DOI QR코드

DOI QR Code

Spiking Suppression of Quasi-continuous-wave Pulse Nd:YAG Laser Based on Bias Pumping

  • Chen, Yazheng (Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University) ;
  • Wang, Fuyong (School of Information and Electrical Engineering, Hebei University of Engineering)
  • Received : 2022.02.03
  • Accepted : 2022.05.17
  • Published : 2022.08.25

Abstract

We numerically demonstrate that the inherent spiking behavior in the quasi-continuous-wave (QCW) operation of an Nd:YAG laser can be suppressed by adopting bias pumping. After spiking suppression, the output QCW pulses from a bias-pumped Nd:YAG laser are very stable, and they can maintain nearly the same temporal shape as that of pump pulse under different pump repetition rates and peak powers. Our study implies that bias pumping is an alternative method of spiking suppression in solid-state lasers, and the application areas of an Nd:YAG laser may be extended by bias pumping.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. J. S. Kim, T. Watanabe, and Y. Yoshida, "Ultrasonic vibration aided laser welding of al alloys: improvement of laser welding quality," J. Laser Appl. 7, 38-46 (1995). https://doi.org/10.2351/1.4745370
  2. P. S. Mohanty, A. Kar, and J. Mazumder, "A modeling study on the influence of pulse shaping on keyhole laser welding," J. Laser Appl. 8, 291-297 (1996). https://doi.org/10.2351/1.4745435
  3. M. Sheikhi, F. M. Ghaini, M. J. Torkamany, and J. Sabbaghzadeh, "Characterisation of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminium alloy," Sci. Technol. Weld. Join. 14, 161-165 (2009). https://doi.org/10.1179/136217108X386554
  4. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003). https://doi.org/10.1364/OL.28.002219
  5. Y. Lu, G. Fan, H. Ren, L. Zhang, X. Xu, W. Zhang, and M. Wan, "High-average-power narrow-line-width sum frequency generation 589 nm laser," Proc. SPIE 9650, 965008 (2015).
  6. S. H. Moon, H. Hur, Y. J. Oh, K. H. Choi, J. E. Kim, J. Y. Ko, and Y. S. Ro, "Treatment of onychomycosis with a 1,064-nm long-pulsed Nd:YAG laser," J. Cosmet. Laser Ther. 16, 165-170 (2014). https://doi.org/10.3109/14764172.2014.910082
  7. E. H. Elmorsy, N. A. A. Khadr, A. A. A. Taha, and D. M. A. Aziz, "Long-pulsed Nd:YAG (1,064 nm) laser versus Q-switched Nd:YAG (1,064 nm) laser for treatment of onychomycosis," Lasers Surg. Med. 52, 621-626 (2020). https://doi.org/10.1002/lsm.23200
  8. C. Y. Li, Y. Bo, B. S. Wang, C. Y. Tian, Q. J. Peng, D. F. Cui, Z. Y. Xu, W. B. Liu, X. Q. Feng, and Y. B. Pan, "A kilowatt level diode-side-pumped QCW Nd:YAG ceramic laser," Opt. Commun. 283, 5145-5148 (2010). https://doi.org/10.1016/j.optcom.2010.07.045
  9. J.-K. Zheng, Y. Bo, S.-Y. Xie, J.-W. Zuo, P.-Y. Wang, Y.-D. Guo, B.-L. Liu, Q.-J. Peng, D.-F. Cui, W.-Q. Lei, and Z.-Y. Xu, "High power quasi-continuous-wave diode-end-pumped Nd:YAG slab amplifier at 1319 nm," Chin. Phys. Lett. 30, 074202 (2013). https://doi.org/10.1088/0256-307X/30/7/074202
