DOI QR코드

DOI QR Code

Reprocessing of spent nuclear fuel in carbonate media: Problems, achievements, and prospects

  • Stepanov, Sergei I. (Mendeleev University of Chemical Technology) ;
  • Boyarintsev, Alexander V. (Mendeleev University of Chemical Technology)
  • Received : 2020.10.18
  • Accepted : 2022.01.04
  • Published : 2022.07.25

Abstract

The review discusses various alternative approaches for spent nuclear fuel (SNF) reprocessing in aqueous carbonate media. The main stages, schemes, and methods of the most well-known and well-described processes for reprocessing SNF and some high-level radioactive waste using carbonate systems developed by research groups in Japan, the United States of America, the Republic of Korea, and the Russian Federation described and compared. The main advantages of such methods are outlined compared to the SNF reprocessing in nitric acid media. The levels of development and proximity of the designed processes to the industrial implementation are shown. The main principle achievements, prospects, and routes for the refinement of such methods for the technology of SNF reprocessing and handling of high-level radioactive waste formulated.

Keywords

Acknowledgement

The Mendeleev University of Chemical Technology financially supported the reported study.

References

  1. V.I. Zemlyanuhin, E.I. Ilvenko, A.N. Kondratev, L.N. Lazarev, A.F. Tsarenko, L.G. Tsaritsyna, Radiochemical Reprocessing of Nuclear Fuel from NPP, second ed., Energoatomizdat, Moscow, 1983 (in Russian).
  2. B.Ya Zilberman, Development of the Purex process for reprocessing highburnup fuel from nuclear power plants in a closed NFC from the standpoint of localizing long-lived radionuclides, Radiochemistry 42 (1) (2000) 3-15 (in Russian).
  3. B.Ya Zilberman, Y.A. Puzikov, D. V Ryabkov, M.N. Makarychev-Mikhailov, A.Yu Shadrin, YuS. Fedorov, V.A. Simonenko, Development, analysis, and simulation of a technological structure for reprocessing irradiated nuclear fuel from nuclear power plants by water-extraction methods, At. Energy 107 (5) (2009) 333-347, https://doi.org/10.1007/s10512-010-9233-z.
  4. S. Iso, Y. Meguro, Z. Yoshida, Supercritical carbon dioxide fluid extraction of uranium and fission product elements in nitric acid solution with tributylphosphate, in: Z. Yoshida, T. Kimura, Y. Meguro (Eds.), Recent Progress in Actinides Separation Chemistry, World Scientific Publishing Co. Ptc. Ltd., London, 1994, pp. 238-246, https://doi.org/10.1142/9789814530965.
  5. M.D. Samsonov, T.I. Trofimov, S.E. Vinokurov, S.C. Lee, B.F. Myasoedov, C.M. Wai, Dissolution of actinide oxides in supercritical fluid carbon dioxide, containing various organic ligands, J. Nucl. Sci. Technol. 39 (3) (2002) 263-266, https://doi.org/10.1080/00223131.2002.10875458.
  6. S.I. Stepanov, Radiochemical Reprocessing of Spent Nuclear Fuel, Part 2. Dry Reprocessing Methods, Mendeleev University of Chemical Technology, Moscow, 2013 (in Russian).
  7. K. Mizuguchi, Y. Shoji, N. Kondo, Reprocessing Method and Device of Spent Oxide Fuel, 2000. Patent JP2000155193A.
  8. Y. Guoan, O. Yinggen, W. Changshui, L. Lisheng, C. Shang, L. Chang, H. Hu, G. Jianhua, L. Ruixue, G. Wei, H. Fanxing, Oxide spent fuel dry after treatment-based novel molten salt system, 2011. Patent CN101994132A.
  9. T.R. Griffiths, V.A. Volkovich, S.M. Yakimov, I. May, C.A. Sharrad, J.M. Charnock, Reprocessing spent nuclear fuel using molten carbonates and subsequent precipitation of rare earth fission products using phosphate, J. Alloys Compd. 418 (1-2) (2006) 116-121, https://doi.org/10.1016/j.jallcom.2005.10.060.
