DOI QR코드

DOI QR Code

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Kyeongwon (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lemaire, Matthieu (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Nguyen, Tung Dong Cao (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Woonghee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2021.11.10
  • Accepted : 2022.02.05
  • Published : 2022.07.25

Abstract

STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20206510100040).

References

  1. J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, Prentice Hall, Upper Saddle River, NJ, 2001.
  2. J. Sterbentz, Q-value (MeV/fission) Determination for the Advanced Test Reactor, Idaho National Laboratory (INL), 2013. No. INL/EXT-13-29256.
  3. L. Ghasabyan, K. Mikityuk, J. Krepel, S. Pelloni, Use of Serpent Monte-Carlo code for development of 3D full-core models of Gen-IV fast spectrum reactors and preparation of safety parameters/cross-section data for transient analysis with FAST code system, in: Proceedings of International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, 2013. March.
  4. J.L. Peterson-Droogh, R.H. Howard, Current neutronic calculation techniques for modeling the production of Ir-192 in HFIR, in: Proceedings of the PHYSOR, Cancun, Mexico, 2018. April 22-26.
  5. K.S. Kim, K.T. Clarno, Y. Liu, X. Wang, W.R. Martin, B.S. Collins, Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power, Oak Ridge National Lab (ORNL), 2018. No. ORNL/SPR-2017/471.
  6. C. Liegeard, A. Calloo, G. Marleau, Impact of photon transport on power distribution, in: Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M&C 2017, Jeju, Korea, 2017. April 16-20.
  7. AREVA NP INC, The ARCADIA® Reactor Analysis System for PWRs Methodology Description and Benchmarking Results, Tech. rep., Areva NP Inc, 2010. March.
  8. J.T. David, ICRU report 85: Fundamental quantities and units for ionizing radiation, Radiat. Protect. Dosim. 150 (4) (2012) 550-552. https://doi.org/10.1093/rpd/ncs077
  9. R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santandrea, E. Martinolli, L. Villate, N. Schwartz, N. Guler, APOLLO2 year 2010, Nucl. Eng. Technol. 42 (5) (2010) 474-499. https://doi.org/10.5516/NET.2010.42.5.474
  10. R.J.J. Stamml'er, et al., HELIOS Methods, Studsvik Scandpower, 2003.
  11. H.N. M Gheorghiu, J. Rhodes, CASMO-5 gamma library, in: Proceedings of Advances in Nuclear Fuel Management IV, South Carolina, USA, 2009. April 12-15.
  12. B.A. Lindley, J.G. Hosking, P.J. Smith, D.J. Powney, B.S. Tollit, T.D. Newton, R. Perry, T.C. Ware, P.N. Smith, Current status of the reactor physics code WIMS and recent developments, Ann. Nucl. Energy 102 (2017) 148-157. https://doi.org/10.1016/j.anucene.2016.09.013
  13. S. Jae, N. Choi, H.G. Joo, Implementation and verification of explicit treatment of neutron/photon heating in nTRACER, in: Proceedings of ICAPP 2020, Abu Dhabi, UAE, 2020. March 15-19.
  14. X. Wang, Y. Liu, W. Martin, S. Stimpson, Implementation of 2D/1D gamma transport and gamma heating capability in MPACT, in: Proceedings of PHYSOR2020, Cambridge, UK, 2020. March 29 - April 02.
  15. G. Rimpault, D. Bernard, D. Blanchet, G.C. Vaglio, S. Ravaux, A. Santamarina, Needs of accurate prompt and delayed g-spectrum and multiplicity for Nuclear Reactor Designs, Phys. Procedia 31 (2012) 3-12. https://doi.org/10.1016/j.phpro.2012.04.002
  16. S. Choi, W. Kim, J. Choe, W. Lee, H. Kim, B. Ebiwonjumi, E. Jeong, K. Kim, D. Yun, H. Lee, D. Lee, Development of high-fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021), 107915. https://doi.org/10.1016/j.cpc.2021.107915
  17. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155. https://doi.org/10.1016/j.jcp.2016.11.007
  18. J. Choe, S. Choi, P. Zhang, J. Park, W. Kim, H.C. Shin, H.S. Lee, J.E. Jung, D. Lee, Verification and validation of STREAM/RAST-K for PWR analysis, Nucl. Eng. Technol. 51 (2) (2019) 356-368. https://doi.org/10.1016/j.net.2018.10.004
  19. B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, H.S. Lee, Verification and validation of radiation source term capabilities in STREAM, Ann. Nucl. Energy 124 (2019) 80-87. https://doi.org/10.1016/j.anucene.2018.09.034
  20. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011), 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
  21. A.C. Kahler III, R. Macfarlane, NJOY2016, Los Alamos National Lab (LANL), NJOY, NJOY16; 005075MLTPL00, Los Alamos, NM (United States), 2016.
  22. B.A. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, Revision 4, CASL Technical Report, 2014. CASL-U-2012-0131-004.
