DOI QR코드

DOI QR Code

Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy

  • Kim, Sung Hun (Center for Proton Therapy, National Cancer Center) ;
  • Jeong, Jong Hwi (Center for Proton Therapy, National Cancer Center) ;
  • Ku, Youngmo (Department of Nuclear Engineering, Hanyang University) ;
  • Jung, Jaerin (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • Received : 2020.07.10
  • Accepted : 2021.12.20
  • Published : 2022.06.25

Abstract

The maximum dose delivery at the end of the beam range provides the main advantage of using proton therapy. The range of the proton beam, however, is subject to uncertainties, which limit the clinical benefits of proton therapy and, therefore, accurate in vivo verification of the beam range is desirable. For the beam range verification in spot scanning proton therapy, a prompt gamma detection system, called as gamma electron vertex imaging (GEVI) system, is under development and, in the present study, the performance of the GEVI system in spot scanning proton therapy was predicted with Geant4 Monte Carlo simulations in terms of shift detection sensitivity, accuracy and precision. The simulation results indicated that the GEVI system can detect the interfractional range shifts down to 1 mm shift for the cases considered in the present study. The results also showed that both the evaluated accuracy and precision were less than 1-2 mm, except for the scenarios where we consider all spots in the energy layer for a local shifting. It was very encouraging results that the accuracy and precision satisfied the smallest distal safety margin of the investigated beam energy (i.e., 4.88 mm for 134.9 MeV).

Keywords

Acknowledgement

This research was supported by the National Cancer Center Grants (NCC-2110390-2), Korea.