  10. H.C. Eun, Y.Z. Cho, H.S. Park, I.T. Kim, H.S. Lee, Study on a separation method of radionuclides (Ba, Sr) from LiCl salt wastes generated from the electro-reduction process of spent nuclear fuel, J. Radioanal. Nucl. Chem. 292 (2) (2012) 531-535, https://doi.org/10.1007/s10967-011-1438-7.
  11. H. Tomiyasu, Y. Asano, Environmentally acceptable nuclear fuel cycle - development of a new reprocessing system, Prog. Nucl. Energy 32 (3) (1998) 421-427, https://doi.org/10.1016/S0149-1970(97)00037-1.
  12. G.S. Goff, L.F. Brodnax, M.R. Cisneros, K.S. Williamson, F.L. Taw, I. May, W. Runde, Development of a novel alkaline based process for spent nuclear fuel recycling, in: AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City, United States, 2007. November 4-9.
  13. K.W. Kim, Y.H. Kim, S.M. Kim, H.S. Seo, D.Y. Chung, H.B. Yang, J.K. Lim, K.S. Joe, E.H. Lee, A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media, in: NRC 7, Budapest, Hungary, 2008. August 24-29.
  14. S.I. Stepanov, A.M. Chekmarev, Concept of spent nuclear fuel reprocessing, Dokl. Chem. 423 (1) (2008) 276-278, https://doi.org/10.1134/S0012500808110037.
  15. C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, J.W. Chenault, K.J. Carson, S.M. Peper, Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide, Ind. Eng. Chem. Res. 50 (2011) 1813-1818, https://doi.org/10.1021/ie101386n.
  16. C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, S.C. Smith, S.M. Peper, Compositions and Methods for Treating Nuclear Fuel, 2013. Patent US8506911B2.
  17. I.V. Smirnov, M.D. Karavan, M.V. Logunov, I.G. Tananaev, B.F. Myasoedov, Extraction of radionuclides from alkaline and carbonate media, Radiochemistry 60 (5) (2018) 470-487, https://doi.org/10.1134/S1066362218050028.
  18. I.G. Tananaev, B.F. Myasoedov, Commercial recovery of valuable radionuclides from spent nuclear fuel: methods and approaches, Radiochemistry 58 (3) (2016) 257-264, https://doi.org/10.1134/S1066362216030061.
  19. G.S. Batorshin, S.N. Kirillov, I.S. Smirnov, G.A. Sarychev, I.G. Tananaev, O.V. Fedorova, B.F. Myasoedov, Integrated separation of valuable components from technogenic radioactive waste as an option to create a cost-effective nuclear fuel cycle, Radiat. Saf. Issues. 3 (79) (2015) 30-36 (in Russian).
  20. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions, J. Nucl. Sci. Technol. 38 (10) (2001) 866-871, https://doi.org/10.1080/18811248.2001.9715107.
  21. K.W. Kim, D.Y. Chung, H.B. Yang, J.K. Lim, E.H. Lee, K.C. Song, K. Song, A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nucl. Technol. 166 (2) (2009) 170-179, https://doi.org/10.13182/NT09-A7403.
  22. C.Z. Soderquist, B.K. McNamara, B. Oliver, Dissolution of uranium metal without hydride formation or hydrogen gas generation, J. Nucl. Mater. 378 (4) (2008) 299-304, https://doi.org/10.1016/j.jnucmat.2008.05.014.
  23. S.M. Peper, L.F. Brodnax, S.E. Field, R.A. Zehnder, S.N. Valdez, W.H. Runde, Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Ind. Eng. Chem. Res. 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y.
  24. S.C. Smith, S.M. Peper, M. Douglas, K.L. Ziegelgruber, E.C. Finn, Dissolution of uranium oxides under alkaline oxidizing conditions, J. Radioanal. Nucl. Chem. 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8.
