53 61.85-64.32 16
Activation function 71.18-71.43 57.10-64.77 Relu
Months 70.25-71.51 63.12-64.03 Mar-Jul
Period 69.56-70.65 61.40-64.34 24
Weather_variables 69.80-71.30 58.66-64.50 tmax, prec, rhum

FFNN, feed-forward neural network; LSTM, long short-term memory.
aOptimal values were selected to maximize the recall indicator. 
bThe Blast_FFNN model had two optimal values for each of the two hidden layers, while the Blast_Weather_FFNN and Blast_Weather_LSTM 
models had one hidden layer.
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data using process-based disease epidemiological models 
considering various environmental, agronomic, and host 
plant and pathogen factors as input.

Another hurdle in developing ANN-based disease pre-
diction models is imbalanced datasets, which could result 
in biased model training toward the major class. In particu-
lar, for plant disease survey data collected from designated 
monitoring plots, observations of disease symptoms are 
very rare. To solve this problem, we used random overs-
ampling and focal loss to increase the number of class 1 
samples compared to class 0 samples for model training 
(Liu et al., 2007). This is because we emphasize reducing 
false-negative errors over false-positive errors to avoid 
severe yield losses resulting from no action over actual dis-
ease epidemics. 

In Korea, unmanned aerial vehicles are commonly uti-
lized in most rice paddies for collaborative disease control 
(Kim and Jung, 2020). Disease early warnings that use 
seasonal climate forecasts (SCFs) with a lead time of a few 
months support collaborative disease controls requiring at 
least a month before the decision-making of scheduling 
and preparing the control activities. The Blast_Weather_
FFNN model, which showed the best performance in this 
study, requires weather data from January to July of the 
prediction year. Considering that rice leaf blast normally 
occurs between June and August, the model should rely 
on forecasted weather information from the SCFs. If the 
model can generate a rice blast alert sometime in May us-
ing the SCFs for June to August, the alert information can 
be applied for planning collaborative disease controls in 
South Korea. Therefore, follow-up studies should verify 
the performance of the rice blast prediction model using 
the SCFs. Unlike observational data, the reliability of the 
model prediction depends significantly on the predictability 
of the SCFs. This problem can be overcome by utilizing 
machine learning techniques, where SCFs are used as input 
variables to train the prediction model. Thereby, the inher-
ent uncertainty of the SCFs is considered in hyperparam-
eter tuning while training the model. 
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