DOI QR코드

DOI QR Code

양액 농도에 따른 방울토마토 2화방 개화묘의 소질 및 과실 생산성

Quality and Fruit Productivity of the Second Truss Blooming Seedlings Depending on Concentration of Nutrient Solution in Cherry Tomato

  • 이문행 (충남농업기술원 과채연구소)
  • Lee, Mun Haeng (Fruit Vegetable Research Institute Chungnam-do A.R.E.S)
  • 투고 : 2022.07.01
  • 심사 : 2022.07.26
  • 발행 : 2022.07.31

초록

이번 연구는 효과적으로 2화방 개화묘를 생산하여 조기에 토마토를 수확하고 수확 기간을 연장하기 위하여 적절한 양액 농도 관리방법을 구명하기 위해 실시되었다. 처리는 양액 농도로 1줄기 2화방 개화묘 연구에서는 양액 EC를 1.5, 2.0, 2.5dS·m-1, 동적 관리(3.0 → 3.5 → 4.5dS·m-1)로 공급하였다. 육묘기간은 65일로 관행묘에 비해 20-40일, 1화방 개화묘(큐브 육묘)보다는 10일 정도 길었다. 초장은 EC 2.5dS·m-1와 동적 관리는 각각 78, 77cm로 EC 1.5dS·m-1처리 88cm보다 짧았다. 정식 전 큐브 내 EC는 동적 관리가 EC 5.5dS·m-1로 가장 높았으며, EC 1.5dS·m-1로 공급한 큐브는 3.0dS/m으로 가장 낮았다. 2화방 개화묘에서 EC 처리 간 생산량 차이는 나타나지 않았으나 1화방 개화묘는 2화방 개화묘보다 생산성이 떨어졌다. 2화방 개화묘는 첫 수확일이 6월 4일로 정식 후 35일만에 수확하였으며 1화방 개화묘는 6월 11일로 42일만에 수확하였다. 절곡에 의한 초장 및 뿌리 생육의 차이는 나타나지 않았다. 2줄기 2화방 개화묘 생산 연구에서는 공급 양액 EC를 2.0, 2.5, 3.0dS·m-1, 동적 관리(3.0 → 3.5 → 4.5dS·m-1)로 하여 공급하였다. 육묘 기간은 90일로 관행묘에 비해 40-50일, 1화방 2줄기 개화묘(큐브 육묘)보다는 10일 정도 길었다. 초장은 공급 양액 EC 2.0dS·m-1에서 80cm, 2.5dS·m-1에서는 81cm였으며 3.0dS·m-1 처리에서는 75cm, 동적 관리에서는 73cm로 가장 짧았다. 배지 내 EC는 모든 처리에서 육묘 기간이 길어질수록 높아졌으며 특히 공급 EC가 가장 높았던 동적관리 처리에서 EC 5.1dS·m-1로 가장 높았다. EC 처리 간 생산량 차이는 나타나지 않았으나 육묘 기간이 10일 정도 길었던 2화방 개화묘가 1화방 개화묘보다 15% 정도 생산량이 많았다. 2화방 개화묘의 초장을 짧게 만들기 위해서는 가식 후 공급 양액 농도를 높이는 방법이 가장 효율적인 방법으로 판단된다.

This study was carried out to produce two-flowered seedlings, harvest them early in a greenhouse, and extend the harvest period. This study was carried out to effectively produce the second truss blooming seedlings to harvest tomatoes early and extend the harvest period. For production of the second truss blooming seedlings (one stem), the nutrient solution EC was supplied at 1.5, 2.0, 2.5 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 60 days, which was 20-40 days longer than conventional seedlings, and 10 days longer than the first truss blooming seedlings (cube seedlings). The plant height was 78 and 77 cm in EC 2.5 dS·m-1 and dynamic management respectively, which was shorter than EC 1.5 dS·m-1 with 88 cm. As for the EC in the cube before formulation, dynamic management had the highest EC 5.5 dS·m-1, and the cube supplied with EC 1.5 dS·m-1 had the lowest. The production yield by treatment did not a difference among in the second truss blooming seedlings, but the first truss blooming seedlings showed lower productivity than second truss blooming seedlings. The second truss blooming seedling were harvested 35 days after planting on June 4, the first harvest date, and the first truss blooming were harvested in 42 days on June 11th. There was no difference in plant height and root growth due to bending at frequency planting. In the study on the production of the second truss blooming seedlings (two stem), the nutrient solution EC was supplied under 2.0, 2.5, 3.0 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 90 days, which was 40-50 days longer than conventional seedlings and 10 days longer than the first truss blooming seedlings (cube seedlings). Plant height was 80 and 81 cm in EC 2.0 dS·m-1 and 2.5 dS·m-1 respectively, but was the shortest at 73 cm in dynamic management. EC in the medium increased as the seeding period increased in all treatments. The dynamic management was the highest with EC 5.1 dS·m-1. There was no difference in yield among EC treatments in the second truss blooming seedlings, which had a longer seeding period of about 10 days, produced 15% more than the first truss blooming seedlings. In order to shorten the plant height of the second truss blooming seedlings, it is judged that the most efficient method is increasing the concentration of nutrient solution.

