DOI QR코드

DOI QR Code

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew (Department of Electrical and Electronic Engineering, University of Manchester) ;
  • Knapp, Jordan (UK National Nuclear Laboratory) ;
  • Lennox, Barry (Department of Electrical and Electronic Engineering, University of Manchester) ;
  • Walters, Steve (UK National Nuclear Laboratory, Culham Science Centre) ;
  • Watts, Stephen (Department of Physics and Astronomy, University of Manchester)
  • Received : 2021.10.06
  • Accepted : 2021.12.06
  • Published : 2022.06.25

Abstract

As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Keywords

Acknowledgement

The authors wish to thank Dr. Ruth Edge of the University of Manchester Dalton Cumbrian Facility, for their support in undertaking irradiation experiments. This work was supported by UK Research and Innovation RAIN Hub EP/R026084/1. B. Lennox acknowledges support through the UK Royal Academy of Engineering, CiET1819\13.

References

  1. International Atomic Energy Agency, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, International Atomic Energy Agency, Vienna, Austria, 2019.
  2. Nuclear Decommissioning Authority, Annual Report and Accounts 2019 to 2020, Dandy Booksellers Ltd, London, 2020. https://www.gov.uk/government/publications/nuclear-decommissioninγ-authority-annual-report-and-accounts-2019-to-2020.
  3. Nuclear Decommissioning Authority, Strategy Effective from March 2021, Dandy Booksellers Ltd, London, 2020. https://www.gov.uk/government/publications/nuclear-decommissioninγ-authority-strategy-effective-from-march-2021.
  4. NDA 5-year R&D Plan 2019 to 2024 - GOV.UK, (n.d.). https://www.gov.uk/government/publications/nda-5-year-research-and-development-plan-2019-to-2024/nda-5-year-rd-plan-2019-to-2024 (accessed March 29, 2021).
  5. I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124, https://doi.org/10.1016/j.pnucene.2018.10.023.
  6. S. Kawatsuma, M. Fukushima, T. Okada, Emergency response by robots to Fukushima-Daiichi accident: summary and lessons learned, Ind. Robot An Int. J. 39 (2012) 428-435, https://doi.org/10.1108/01439911211249715.
  7. M. Tearle, Industry Guidance: Interim Storage of Higher Activity Waste Packages - Integrated Approach, Effective from January 2017, 2016.
  8. R. Smith, E. Cucco, C. Fairbairn, Robotic development for the nuclear environment: challenges and strategy, Robotics 9 (2020) 94, https://doi.org/10.3390/robotics9040094.
  9. I. Tsitsimpelis, A. West, M. Licata, M.D. Aspinall, A. Jazbec, L. Snoj, P.A. Martin, B. Lennox, M.J. Joyce, Simultaneous, robot-compatible γ-ray spectroscopy and imaging of an operating nuclear reactor, IEEE Sensor. J. 21 (2021) 5434-5443, https://doi.org/10.1109/jsen.2020.3035147.
  10. B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson, X. Poteau, A robot to monitor nuclear facilities: using autonomous radiation-monitoring assistance to reduce risk and cost, IEEE Robot. Autom. Mag. 26 (2019) 35-43, https://doi.org/10.1109/mra.2018.2879755.
  11. R. Guzman, R. Navarro, J. Ferre, M. Moreno, RESCUER: development of a modular chemical, biological, radiological, and nuclear robot for intervention, sampling, and situation awareness, J. Field Robot. 33 (2015) 931-945, https://doi.org/10.1002/rob.21588.
  12. R.B. Anderson, M. Pryor, S. Landsberger, Mobile Robotic Radiation Surveying Using Recursive Bayesian Estimation, IEEE 15th Int. Conf. Autom. Sci. Eng., IEEE, 2019, https://doi.org/10.1109/coase.2019.8843064, 2019.
  13. A. West, I. Tsitsimpelis, M. Licata, A. Jazbec, L. Snoj, M.J. Joyce, B. Lennox, Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot, Sci. Rep. 11 (2021), https://doi.org/10.1038/s41598-021-93474-4.
  14. F.E. Schneider, J. Welle, D. Wildermuth, M. Ducke, Unmanned multi-robot CBRNE reconnaissance with mobile manipulation System description and technical validation, in: Proc. 13th Int. Carpathian Control Conf., IEEE, 2012, https://doi.org/10.1109/carpathiancc.2012.6228724.
  15. K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma, Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots, J. Field Robot. 30 (2012) 44-63, https://doi.org/10.1002/rob.21439.
  16. M. Nancekievill, S. Watson, P.R. Green, B. Lennox, Radiation tolerance of commercial-off-the-shelf components deployed in an underground nuclear decommissioning embedded system. IEEE Radiat. Eff. Data Work., IEEE, 2016, https://doi.org/10.1109/NSREC.2016.7891730, 2016.