  25. K.W. Kim, D.Y. Chung, H.B. Yang, G.I. Park, E.H. Lee, K. Song, K.C. Song, An oxidative leaching of uranium in a H2O2-CO32- system for a recovery of U alone from spent fuel without TRU, in: GLOBAL 2009 Congress: the Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives, Paris, France, 2009. September 6-11.
  26. D.Y. Chung, H.S. Seo, J.W. Lee, H.B. Yang, E.H. Lee, K.W. Kim, Oxidative leaching of uranium from SIMFUEL using Na2CO3-H2O2 solution, J. Radioanal. Nucl. Chem. 284 (2010) 123-129, https://doi.org/10.1007/s10967-009-0443-6.
  27. G.S. Goff, K.M. Long, S.D. Reilly, G.D. Jarvinen, W.H. Runde, Americium/ Lanthanide separation in alkaline solution for advanced nuclear fuel cycles, in: 36th Actinide Separations Conference, Chattanooga, United States, 2012, 22, 5.
  28. A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Chekmarev, A.Yu Tsivadze, Reprocessing of simulated voloxidized uranium oxide SNF in the CARBEX process, Nucl. Eng. Technol. 51 (7) (2019) 1799-1804, https://doi.org/10.1016/j.net.2019.05.020.
  29. C.Z. Soderquist, B. Hanson, Dissolution of spent nuclear fuel in carbonate-peroxide solution, J. Nucl. Mater. 396 (2-3) (2010) 159-162, https://doi.org/10.1016/j.jnucmat.2009.11.001.
  30. K.W. Kim, J.W. Lee, D.Y. Chung, E.H. Lee, K.H. Kang, K.W. Lee, K.C. Song, M.J. Yoo, G.I. Park, J.K. Moon, Preparation of uranium oxide powder for nuclear fuel pellet fabrication with uranium peroxide recovered from uranium oxide scraps by using a carbonate-hydrogen peroxide solution, J. Radioanal. Nucl. Chem. 292 (2012) 909-916, https://doi.org/10.1007/s10967-011-1534-8.
  31. K.W. Kim, J.T. Hyun, E.H. Lee, G.I. Park, K.W. Lee, M.J. Yoo, K.C. Song, J.K. Moon, Recovery of uranium from (U,Gd)O2 nuclear fuel scrap using dissolution and precipitation in carbonate media, J. Nucl. Mater. 418 (2011) 93-97, https://doi.org/10.1016/j.jnucmat.2011.06.019.
  32. K.W. Kim, K.W. Lee, D. Chung, H.B. Yang, K.W. Lee, J. Moon, Process for the Recovery Uranium Oxide into a (U,Gd)O2 Waste Using a Carbonate Solution Containing Hydrogen Peroxide, 2019. Patent FR2973557B1.
  33. E.H. Lee, H.B. Yang, K.Y. Lee, K.W. Kim, D.Y. Chung, J.K. Moon, Removal of uranium by an alkalization and an acidification from the thermal decomposed solid waste of uranium-bearing sludge, J. Korean Radioact. Waste Soc. 11 (2) (2013) 85-93, https://doi.org/10.7733/jkrws.2013.11.2.85.
  34. E.H. Lee, K.Y. Lee, D.Y. Chung, K.W. Lee, J.K. Moon, Removal of uranium from U-bearing lime-precipitate using dissolution and precipitation methods, J. Korean Radioact. Waste Soc. 10 (2) (2012) 77-85, https://doi.org/10.7733/jkrws.2012.10.2.077 (in Korean).
  35. B. Kweto, D.R. Groot, E. Stassen, J. Suthiram, J.R. Zeevaart, Kinetic study of uranium residue dissolution in ammonium carbonate media, J. Radioanal. Nucl. Chem. 302 (2014) 131-137, https://doi.org/10.1007/s10967-014-3396-3.
  36. L. Stassen, J. Suthiram, Initial development of an alkaline process for recovery of uranium from 99Mo production process waste residue, J. Radioanal. Nucl. Chem. 305 (2015) 41-50, https://doi.org/10.1007/s10967-015-3974-z.