  23. H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, D. Lee, MCSeA Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020), 107276. https://doi.org/10.1016/j.anucene.2019.107276
  24. K. Kim, M. Lemaire, N.N.T. Mai, W. Kim, D. Lee, Generation of a multigroup gamma production and photon transport library for STREAM, in: Transactions of the Korean Nuclear Society Virtual Spring Meeting, 2020. July 09-10.
  25. R.E. Macfarlane, D.W. Muir, D. C George, NJOY99.0 Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data, Los Alamos National Laboratory, 2000. PSR-480.
  26. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150. https://doi.org/10.1016/j.anucene.2014.08.024
  27. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97. https://doi.org/10.1016/j.anucene.2014.07.048
  28. B. Kouchunas, D. Jabaay, T. Downar, B.S. Collins, S.G. Stimpson, A.T. Godfrey, K.S. Kim, J.C. Gehin, S. Palmtag, F. Franceschini, Validation and Application of the 3D Neutron Transport MPACT within CASL VERA-CS, Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States), 2015.
  29. R. Tuominen, V. Valtavirta, J. Leppanen, New energy deposition treatment in the Serpent 2 Monte Carlo transport code, Ann. Nucl. Energy 129 (2019) 224-232. https://doi.org/10.1016/j.anucene.2019.02.003
  30. OpenMC User's Guide, https://github.com/openmc-dev/openmc/blob/develop/docs/source/io_formats/settings.rst.
  31. M. Herman, A. Trkov, ENDF-6 Formats Manual, Brookhaven National Laboratory, 2009.
  32. The NJOY Nuclear Data Processing System, 2016. Version, https://github.com/njoy/NJOY2016-manual/raw/master/njoy16.pdf.
  33. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  34. S. Choi, D. Lee, Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation, Comput. Phys. Commun. 260 (2021), 107332. https://doi.org/10.1016/j.cpc.2020.107332
  35. J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemaire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy 114 (2018) 495-509. https://doi.org/10.1016/j.anucene.2017.12.054
  36. J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system, Nucl. Eng. Technol. 52 (4) (2020) 661-673. https://doi.org/10.1016/j.net.2019.09.007
  37. H. Lee, E. Jeong, H. Lee, H.C. Lee, D. Lee, Verification of MCS VHTR modeling capability, in: Proceedings of the RPHA17 Conference, Chengdu: Nuclear Power Institute of China, August 24-25, 2017.
  38. M. Lemaire, H. Lee, B. Ebiwonjumi, C. Kong, W. Kim, Y. Jo, J. Park, D. Lee, Verification of photon transport capability of UNIST Monte Carlo code MCS, Comput. Phys. Commun. 231 (2018) 1-18. https://doi.org/10.1016/j.cpc.2018.05.008
  39. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, Initial MCNP6 release overview, Nucl. Technol. 180 (3) (2012) 298-315. https://doi.org/10.13182/NT11-135
  40. M. Lemaire, F. Setiawan, H. Lee, P. Zhang, D. Lee, Validation of coupled neutron-photon transport mode of Monte Carlo code MCS, in: Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering M&C 2019, Portland, USA, August 25-29, 2019.
  41. M. Lemaire, H. Lee, P. Zhang, D. Lee, Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII. 0 and Monte Carlo code MCS, Nucl. Eng. Technol. 52 (7) (2020) 1355-1366. https://doi.org/10.1016/j.net.2019.12.014
  42. K.S. Kim, Specification for the VERA Depletion Benchmark Suite, Consortium for Advanced Simulation of LWRs, 2015. CASL-X-2015-1014-000.
  43. International Atomic Energy Agency, Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA, Vienna, 2007.
  44. K.D. Sevier, Atomic electron binding energies, Atomic Data Nucl. Data Tables 24 (4) (1979) 323-371. https://doi.org/10.1016/0092-640x(79)90012-3
  45. J. Rhodes, K. Smith, Z. Xu, CASMO-5 energy release per fission model, in: Proceedings of PHYSOR2008; Switzerland, 2008, pp. 14-19. September.
  46. W. Lee, S. Choi, B. Ebiwonjumi, M. Lemaire, D. Lee, Implementation of on-the-fly energy release per fission model in STREAM, in: Proceedings of the RPHA17 Conference, Chengdu: Nuclear Power Institute of China, August 24-25, 2017.
  47. Y. Liu, R. Salko, K.S. Kim, X. Wang, M. Kabelitz, S. Choi, B. Kochunas, B. Collins, W. Martin, Improved MPACT energy deposition and explicit heat generation coupling with CTF, Ann. Nucl. Energy 152 (2021), 107999. https://doi.org/10.1016/j.anucene.2020.107999
  48. US Nuclear Regulatory Commission, Westinghouse Technology Systems Manual, 2011. Retrieved from, https://www.nrc.gov/docs/ML1122/ML11223A208.pdf.
  49. S. Kinast, D. Tomatis, Energy deposition in coolant of PWR under normal operation and accident conditions, Nucl. Eng. Des. 384 (2021), 111479. https://doi.org/10.1016/j.nucengdes.2021.111479