DOI QR코드

DOI QR Code

Phylogeographic patterns in cryptic Bostrychia tenella species (Rhodomelaceae, Rhodophyta) across the Thai-Malay Peninsula

  • Bulan, Jakaphan (Department of Fishery Biology, Faculty of Fisheries, Kasetsart University) ;
  • Maneekat, Sinchai (Department of Fishery Biology, Faculty of Fisheries, Kasetsart University) ;
  • Zuccarello, Giuseppe C. (School of Biological Science, Victoria University of Wellington) ;
  • Muangmai, Narongrit (Department of Fishery Biology, Faculty of Fisheries, Kasetsart University)
  • Received : 2022.02.01
  • Accepted : 2022.06.04
  • Published : 2022.06.15

Abstract

Genetic diversity and distribution patterns of marine macroalgae are increasingly being documented in Southeast Asia. These studies show that there can be significant levels of genetic diversity and isolation between populations on either side of the Thai-Malay Peninsula. Bostrychia tenellla is a common filamentous red seaweed in the region and the entity is represented by at least two cryptic species. Despite being highly diverse and widespread, genetic variation and population structure of this species complex remains understudied, especially around the Thai-Malay Peninsula. We analyzed genetic diversity and inferred the phylogeographic pattern of specimens identified as B. tenella using the plastid RuBisCo spacer from samples from the Andaman Sea and the Gulf of Thailand. Our genetic analysis confirmed the occurrence of the two cryptic B. tenella species (B and C) along both coasts. Cryptic species B was more common in the area and displayed higher genetic diversity than species C. Historical demographic analyses indicated a stable population for species B, but more recent population expansion for species C. Our analyses also revealed that both cryptic species from the Andaman Sea possessed higher genetic diversity than those of the Gulf of Thailand. We also detected moderate to high levels of gene flow and weak phylogeographic structure of cryptic species B between the two coasts. In contrast, phylogeographic analysis showed genetic differences between populations of both cryptic species within the Andaman Sea. Overall, these results suggest that cryptic B. tenella species around Thai-Malay Peninsula may have undergone different demography histories, and their patterns of genetic diversity and phylogeography were likely caused by geological history and regional sea surface current circulation in the area.

Keywords

Acknowledgement

This study is funded by Kasetsart University through the Graduate School Fellowship Program (JB and NM), and Faculty of Fisheries, Kasetsart University (NM). We also appreciate Jantana Praiboon and Chatcharee Kaewsuralikhit for assistance with algal sample collection.