  37. K. Frackiewicz, K. Kiegiel, I. Herdzik-Koniecko, E. Chajduk, G. Zakrzewska-Trznadel, S. Wolkowicz, J. Chwastowska, I. Bartosiewicz, Extraction of uranium from low-grade polish ores: dictyonemic shales and sandstones, Nukleonika 58 (4) (2012) 451-459.
  38. D.W. Shoesmith, Fuel corrosion processes under waste disposal conditions, J. Nucl. Mater. 282 (1) (2000) 1-31, https://doi.org/10.1016/S0022-3115(00)00392-5.
  39. Z. Zhu, J.J. Noel, D.W. Shoesmith, Hydrogen peroxide decomposition on simulated nuclear fuel bicarbonate/carbonate solutions, Electrochim. Acta 340 (2020) 135980, https://doi.org/10.1016/j.electacta.2020.135980.
  40. E. Ekeroth, M. Jonsson, Oxidation of UO2 by radiolytic oxidants, J. Nucl. Mater. 322 (2-3) (2003) 242-248, https://doi.org/10.1016/j.jnucmat.2003.07.001.
  41. O. Roth, T. Bonnemark, M. Jonsson, The influence of particle size on the kinetics of UO2 oxidation in aqueous powder suspensions, J. Nucl. Mater. 353 (1-2) (2006) 75-79, https://doi.org/10.1016/j.jnucmat.2006.03.005.
  42. E. Ekeroth, O. Roth, M. Jonsson, The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2, J. Nucl. Mater. 355 (1-3) (2006) 38-46, https://doi.org/10.1016/j.jnucmat.2006.04.001.
  43. M.M. Hossain, E. Ekeroth, M. Jonsson, Effects of HCO3- on the kinetics of UO2 oxidation by H2O2, J. Nucl. Mater. 358 (2-3) (2006) 202-208, https://doi.org/10.1016/j.jnucmat.2006.07.008.
  44. M.M. Hossain, M. Jonsson, UO2 oxidation site densities determined by one-and two-electron oxidants, J. Nucl. Mater. 373 (1-3) (2008) 186-189, https://doi.org/10.1016/j.jnucmat.2007.05.042.
  45. O. Roth, M. Jonsson, On the impact of reactive solutes on radiation induced oxidative dissolution of UO2, J. Nucl. Mater. 385 (3) (2009) 595-600, https://doi.org/10.1016/j.jnucmat.2009.01.030.
  46. K. Ueno, A. Saito, Extraction of several elements with trioctylmonomethylammonium chloride, Anal. Chim. Acta 56 (3) (1971) 427-434, https://doi.org/10.1016/S0003-2670(01)80932-6.
  47. E.S. Palypin, V.V. Nekrasov, L.A. Ivanova, Z.K. Karalova, B.F. Myasoyedov, Extraction of americium and europium from alkali solutions by quaternary ammonium compounds in the presence of alpha-hydroxy-carboxylic acids, J. Anal. Chem. 33 (5) (1978) 878-883 (in Russian).
  48. Z.K. Karalova, V.V. Nekrasova, Z.I. Pyzhova, L.M. Rodionova, B.F. Myasoedov, Extraction separation of actinium, americium and europium from alkali solutions by quaternary ammonium compounds, Sov. Radiochem. 20 (6) (1978) 845-850 (in Russian).
  49. Z.K. Karalova, L.M. Rodionova, Z.I. Pyzhova, B.F. Myasoyedov, Investigation of actinium, americium and europium extraction from alkaline solutions by quaternary ammonium compounds in the presence of complexones, Sov. Radiochem. 21 (3) (1979) 394-399 (in Russian).
  50. Z.K. Karalova, L.M. Rodionova, Z.I. Pyzhova, B.F. Myasoyedov, Actinium and europium extraction by aliquate 336-OH from alkaline solutions in the presence of oxycomplexes, Sov. Radiochem. 22 (1) (1980) 107-110 (in Russian).
  51. Z.K. Karalova, L.M. Rodionova, B.F. Myasoyedov, Americium and europium extraction by aliquate 336×OH and alkylpyrocatechol from alkaline solutions in the presence of alkylphosphonic complexones, Sov. Radiochem. 24 (2) (1982) 210-213 (in Russian).