References

  1. H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012), https://doi.org/10.1088/0031-9155/57/11/R99.
  2. A.C. Knopf, A. Lomax, In vivo proton range verification: a review, Phys. Med. Biol. 58 (2013) 131-160, https://doi.org/10.1088/0031-9155/58/15/R131.
  3. L. Sulak, T. Armstrong, H. Baranger, M. Bregman, M. Levi, D. Mael, J. Strait, T. Bowen, A.E. Pifer, P.A. Polakos, H. Bradner, A. Parvulescu, W.V. Jones, J. Learned, Experimental studies of the acoustic signature of proton beams traversing fluid media, Nucl. Instrum. Methods 161 (1979) 203-217, https://doi.org/10.1016/0029-554X(79)90386-0.
  4. S.C. Krejcarek, P.E. Grant, J.W. Henson, N.J. Tarbell, T.I. Yock, Physiologic and radiographic evidence of the distal edge of the proton beam in craniospinal irradiation, Int. J. Radiat. Oncol. Biol. Phys. 68 (2007) 646-649, https://doi.org/10.1016/j.ijrobp.2007.02.021.
  5. M. Yamaguchi, K. Torikai, N. Kawachi, H. Shimada, T. Satoh, Y. Nagao, S. Fujimaki, M. Kokubun, S. Watanabe, T. Takahashi, K. Arakawa, T. Kamiya, T. Nakano, Erratum: beam range estimation by measuring bremsstrahlung (physics in medicine and biology (2012) 57 (2843, Phys. Med. Biol. 61 (2016) 3638-3644, https://doi.org/10.1088/0031-9155/61/9/3638.
  6. K. Parodi, T. Bortfeld, Physics in Medicine & Biology Related Content Proton Dose Monitoring with PET : Quantitative Studies in Lucite Proton Dose Monitoring with PET : Quantitative Studies in Lucite, 1996.
  7. C.H. Min, C.H. Kim, M.Y. Youn, J.W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 (2006) 2-5, https://doi.org/10.1063/1.2378561.
  8. A.C. Kraan, Range verification methods in particle therapy: underlying physics and Monte Carlo modelling, Front. Oncol. 5 (2015) 1-27, https://doi.org/10.3389/fonc.2015.00150.
  9. K. Parodi, On- and off-line monitoring of ion beam treatment, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 809 (2016) 113-119, https://doi.org/10.1016/j.nima.2015.06.056.
  10. J. Krimmer, D. Dauvergne, J.M. Letang, Testa, Prompt-gamma monitoring in hadrontherapy: a review, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 878 (2018) 58-73, https://doi.org/10.1016/j.nima.2017.07.063.
  11. J. Smeets, F. Roellinghoff, D. Prieels, F. Stichelbaut, A. Benilov, P. Busca, C. Fiorini, R. Peloso, M. Basilavecchia, T. Frizzi, J.C. Dehaes, A. Dubus, Prompt gamma imaging with a slit camera for real-time range control in proton therapy, Phys. Med. Biol. 57 (2012) 3371-3405, https://doi.org/10.1088/0031-9155/57/11/3371.
  12. D. Kim, H. Yim, J.W. Kim, Pinhole camera measurements of prompt gamma-rays for detection of beam range variation in proton therapy, J. Kor. Phys. Soc. 55 (2009) 1673-1676, https://doi.org/10.3938/jkps.55.1673.
  13. D.B. Everett, J.S. Fleming, R.W. Todd, J.M. Nightingale, Gamma-radiation imaging system based on the Compton effect, Proc. Inst. Electr. Eng. 124 (1977) 995-1000, https://doi.org/10.1049/piee.1977.0203.
  14. C. Golnik, F. Hueso-Gonzalez, A. Muller, P. Dendooven, W. Enghardt, F. Fiedler, T. Kormoll, K. Roemer, J. Petzoldt, A. Wagner, G. Pausch, Range assessment in particle therapy based on prompt g-ray timing measurements, Phys. Med. Biol. 59 (2014) 5399-5422, https://doi.org/10.1088/0031-9155/59/18/5399.
  15. J. Krimmer, G. Angellier, L. Balleyguier, D. Dauvergne, N. Freud, J. Herault, J.M. Letang, H. Mathez, M. Pinto, E. Testa, Y. Zoccarato, A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration, Appl. Phys. Lett. 110 (2017), https://doi.org/10.1063/1.4980103.
  16. J.M. Verburg, H.A. Shih, J. Seco, Simulation of prompt gamma-ray emission during proton radiotherapy, Phys. Med. Biol. 57 (2012) 5459-5472, https://doi.org/10.1088/0031-9155/57/17/5459.
  17. C. Richter, G. Pausch, S. Barczyk, M. Priegnitz, I. Keitz, J. Thiele, J. Smeets, F. Vander Stappen, L. Bombelli, C. Fiorini, L. Hotoiu, I. Perali, D. Prieels, W. Enghardt, M. Baumann, First clinical application of a prompt gamma based in vivo proton range verification system, Radiother. Oncol. 118 (2016) 232-237, https://doi.org/10.1016/j.radonc.2016.01.004.
  18. Y. Xie, E.H. Bentefour, G. Janssens, J. Smeets, F. Vander Stappen, L. Hotoiu, L. Yin, D. Dolney, S. Avery, F. O'Grady, D. Prieels, J. McDonough, T.D. Solberg, R.A. Lustig, A. Lin, B.K.K. Teo, Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 210-218, https://doi.org/10.1016/j.ijrobp.2017.04.027.
  19. C.H. Kim, J.H. Park, H. Seo, H.R. Lee, Gamma electron vertex imaging and application to beam range verification in proton therapy, Med. Phys. 39 (2012) 1001-1005, https://doi.org/10.1118/1.3662890.
  20. C.H. Kim, H.R. Lee, S.H. Kim, J.H. Park, S. Cho, W.G. Jung, Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: experimental results, Appl, Phys. Lett. 113 (2018), https://doi.org/10.1063/1.5039448.
  21. H.R. Lee, S.H. Kim, J.H. Park, W.G. Jung, H. Lim, C.H. Kim, Prototype system for proton beam range measurement based on gamma electron vertex imaging, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 857 (2017) 82-97, https://doi.org/10.1016/j.nima.2017.03.022.
  22. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitrosi, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in GEANT4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125.
  23. H.Q. Tan, J.H. Phua, L. Tan, K.W. Ang, J. Lee, A.A. Bettiol, Geant4 simulation for commissioning of proton therapy centre, World Congr. Med. Phys. Biomed. Eng. (2018) 583-587, 2019.
  24. L. Nenoff, M. Priegnitz, G. Janssens, J. Petzoldt, P. Wohlfahrt, A. Trezza, J. Smeets, G. Pausch, C. Richter, Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification, Radiother. Oncol. 125 (2017) 534-540, https://doi.org/10.1016/j.radonc.2017.10.013.
  25. S.H. Kim, J.H. Park, Y. Ku, H.S. Lee, Y. Kim, C.H. Kim, J.H. Jeong, Improvement of statistics in proton beam range measurement by merging prompt gamma distributions: a preliminary study, J. Radiat. Prot. Res. (2019), https://doi.org/10.14407/jrpr.2019.44.1.1.