References

  1. Billard, E., Reyes, J., Mansilla, A., Faugeron, S. & Guillemin, M. -L. 2015. Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol. 38:2021-2034. https://doi.org/10.1007/s00300-015-1762-4
  2. Bowen, B. W., Gaither, M. R., DiBattista, J. D., Iacchei, M., Andrews, K. R., Grant, W. S., Toonen, R. J. & Briggs, J. C. 2016. Comparative phylogeography of the ocean planet. Proc. Natl. Acad. Sci. U. S. A. 113:7962-7969. https://doi.org/10.1073/pnas.1602404113
  3. Bracegirdle, J., Sohail, Z., Fairhurst, M. J., Gerth, M. L., Zuccarello, G. C., Hashmi, M. A. & Keyzers, R. A. 2019. Costatone C: a new halogenated monoterpene from the New Zealand red alga Plocamium angustum. Mar. Drugs 17:418. https://doi.org/10.3390/md17070418
  4. Cannon, C. H., Morley, R. J. & Bush, A. B. G. 2009. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U. S. A. 106:11188-11193. https://doi.org/10.1073/pnas.0809865106
  5. Chatterjee, A., Shankar, D., McCreary, J. P., Vinayachandran, P. N. & Mukherjee, A. 2017. Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. J. Geophys. Res. Oceans 122:3200-3218. https://doi.org/10.1002/2016JC012300
  6. Diaz-Tapia, P., Maggs, C. A., Macaya, E. C. & Verbruggen, H. 2018. Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. J. Phycol. 54:829-839. https://doi.org/10.1111/jpy.12778
  7. Dumilag, R. V. & Aguinaldo, Z. -Z. A. 2017. Genetic differentiation and distribution of Pyropia acanthophora (Bangiales, Rhodophyta) in the Philippines. Eur. J. Phycol. 52:104-115. https://doi.org/10.1080/09670262.2016.1230786
  8. Excoffier, L. & Lischer, H. E. L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  9. Faria, R., Johannesson, K. & Stankowski, S. 2021. Speciation in marine environments: diving under the surface. J. Evol. Biol. 34:4-15. https://doi.org/10.1111/jeb.13756
  10. Ferrer, M. S. R., Gomez, R. N., Nacido, C. B., Moises, M. T. & Dumilag, R. V. 2019. Genetic diversity of Philippine Gracilaria salicornia (Gracilariaceae, Rhodophyta) based on mitochondrial COI-5P sequences. Biologia 74:599-607. https://doi.org/10.2478/s11756-018-00179-7
  11. Fraser, C. I., Zuccarello, G. C., Spencer, H. G., Salvatore, L. C., Carcia, G. R. & Waters, J. M. 2013. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE 8:e69138. https://doi.org/10.1371/journal.pone.0069138
  12. Gabriel, D., Draisma, S. G. A., Sauvage, T., Schmidt, W. E., Schils, T., Lim, P. -E., Harris, D. J. & Fredericq, S. 2016. Multilocus phylogeny reveals Gibsmithia hawaiiensis (Dumontiaceae, Rhodophyta) to be a species complex from the Indo-Pacific, with the proposal of G. eilatensis sp. nov. Phytotaxa 227:1-20.
  13. Guo, W., Banerjee, A. K., Ng, W. L., Yuan, Y., Li, W. & Huang, Y. 2020. Chloroplast DNA phylogeography of the Holly mangrove Acanthus ilicifolius in the Indo-West Pacific. Hydrobiologia 847:3591-3608. https://doi.org/10.1007/s10750-020-04372-1
  14. Haditiar, Y., Putri, M. R., Ismail, N., Muchlisin, Z. A., Ikhwan, M. & Rizal, S. 2020. Numerical study of tides in the Malacca Strait with a 3-D model. Heliyon 6:e04828. https://doi.org/10.1016/j.heliyon.2020.e04828
  15. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587-589. https://doi.org/10.1038/nmeth.4285
  16. Kantachumpoo, A., Uwai, S., Noiraksar, T. & Komatsu, T. 2014. Levels and distribution patterns of mitochondrial cox3 gene variation in brown seaweed, Sargassum polycystum C. Agardh (Fucales, Phaeophyceae) from Southeast Asia. J. Appl. Phycol. 26:1301-1308. https://doi.org/10.1007/s10811-013-0175-4
  17. Katoh, K., Misawa, K., Kuma, K. -I. & Miyata, T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059-3066. https://doi.org/10.1093/nar/gkf436
  18. King, R. J. & Puttock, C. F. 1989. Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/Rhodophyta). Aust. Syst. Bot. 2:1-73. https://doi.org/10.1071/SB9890001
  19. Lewmanomont, K., Wongrat, L. & Supanwanid, C. 1995. Algae in Thailand. Integrated Promotion Technology Co., Ltd., Bangkok, 334 pp.
  20. Ludt, W. B. & Rocha, L. A. 2015. Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J. Biogeogr. 42:25-38. https://doi.org/10.1111/jbi.12416
  21. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. & Lanfear, R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530-1534. https://doi.org/10.1093/molbev/msaa015
  22. Muangmai, N., Fraser, C. I. & Zuccarello, G. C. 2015a. Contrasting patterns of population structure and demographic history in cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand. J. Phycol. 51:574-585. https://doi.org/10.1111/jpy.12305
  23. Muangmai, N., Preuss, M., West, J. A. & Zuccarello, G. C. 2022. Cryptic diversity and phylogeographic patterns of the Bostrychia intricata species complex (Rhodomelaceae, Rhodophyta) along the coast of southeastern Australia. Phycologia 61:27-36. https://doi.org/10.1080/00318884.2021.1994768
  24. Muangmai, N., Preuss, M. & Zuccarello, G. C. 2015b. Comparative physiological studies on the growth of cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) in various salinity and temperature conditions. Phycol. Res. 63:300-306. https://doi.org/10.1111/pre.12101