  52. Z.K. Karalova, B.F. Myasoyedov, V.V. Nekrasova, Solvent extraction of elements from alkaline solutions, J. Anal. Chem. 34 (9) (1979) 1834-1840 (in Russian).
  53. B.F. Myasoedov, Z.K. Karalova, V.V. Nekrasova, L.M. Rodionova, Extraction of actinides and lanthanides from alkaline solutions by quaternary ammonium bases and alkylpyrocatechols, J. Inorg. Nucl. Chem. 42 (10) (1980) 1495-1499, https://doi.org/10.1016/0022-1902(80)80119-9.
  54. Z.K. Karalova, T.I. Bukina, B.F. Myasoyedov, Extraction of transplutonium elements from alkaline solutions, Sov. Radiochem. 27 (4) (1985) 450-455 (in Russian).
  55. Z.K. Karalova, T.I. Bukina, B.F. Myasoyedov, Use of alkaline solutions for extraction and separation of elements by extraction chromatography method, Sov. Radiochem. 27 (6) (1985) 751-761 (in Russian).
  56. B.F. Myasoyedov, Z.K. Karalova, L.A. Fedorov, V.V. Nekrasova, A.V. Karyakin, N.F. Efimova, On extraction mechanism of trivalent actinides and lanthanides with aliquate-336 and alkyl pyrocatechol in alkaline solutions, J. Inorg. Chem. 26 (6) (1981) 1633-1640 (in Russian).
  57. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Investigation of the behavior of europium and some actinide elements in alkaline tartrate solutions, Sov. Radiochem. 23 (2) (1981) 259-263 (in Russian).
  58. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Study of Am and Eu complex behavior in alkaline solutions by the solvent extraction method, Sov. Radiochem. 21 (6) (1979) 805-808 (in Russian).
  59. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Extraction of europium macroquantities from alkaline tartrate solutions by aliquate-336, Sov. Radiochem. 22 (4) (1980) 514-516 (in Russian).
  60. B.F. Myasoyedov, Z.K. Karalova, L.A. Fedorov, L.M. Rodionova, N.I. Grebenshchikov, Effect of complexing ligards on extraction mechanism of lanthanides by aliquate-336 from alkaline solutions, J. Inorg. Chem. 28 (3) (1983) 697-701 (in Russian).
  61. Y. Asano, K. Mizumachi, H. Tomiyasu, Method for Reprocessing Spent Nuclear Fuel under Mild Condition, 1997. Patent JPH09113681A.
  62. Y. Asano, N. Asanuma, T. Ito, M. Kataoka, S. Fujino, T. Yamamura, W. Sugiyama, H. Tomiyasu, K. Mizumachi, Y. Ikeda, Y. Wada, M. Asou, Study on a nuclear fuel reprocessing system based on the precipitation method in mild aqueous solutions, Nucl. Technol. 120 (3) (1997) 198-210, https://doi.org/10.13182/NT97-A35411.
  63. Y. Asano, H. Tomiyasu, New reprocessing system using the complex formation of hexavalent actinide ions with carbonate, in: Proceedings of the 2nd Japan-Korea Seminar of Advanced Reactors, Tokyo, Japan, 1996. October 15-17.
  64. N. Asanuma, Y. Asano, H. Tomiyasu, Concept of a new nuclear fuel reprocessing in non-acidic aqueous solutions, in: The 5th International Conference on Recycling, Conditioning and Disposal, Paris, France, 1998. October 25-28.
  65. G.S. Goff, F.L. Taw, S.M. Peper, L.F. Brodnax, S.E. Field, Separation of uranium from fission products in spent nuclear fuel using aqueous hydrogen peroxide-carbonate solutions, in: AIChE Annual Meeting, Nuclear Engineering Division, San Francisco, United States, 2006. November 12-17.
  66. G.S. Goff, L.F. Brodnax, M.R. Cisneros, W.H. Runde, Redox chemistry of actinides in peroxide-carbonate media: applications to developing a novel process for spent nuclear fuel reprocessing, in: AIChE Annual Meeting, Environmental Division, Salt Lake City, United States, 2007. November 4-9.