  17. C. Ducros, G. Hauser, N. Mahjoubi, P. Girones, L. Boisset, A. Sorin, E. Jonquet, J.M. Falciola, A. Benhamou, RICA: a tracked robot for sampling and radiological characterization in the nuclear field, J. Field Robot. 34 (2016) 583-599, https://doi.org/10.1002/rob.21650.
  18. R. Merl, P. Graham, A low-cost, radiation-hardened single-board computer for command and data handling, in: IEEE Aerosp. Conf. Proc., IEEE Computer Society, 2016, https://doi.org/10.1109/AERO.2016.7500849.
  19. R. Ginosar, Survey of processors for space, in: DASIA 2012 - DAta Syst. Aerosp., 2012, p. 10.
  20. A. Griffiths, A. Dikarev, P.R. Green, B. Lennox, X. Poteau, S. Watson, AVEXIS - Aqua vehicle explorer for in-situ sensing, IEEE Robot. Autom. Lett. 1 (2016) 282-287, https://doi.org/10.1109/lra.2016.2519947.
  21. M. Nancekievill, J. Espinosa, S. Watson, B. Lennox, A. Jones, M.J. Joyce, J. Katakura, K. Okumura, S. Kamada, M. Katoh, K. Nishimura, Detection of simulated Fukushima Daichii fuel Debris using a remotely operated vehicle at the Naraha test facility, Sensors 19 (2019) 4602, https://doi.org/10.3390/s19204602.
  22. G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou, D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, G. Furano, High-performance embedded computing in space: evaluation of platforms for vision-based navigation, J. Aero. Inf. Syst. 15 (2018) 178-192, https://doi.org/10.2514/1.i010555.
  23. K. Nagatani, S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, Y. Hada, Redesign of rescue mobile robot quince - toward emergency response to the nuclear accident at Fukushima Daiichi nuclear power station on March 2011, in: 9th IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR, 2011, pp. 13-18, https://doi.org/10.1109/SSRR.2011.6106794, 2011.
  24. F.G.H. Leite, R.B.B. Santos, N.E. Araujo, K.H. Cirne, N.H. Medina, V.A.P. Aguiar, R.C. Giacomini, N. Added, F. Aguirre, E.L.A. MacChione, F. Vargas, M.A.G. Da Silveira, Ionizing radiation effects on a COTS low-cost RISC microcontroller, in: Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS, Institute of Electrical and Electronics Engineers Inc., 2017, pp. 1-4, https://doi.org/10.1109/RADECS.2016.8093215.
  25. Q. Zhao, T. Wang, T. Zhang, J. Chen, γ-Ray irradiation test of control system of nuclear emergency rescue robot. 2014 4th IEEE Int. Conf. Inf. Sci. Technol., 2014, https://doi.org/10.1109/ICIST.2014.6920587. IEEE.
  26. AAEON, UP Core Specifications, (n.d.). https://up-board.org/upcore/specifications/.
  27. O. Gutierrez, M. Prieto, A. Sanchez-Reyes, A. Gomez, TID Characterization of COTS Parts Using Radiotherapy Linear Accelerators, IEICE Electron. Express, 2019, https://doi.org/10.1587/elex.16.20190077.
  28. K. Groves, A. West, K. Gornicki, S. Watson, J. Carrasco, B. Lennox, MallARD: an autonomous aquatic surface vehicle for inspection and monitoring of wet nuclear storage facilities, Robotics 8 (2019), https://doi.org/10.3390/ROBOTICS8020047.
  29. Sellafield Ltd, The 2017/18 Technology Development and Delivery Summary, 2018.
  30. B. Bird, M. Nancekievill, A. West, J. Hayman, C. Ballard, W. Jones, S. Ross, T. Wild, T. Scott, B. Lennox, Vega - A small, low cost, ground robot for nuclear decommissioning, J. Field Robot. (2021), https://doi.org/10.1002/rob.22048.
  31. P. Wady, A. Wasilewski, L. Brock, R. Edge, A. Baidak, C. McBride, L. Leay, A. Griffiths, C. Valles, Effect of ionising radiation on the mechanical and structural properties of 3D printed plastics, Addit. Manuf. 31 (2020) 100907, https://doi.org/10.1016/j.addma.2019.100907.
  32. M. Haji-Saeid, M.H.O. Sampa, A.G. Chmielewski, Radiation treatment for sterilization of packaging materials, Radiat. Phys. Chem. 76 (2007) 1535-1541, https://doi.org/10.1016/j.radphyschem.2007.02.068.
  33. Department of Defense, Environmental Test Methods for Microcircuits Part 1: Test Methods 1000-1999, 2019.
  34. E.S.C. Coordination, Total Dose Steady-state Irradiation Test Method, 2016.
  35. C. Lee, G. Cho, T. Unruh, S. Hur, I. Kwon, Integrated circuit design for radiation-hardened charge-sensitive amplifier survived up to 2 Mrad, Sensors 20 (10) (2020) 2765, https://doi.org/10.3390/s20102765.
  36. S. Seltzer, XCOM-photon Cross Sections Database 8, NIST Standard Reference Database, 1987, https://doi.org/10.18434/T48G6X.