  10. R. Lera, F. Valle-Brozas, S. Torres-Peiro, A. R. dela Cruz, M. Galan, P. Bellido, M. Seimetz, J. M. Benlloch, and L. Roso, "Simulations of the gain profile and performance of a diode side-pumped QCW Nd:YAG laser," Appl. Opt. 55, 9573-9576 (2016). https://doi.org/10.1364/AO.55.009573
  11. C. Guo, Q. Bian, C. Xu, J. Zuo, Y. Bo, Z. Wang, Y. Shen, N. Zong, H. Gao, Y. Liu, D. Cui, Q. Peng, and Z. Xu, "High-power high beam quality narrow-linewidth quasi-continuous wave microsecond pulse 1064-nm Nd:YAG amplifier," IEEE Photonics J. 8, 1504908 (2016).
  12. J. Yi, B. Tu, X. An, X. Ruan, J. Wu, H. Su, J. Shang, Y. Yu, Y. Liao, H. Cao, L. Cui, Q. Gao, and K. Zhang, "9 kilowatt-level direct-liquid-cooled Nd:YAG multi-module QCW laser," Opt. Express 26, 13915-13926 (2018). https://doi.org/10.1364/OE.26.013915
  13. Y. Guo, Q. Peng, Y. Bo, Z. Chen, Y. Li, L. Zhang, C. Shao, L. Yuan, B. Wang, J. Xu, J. Xu, H. Gao, Y. Xu, B. Lai, C. Su, S. Ma, and T. Cheng, "24.6 kw near diffraction limit quasi-continuous-wave Nd:YAG slab laser based on a stable-unstable hybrid cavity," Opt. Lett. 45, 1136-1139 (2020). https://doi.org/10.1364/ol.385387
  14. Q. Bian, Y. Bo, J.-W. Zuo, C. Guo, C. Xu, W. Tu, Y. Shen, N. Zong, L. Yuan, H.-W. Gao, Q.-J. Peng, H.-B. Chen, L. Feng, K. Jin, K. Wei, D.-F. Cui, S.-J. Xue, Y. -D. Zhang, and Z.-Y. Xu, "High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping," Opt. Lett. 41, 1732-1735 (2016). https://doi.org/10.1364/OL.41.001732
  15. T. H. Jeys, "Suppression of laser spiking by intracavity second harmonic generation," Appl. Opt. 30, 1011-1013 (1991). https://doi.org/10.1364/AO.30.001011
  16. R. P. Johnson, "Spike suppression and longitudinal mode selection in a 1.319 ㎛ Nd:YAG laser by high-efficiency intracavity frequency doubling," Opt. Laser Technol. 40, 1078-1081 (2008). https://doi.org/10.1016/j.optlastec.2008.02.001
  17. Q. Bian, J.-W. Zuo, C. Guo, C. Xu, Y. Shen, N. Zong, Y. Bo, Q.-J. Peng, H.-B. Chen, D.-F. Cui, and Z.-Y. Xu, "Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers," Laser Phys. 26, 095005 (2016). https://doi.org/10.1088/1054-660X/26/9/095005
  18. F. Wang, "Stable pulse generation in a bias-pumped gain-switched fiber laser," J. Opt. Soc. Am. B 35, 231-236 (2018). https://doi.org/10.1364/josab.35.000231
  19. F. Wang, "A novel pulsed fiber laser: further study on the bias-pumped gain-switched fiber laser," Laser Phys. Lett. 15, 085105 (2018). https://doi.org/10.1088/1612-202X/aac426
  20. F. Wang, "Pulsing mechanism based on power adiabatic evolution of pump in Tm-doped fiber laser," Laser Phys. 30, 015102 (2020). https://doi.org/10.1088/1555-6611/ab543c
  21. F. Wang, Z. Qin, J. Luo, X. Zhou, and B. Li, "Duration-controllable mid-infrared pulse from bias-pumped Er:ZBLAN fiber laser," Laser Phys. 32, 015102 (2022). https://doi.org/10.1088/1555-6611/ac3d0f
  22. O. Svelto and D. C. Hanna, Principles of Lasers, 5th ed. (Springer, 2010), pp. 319-338.
  23. W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006), pp. 15-37.