  67. G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scott, W.H. Runde, First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2 4-, in UO2-H2O2-K2CO3 solutions, Inorg. Chem. 47 (6) (2008) 1984-1990, https://doi.org/10.1021/ic701775g.
  68. G.D. Jarvinen, W.H. Runde, G.S. Goff, Development of alkaline solution separations for potential partitioning of used nuclear fuels, in: Proceedings of the Symposium on Emerging Trends in Separation Science and Technology, Kalpakkam, India, 2010. March 1-4.
  69. K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, K.S. Joe, E.H. Lee, J.S. Kim, K. Song, K.C. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (7) (2009) 2355-2361, https://doi.org/10.1021/es802951b.
  70. K.W. Kim, Y.H. Kim, S.Y. Lee, E.H. Lee, K.C. Song, K. Song, Study on electrolytic recoveries of carbonate salt and uranium from a uranyl peroxo carbonato complex solution generated from a carbonate-leaching process, Ind. Eng. Chem. Res. 48 (4) (2009) 2085-2092, https://doi.org/10.1021/ie800990r.
  71. E.H. Lee, J.K. Lim, D.Y. Chung, H.B. Yang, J. Yoo, K.W. Kim, The oxidative-dissolution behaviors of fission products in a Na2CO3-H2O2 solution, J. Radioanal. Nucl. Chem. 281 (3) (2010) 339-346, https://doi.org/10.1007/s10967-009-0018-6.
  72. K.W. Kim, E.H. Lee, D.Y. Chung, H.B. Yang, J.K. Lim, K.S. Cho, K.C. Song, K.S. Song, K.Y. Jee, Process for Recovering Isolated Uranium from Spent Nuclear Fuel Using a Highly Alkaline Carbonate Solution, 2010. Patent US7749469B2.
  73. N. Asanuma, M. Harada, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Y. Ikeda, Anodic dissolution of UO2 pellet containing simulated fission products in ammonium carbonate solution, J. Nucl. Sci. Technol. 43 (3) (2006) 255-262, https://doi.org/10.1080/18811248.2006.9711087.
  74. M. Nogami, S.Y. Kim, N. Asanuma, Y. Ikeda, Adsorption behavior of amidoxime resin for separating actinide elements from aqueous carbonate solutions, J. Alloys Compd. 374 (1-2) (2004) 269-271, https://doi.org/10.1016/j.jallcom.2003.11.099.
  75. S.I. Stepanov, A.M. Chekmarev, Reprocessing of spent nuclear fuel in carbonate media - a new direction in water-chemical technologies, Prog. Chem. Technol. 33 (1) (2019) 14-16 (in Russian).
  76. I.I. Gerin, G.N. Amelina, Chemistry of Thorium, Uranium, Plutonium, TPU, Tomsk, 2009 (in Russian).
  77. N. Asanuma, M. Harada, Y. Ikeda, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Simple reprocessing process based on anodic dissolution of fuels in aqueous carbonate solution and purification of U and Pu by amidoxime resins Global 2003: Atoms for Prosperity: Updating Eisenhowers Global Vision for Nuclear Energy. 696-701.
  78. N. Asanuma, M. Harada, Y. Ikeda, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Development of a simple reprocessing process based on dissolution of fuels in aqueous carbonate solutions: characterization of anodic dissolution, in: Proceedings of Annual/Fall Meetings of Atomic Energy Society of Japan, Shizuoka, Japan, 2003.
  79. N. Asanuma, M. Harada, Y. Ikeda, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Development of a simple reprocessing process based on dissolution of fuels in aqueous carbonate solutions: dissolution of U3O8 by anodic oxidation and by adding H2O2, in: Proceedings of Annual/Fall Meetings of Atomic Energy Society of Japan, Okayama, Japan, 2004.
