DOI QR코드

DOI QR Code

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment

6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석

  • 이성훈 (순천대학교 산학협력단) ;
  • 조병록 (순천대학교 전기전자공학부)
  • Received : 2022.06.23
  • Accepted : 2022.08.17
  • Published : 2022.08.31

Abstract

This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.

4차 산업혁명시대에 반지하 실내 복도 환경에서 새로운 전파 수요를 발굴하기 위해 본 논문에서는 주파수 6, 10, 17 GHz의 전파 특성에 대한 측정 및 분석하였다. 측정한 실내 내부 환경은 3면의 강의실과 외면의 유리창으로 구성되어있는 일자형 복도이다. 본 연구는 이러한 환경에 맞게 측정 시나리오 개발과 측정 시스템을 구성하였다. 송신 안테나는 고정하고 수신 안테나 위치의 거리에 따라 가시선 환경에서 주파수 영역과 시간영역 전파 특성을 측정하여 분석 하였다. 주파수 영역은 FI(: Floating intercept) 경로 손실 모델의 매개변수와 R-squared 값의 0.5 이상에 대한 신뢰도를 얻었다. 또한, 시간 영역은 RMS(: Root mean square) 지연 확산과 K-factor의 누적 확률에서 6 GHz는 전파 전달도가 높고, 17 GHz는 전파 전달도가 낮은 결과를 얻었다. 이러한 연구 결과는 반지하 실내 복도 환경에서 WIFI 6 이상이나 5G 이상에 대해 초 연결과 초 지연 인공지능 서비스를 제공하는데 효과가 있을 것이다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 정보통신·방송 연구 개발사업의 일환으로 수행하였음. [2018-0-01439, 40 GHz 이하 실내외 환경의 전파특성 분석 및 예측모델 개발]

References

  1. O. H. Koymen, A. Partyka, S. Subramanian, and J. Li, "Indoor mm-Wave Channel Measurements: Comparative Study of 2.9 GHz and 29 GHz," IEEE Global Communications Conf (GLOBECOM 2015), San Diego, CA, USA, Dec. 2015.
  2. M. T. Martinez-Ingles, J. Pascual-Garcia, D. P. Gaillot, C. S. Borras, and J. Molina-Garcia-Pardo, "Indoor 1-40 GHz Channel Measurements", European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, Apr. 2019.
  3. ITU, "Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz," Recommendation ITU-R P.1238-11, 2021, pp. 1-27.
  4. S. Lee, B. Cho, and H. Lee, "Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment," J. of the Korea Institute of Electronics Communications Sciences, vol. 15, no. 2, 2020, pp. 211-217.
  5. S. Lee, H. Lee, and B. Cho, "Delay Spread Measurement and Analysis in 3 GHz and 6 GHz Indoor Environments," J. of the Korea Institute of Electronics Communications Sciences, vol. 15, no. 1, 2020, pp. 15-20.
  6. I. D. S. Batalha, A. V. R. Lopes, J. P. L. Araujo, B. L. S. Castro, F. J. B. Barros, G. P. D. S. Cavalcante, and E. G. Pelaes, "Indoor Corridor and Office Propagation Measurements and Channel Models at 8, 9, 10 and 11 GHz," IEEE Access, vol. 7, 2019, pp. 55005-55021. https://doi.org/10.1109/access.2019.2911866
  7. N. O. Oyie and T. J. O. Afullo, "Measurements and Analysis of Large-Scale Path Loss Model at 14 and 22 GHz in Indoor Corridor," IEEE Access, vol. 6, 2018, pp. 17205-17214. https://doi.org/10.1109/access.2018.2802038
  8. W. Jang, S. Lee, and B. Cho, "Development of Line Tracer-based Autonomous Measurement Trolley for Indoor Propagation Measurement," J. of the KIEES Conf, Jeju, Korea, Aug. 2021.
  9. R. A. Valenzuela, O. Landron, and D. L. Jacobs, "Estimating Local Mean Signal Strength of Indoor Multipath Propagation," IEEE Vehicular Technology, vol. 46, no. 1, 1997, pp. 203-212. https://doi.org/10.1109/25.554753
  10. H. Obeidat, A. A. S. Alabdullah, N. T. Ali, R. Asif, O. Obeidat, M. S. A. Bin-Melha, W. Shuaieb, R. A. Abd-Alhameed, and P. Excell, "Local Average Signal Strength Estimation for Indoor Multipath Propagation," IEEE Access, vol. 7, 2019, pp. 75166-75176. https://doi.org/10.1109/access.2019.2918178
  11. G. R. MacCartney, JR., T. S. Rappaport, S. Sun, and S. Deng, "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," IEEE Access, vol. 3, 2015, pp. 2388-2424. https://doi.org/10.1109/ACCESS.2015.2486778
  12. H. Hashemi, "Impulse Response Modeling of Indoor Radio Propagation Channels," IEEE J. on Selected Areas in Communications, vol. 11, no. 7, 1993, pp. 967-978. https://doi.org/10.1109/49.233210
  13. H. Hashemi and D. Thol, "Statistical Modeling and Simulation of the RMS Delay Spread of Indoor Radio Propagation Channels," IEEE Trans. Vehicular Technology, vol. 43, no. 1, 1994, pp. 110-120. https://doi.org/10.1109/25.282271
  14. L. J. Greenstein, D. G. Michelson, and V. Erceg, "Moment-Method Estimation of the Ricean - Factor," IEEE Communications Letters, vol. 3, no. 6, 1999, pp. 175-176. https://doi.org/10.1109/4234.769521
  15. A. Abdi, C. Tepedelenlioglu, M. Kaveh, and G. Giannakis, "On the Estimation of the K Parameter for the Rice Fading Distribution," IEEE Communications Letters, vol. 5, no. 3, 2001, pp. 92-94. https://doi.org/10.1109/4234.913150
  16. ITU, "Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz," Recommendation ITU-R P.1238-10, 2019, pp. 1-26.