키워드

과제정보

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421004-04).

참고문헌

  1. An T.I., J.W. Shin, and J.E. Son 2010, Analysis of changes in Ion concentration with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). J Bio-Env Con 19:298-304.
  2. Choi Y.H., J.L. Cho, H.C. Lee, D.K. Park, J.K. Kwon, and J.H. Lee 2002, Transplant quality and the yield of 'Momotaro-Yoku' tomato as affected by seedling age and container size used for raising seedling in summer. J Bio-Env Con 11:12-17.
  3. Cuartero J., and R. Fernaudez-Munoz 1998, Tomato and salinity. Sci Hortic 78:83-125. doi:10.1016/S0304-4238(98)00191-5
  4. Dorais M., A.P. Papadopouos, and A. Gosselin 2010, Greenhouse tomato fruit quality: The influence of environmental and cultural factors. Hortic Rev 26:239-319. doi:10.1002/9780470650806.ch5
  5. Heuvelink E., M. Bakker, and C. Stanghellini 2003. Salinity effects on fruit yield invegetable crops: a simulation study. Acta Hort 609:133-138. doi:10.17660/ActaHortic.2003.609.17
  6. Horticulture 2019, http://www.hortitimes.com/news/articleView.html?idxno=20963. Accessed 1 July 2022 (in Korean).
  7. Kim S.E., M.H. Lee, B.J. Ahn, and Y.S. Kim 2013, Effects of spacing and plug cell size on seedling quality and yield and qualities of tomatoes. Protected Hort Plant Fac 22:256-261. (in Korean) doi:10.12791/KSBEC.2013.22.3.256
  8. Korea Rural Economic Institute (KREI) 2011, Development of the seedling industry and current status. KREI, Korea.
  9. Lee H.K, M.H. Lee, G.S. Park, E.M. Lee, N.B Jeon, S.D. Seo, P.H. Cho, Y.S. Kim, S.E. Kim, and S.K. Cho 2015, Effect of seedling type and early transplanting of summer grown seedling on the growth and yield of tomato. Korean J Org Agric 22:695-703. (in Korean) doi:10.11625/KJOA.2015.23.1.59
  10. Lee S.A. 2011. Effects of environment change of root zone on young sweet pepper plant (Capsicum annum L.). MS Thesis, Chonnam National University, Gwangju, Korea. (in Korean)
  11. Li L.L., and C. Stanghellini 2001, Analysis of the effect of EC and potential transpiration on vegetative growth of tomato. Sci Hortic 89:9-21. doi:10.1016/S0304-4238(00)00219-3
  12. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2011, Status of greenhouse and vegetable production in 2010. MAFRA, Sejong, Korea. (in Korean)
  13. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2018, Status of greenhouse and vegetable production in 2017. MAFRA, Sejong, Korea. (in Korean)
  14. Samarakoon U.C., P.A. Weerasinghe, and W.A.P. Weerakkody 2006, Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop Agric Res 18:13-21.
  15. Suzuki H. 2018, Current state and challenges of greenhouse horticulture in Japan. Japan and the Netherlands Horticulture Seminar, Japan Greenhouse Horticulture Association, Japan.
  16. Um Y.C., Y.A. Jang, G.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and C.H. Hong 2009, Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J Bio-Env Con 18:370-376.