  80. N. Asanuma, M. Harada, Y. Ikeda, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Development of a simple reprocessing process based on dissolution of fuels in aqueous carbonate solutions: investigation of processes based on dissolution of U3O8 by adding H2O2, in: Proceedings of Annual/Fall Meetings of Atomic Energy Society of Japan, Okayama, Japan, 2004.
  81. R.A. Leonard, C. Conner, M.W. Liberatore, J. Sedlet, S.B. Aase, G.F. Vandegrift, L.H. Delmau, P.V. Bonnesen, B.A. Moyer, Development of a solvent extraction process for cesium removal from SRS tank waste, Separ. Sci. Technol. 36 (5-6) (2001) 743-766, https://doi.org/10.1081/SS-100103618.
  82. B.A. Moyer, R.A. Sachleben, P.V. Bonnesen, D.J. Presley, Calixarene Crown Ether Solvent Composition and Use Thereof for Extraction of Cesium from Alkaline Waste Solutions, 2001. Patent US6174503B1.
  83. B.D. Roach, N.J. Williams, N.C. Duncan, L.H. Delmau, D.L. Lee, J.F. Birdwell Jr., B.A. Moyer, Radiolytic treatment of the next-generation caustic-side solvent extraction (NGS) solvent and its effect on the NGS process, Solvent Extr. Ion Exch. 33 (2) (2015) 134-151, https://doi.org/10.1080/07366299.2014.952531.
  84. S.K. Kim, G.I. Vargas-Zuniga, B.P. Hay, N.J. Young, L.H. Delmau, C. Masselin, C.H. Lee, J.S. Kim, V.M. Lynch, B.A. Moyer, J.L. Sessler, Controlling cesium cation recognition via cation metathesis within an ion pair receptor, J. Am. Chem. Soc. 134 (3) (2012) 1782-1792, https://doi.org/10.1021/ja209706x.
  85. N.C. Duncan, B.D. Roach, N.J. Williams, P.V. Bonnesen, A. Rajbanshi, B.A. Moyer, N,N'-Dicyclohexyl-N''-isotridecylguanidine as suppressor for the next generation caustic side solvent extraction (NG-CSSX) process, Separ. Sci. Technol. 47 (14-15) (2012), https://doi.org/10.1080/01496395.2012.697517, 2074-2087.
  86. V. Baran, F. Skvor, V. Vosecek, Formation of the ammonium-uranylcarbonate complexes of the type (NH4)4[UO2(CO3)3], prepared by precipitative re-extraction, Inorg. Chim. Acta. 81 (1984) 83-89, https://doi.org/10.1016/S0020-1693(00)88739-3.
  87. S. Chegrouche, A. Kebir, Study of ammonium uranyl carbonate re-extraction-crystallization process by ammonium carbonate, Hydrometallurgy 28 (2) (1992) 135-147, https://doi.org/10.1016/0304-386X(92)90126-K.
  88. B. Yahi, A. Kebir, Influence of process re-extraction-crystallization parameters on the properties of ammonium uranyl-tricarbonate crystals, Hydrometallurgy 34 (1) (1993) 65-78, https://doi.org/10.1016/0304-386X(93)90081-N.
  89. S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, Hen Vin So, A.M. Chekmarev, A.Yu Civadze, CARBEX process, a new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949, https://doi.org/10.1134/S1070363211090404, 1959.
  90. A.V. Boyarintsev, A.V. Goncharova, H.V. So, M.V. Vazhenkov, Y.O. Nazarov, A.M. Safiulina, S.I. Stepanov, A.M. Chekmarev, Extraction carbonate refining of uranium in the CARBEX process, in: 7th Russian Conference on Radiochemistry, Dimitrovgrad, Russia, 2012. October 15-19, (in Russian).
  91. S.I. Stepanov, A.M. Chekmarev, A.V. Boyarintsev, A.Y. Tsivadze, Recent progress in the development of carbonate-alkaline spent nuclear fuel reprocessing methods, in: 8th Russian Conference on Radiochemistry, Zheleznogorsk, Russia, 2015. September 28 - October 2, (in Russian).
