DOI QR코드

DOI QR Code

양상태 능동 소나를 위한 비음수 행렬 분해 기반의 잔향 제거 기법의 성능 개선

Improvement of non-negative matrix factorization-based reverberation suppression for bistatic active sonar

  • 투고 : 2022.05.25
  • 심사 : 2022.06.30
  • 발행 : 2022.07.31

초록

수중에서 능동소나를 이용하여 표적을 탐지하기 위하여, 송신음이 표적에 반사된 반향을 수신함으로써 표적의 위치를 감지한다. 이때 산란체로부터의 잔향이 발생하며, 이는 표적 반향의 탐지를 방해하게 된다. 효과적인 표적 탐지를 위해 자기회귀 모델기반의 백색화 기법이나 주성분역산 등의 잔향 제거 기법이 연구된 바 있으며, 최근에는 비음수 행렬 분해 기반의 기법이 고안되었다. 비음수 행렬 분해 기반의 잔향 제거 기법은 기존의 기법에 비해 향상된 성능을 보여주지만, 송수신기의 위치 및 거리에 의한 감쇠 등이 고려되지 않았다. 본 논문에서는, 양상태 소나에서 지속파 송신 파형을 사용하는 경우에 대하여 수신기의 방향성과 그에 관련된 도플러, 그리고 거리에 대한 감쇠 등의 전처리를 통해 성능을 개선하였다. 본 연구에서 고안된 시스템의 성능을 확인하기 위하여 잔향 모델을 이용한 시뮬레이션을 수행하였다, 시뮬레이션 결과 1 %의 낮은 오탐지율에서 기존의 비음수 행렬 분해 기법 대비 10 % ~ 40 %의 탐지율 성능 향상이 있음을 확인하였다.

To detect targets with active sonar system in the underwater environments, the targets are localized by receiving the echoes of the transmitted sounds reflected from the targets. In this case, reverberation from the scatterers is also generated, which prevents detection of the target echo. To detect the target effectively, reverberation suppression techniques such as pre-whitening based on autoregressive model and principal component inversion have been studied, and recently a Non-negative Matrix Factorization (NMF)-based technique has been also devised. The NMF-based reverberation suppression technique shows improved performance compared to the conventional methods, but the geometry of the transducer and receiver and attenuation by distance have not been considered. In this paper, the performance is improved through preprocessing such as the directionality of the receiver, Doppler related thereto, and attenuation for distance, in the case of using a continuous wave with a bistatic sonar. In order to evaluate the performance of the proposed system, simulation with a reverberation model was performed. The results show that the detection probability performance improved by 10 % to 40 % at a low false alarm probability of 1 % relative to the conventional non-negative matrix factorization.

키워드

과제정보

본 논문은 국방과학연구소의 지원으로 수행되었습니다. (계약번호 : UD200006DD)

참고문헌

  1. T. Collins and P. Atkins, "Doppler-sensitive active sonar pulse designs for reverberation processing," IEE Proceedings of Radar, Sonar, and Navigation, 145, 347-353 (1998). https://doi.org/10.1049/ip-rsn:19982434
  2. G. Kim, K. Lee, K. Yoon, and S. Lee, "A study on pulse train waveforms for high duty cycle sonar systems: optimization scheme and relationship between orthogonality and bandwidth," IEEE Access, 9, 119800-119817 (2021). https://doi.org/10.1109/ACCESS.2021.3107907
  3. S. Kay and J. Salisbury, "Improved active sonar detection using autoregressive prewhiteners," J. Acoust. Soc. Am. 87, 1603-1611 (1990). https://doi.org/10.1121/1.399408
  4. G. Ginolhac and G. Jourdain, "Principal component inverse algorithm for detection in the presence of reverberation," IEEE J. Ocean. Eng. 27, 310-321 (2002). https://doi.org/10.1109/JOE.2002.1002486
  5. W. Li, Q. Zhang, X. Ma, and C. Hou, "Active sonar detection in reverberation via signal subspace extraction algorithm," EURASIP J. Wirel. Commun Netw. 2010, 1-10 (2010).
  6. S. Lee, "Target detection method of the narrow-band continuous-wave active sonar based on basis-group beamspace-domain nonnegative matrix factorization for a reverberant environment" (in Korean), J. Acoust. Soc Kr. 38, 291-302 (2019).
  7. S. Lee and J.-S. Lim, "Reverberation suppression using non-negative matrix factorization to detect low-doppler target with continuous wave active sonar," EURASIP J. Adv. Signal Process. 2019, 1-18 (2019). https://doi.org/10.1186/s13634-018-0596-y
  8. G. Kim, K. Lee, and S. Lee, "Linear frequency modulated reverberation suppression using non-negative matrix factorization methods, dechirping transformation and modulo operation," IEEE Access, 8, 110720-110737 (2020). https://doi.org/10.1109/access.2020.3001865
  9. W Zhou, J Xie, K Xi, and Y Du, "Modified cell averaging CFAR detector based on Grubbs criterion in non-homogeneous background," IET Radar, Sonar & Navigation, 13, 104-112 (2019). https://doi.org/10.1049/iet-rsn.2018.5160
  10. S. Lee, J.-S. Lim, and S. Kim, "Range-Doppler compensation technique for nonnegative matrix factorization-based reverberation suppression method for active sonar," (in Korean), Proc. KIMST (2021).
  11. P. A. de Theiji and J.-C. Sindt, "Single-ping target speed and course estimation using a bistatic sonar," IEEE J. Oceanic Eng. 31, 236-243 (2006). https://doi.org/10.1109/JOE.2005.858361