  92. S.I. Stepanov, A.M. Chekmarev, A.V. Boyarintsev, A.Y. Tsivadze, Extraction refining of uranium in the CARBEX process according to laboratory tests, in: 8th Russian Conference on Radiochemistry, Zheleznogorsk, Russia, 2015. September 28 - October 2, (in Russian).
  93. L.M. Abashev, A.V. Boyarintsev, S.I. Stepanov, Extraction carbonate refining of uranium U(VI) in the CARBEX process, in: 7th Russian School of Radiochemistry and Nuclear Technology, Ozersk, Russia, 2016. September 12-16, (in Russian).
  94. S.I. Stepanov, A.M. Chekmarev, A.Y. Tsivadze, Development of carbonate-alkaline methods for spent nuclear fuel processing in Russia, in: 5th International Conference-School on Chemical Technology, Volgograd, Russia, May 16-20, 2016. (in Russian).
  95. A.V. Boyarintsev, L.M. Abashev, S.I. Stepanov, V.I. Zhilov, A.M. Chekmarev, A.Yu Tsivadze, Carbonate extraction-based refining of uranium. Separation of U(VI), Ce(IV) and Ln(III) from aqueous carbonate solutions with methyltrioktylammonium carbonate, Dokl. Chem. 473 (2) (2017) 70-73, https://doi.org/10.1134/S0012500817040024.
  96. S.I. Stepanov, A.M. Chekmarev, CARBEX application prospects in the reprocessing of FNR spent nuclear fuel, Iss. Nucl. Sci. Technol., Mater. Sci. New Mater. 2 (75) (2013) 108-115 (in Russian).
  97. Y.O. Nazarov, A.V. Boyarintsev, A.M. Safiulina, S.I. Stepanov, K.A. Slavinsky, Extraction of uranium(VI) and plutonium(VI) from carbonate solutions by methyltrialkylammonium carbonate, in: 6th Russian Conference on Radiochemistry, Ozersk, Russia, 2009. October 12-16, (in Russian).
  98. Y.O. Nazarov, A.V. Boyarintsev, A.M. Safiulina, S.I. Stepanov, A.M. Chekmarev, Solvent extraction of Pu(VI) from carbonate solutions by methyltrialkylammonium carbonate, Prog. Chem. Technol. 24 (8) (2010) 62-67 (in Russian).
  99. Y.O. Nazarov, A.M. Safiulina, S.I. Stepanov, A.M. Chekmarev, Solvent extraction of plutonium(VI) by quaternary ammonium carbonates from carbonate solutions, in: 4th Russian School of Radiochemistry and Nuclear Technology, Ozersk, Russia, 2010. September 6-10, (in Russian).
  100. M.V. Nikonov, I.G. Tananayev, B.F. Myasoyedov, Effect of hydrogen peroxide on precipitation of Pu(IV) in alkaline solution, Radiochemistry 52 (1) (2010) 27-30, https://doi.org/10.1134/S1066362210010066.
  101. S. Htun, A.V. Boyarintsev, M.M. Aung, H. Pyae, S.I. Stepanov, A.M. Chekmarev, Solvent extraction of uranium(VI) from fluoride-carbonate solutions by methyltrioctylammonium fluoride, Prog. Chem. Technol. 26 (6) (2012) 118-122 (in Russian).
  102. S.I. Stepanov, A.M. Chekmarev, A.V. Boyarintsev, A.Y. Tsivadze, CARBOFTOREX process - hydrochemical method for processing of fluorination ash, in: 8th Russian Conference on Radiochemistry, Zheleznogorsk, Russia, 2015. September 28 - October 2, (in Russian).
  103. A.V. Boyarintsev, S.I. Stepanov, A.M. Chekmarev, A.Y. Tsivadze, Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process, Nucl. Eng. Technol. 52 (1) (2020) 109-114, https://doi.org/10.1016/j.net.2019.06.025.
  104. Y. Kani, A. Sasahira, K. Hoshino, F. Kawamura, New reprocessing system for spent nuclear reactor fuel using fluoride volatility method, J. Fluor. Chem. 130 (1) (2009) 74-82, https://doi.org/10.1016/j.jfluchem.2008.07.006.