  25. Muangmai, N., von Ammon, U. & Zuccarello, G. C. 2016. Cryptic species in sympatry: nonrandom small-scale distribution patterns in Bostrychia intricata (Ceramiales, Rhodophyta). Phycologia 55:424-430. https://doi.org/10.2216/16-5.1
  26. Muangmai, N., West, J. A. & Zuccarello, G. C. 2014. Evolution of four Southern Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) species: phylogeny, species delimitation and divergence times. Phycologia 53:593-601. https://doi.org/10.2216/14-044.1
  27. Nguyen, V. X., Detcharoen, M., Tuntiprapas, P., Soe-Htun, U., Sidik, J. B., Harah, M. Z., Prathep, A. & Papenbrock, J. 2014. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evol. Biol. 14:92. https://doi.org/10.1186/1471-2148-14-92
  28. Ninwichian, P. & Klinbunga, S. 2020. Population genetics of sandfish (Holothuria scabra) in the Andaman Sea, Thailand inferred from 12S rDNA and microsatellite polymorphism. Reg. Stud. Mar. Sci. 35:101189.
  29. Palmer, D. R. 2004. Phylogeography and population genetic structure of the dugongs in Thailand. M.S. thesis, San Jose State University, San Jose, CA, 61 pp.
  30. Panithanarak, T. 2020. Phylogeography of three commercially important seahorses (genus Hippocampus) in Thai waters: an implication from collective sequence data. J. Fish. Environ. 44:1-15.
  31. Payo, D. A., Colo, J., Calumpong, H. & De Clerck, O. 2011. Variability of non-polar secondary metabolites in the red alga Portieria. Mar. Drugs 9:2438-2468. https://doi.org/10.3390/md9112438
  32. Payo, D. A., Leliaert, F., Verbruggen, H., D'hondt, S., Calumpong, H. P. & De Clerck, O. 2013. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc. R. Soc. B Biol. Sci. 280:20122660. https://doi.org/10.1098/rspb.2012.2660
  33. Pongparadon, S., Zuccarello, G. C., Phang, S. -M., Kawai, H., Hanyuda, T. & Prathep, A. 2015. Diversity of Halimeda (Chlorophyta) from the Thai-Malay Peninsula. Phycologia 54:349-366. https://doi.org/10.2216/14-108.1
  34. Poommouang, A., Kriangwanich, W., Buddhachat, K., Brown, J. L., Piboon, P., Chomdej, S., Kampuansai, J., Mekchay, S., Kaewmong, P., Kittiwattanawong, K. & Nganvongpanit, K. 2021. Genetic diversity in a unique population of dugong (Dugong dugon) along the sea coasts of Thailand. Sci. Rep. 11:11624. https://doi.org/10.1038/s41598-021-90947-4
  35. Rambaut, A. 2016. FigTree v1.4.3. Available from: http://tree.bio.ed.ac.uk/software/figtree/. Accessed Mar 27, 2021.
  36. Rizal, S., Damm, P., Wahid, M. A., Sundermann, J., Ilhamsyah, Y., Iskandar, T. & Muhammad. 2012. General circulation in the Malacca Strait and Andaman Sea: a numerical model study. Am. J. Environ. Sci. 8:479-488. https://doi.org/10.3844/ajessp.2012.479.488
  37. Rogers, A. R. & Harpending, H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552-569.
  38. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  39. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., GuiraoRico, S., Librado, P., Ramos-Onsins, S. E. & SanchezGracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302. https://doi.org/10.1093/molbev/msx248
  40. Saengkaew, J., Muangmai, N. & Zuccarello, G. C. 2016. Cryptic diversity of the mangrove-associated alga Bostrychia (Rhodomelaceae, Rhodophyta) from Thailand. Bot. Mar. 59:363-371. https://doi.org/10.1515/bot-2016-0040
  41. Sathiamurthy, E. & Voris, H. K. 2006. Maps of Holocene Sea level transgression and submerged lakes on the Sunda Shelf. Nat. Hist. J. Chulalongkorn Univ. Suppl. 2:1-44.
  42. Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. 2019. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93:103091. https://doi.org/10.1016/j.ejsobi.2019.103091
  43. Suppapan, J., Sangthong, P., Songrak, A. & Supmee, V. 2021. Population genetic structure of hard clam (Meretrix lyrata) along the Southern coast of Thailand. Biodiversitas 22:2489-2496.
  44. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595. https://doi.org/10.1093/genetics/123.3.585
  45. Tanabe, A. S. 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11:914-921. https://doi.org/10.1111/j.1755-0998.2011.03021.x
  46. Teske, P. R., von der Heyden, S., McQuaid, C. D. & Barker, N. P. 2011. A review of marine phylogeography in southern Africa. S. Afr. J. Sci. 107:43-53.
  47. Vieira, C., Steen, F., D'hondt, S., Bafort, Q., Tyberghein, L., Fernandez-Garcia, C., Wysor, B., Tronholm, A., Mattio, L., Payri, C., Kawai, H., Saunders, G., Leliaert, F., Verbruggen, H. & De Clerck, O. 2021. Global biogeography and diversification of a group of brown seaweeds (Phaeophyceae) driven by clade-specific evolutionary processes. J. Biogeogr. 48:703-715. https://doi.org/10.1111/jbi.14047
  48. Wee, A. K. S., Takayama, K., Asakawa, T., Thompson, B., Sungkaew, S., Tung, N. X., Nazre, M., Soe, K. K., Tan, H. T. W., Watano, Y., Baba, S., Kajita, T. & Webb, E. L. 2014. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41:954-964. https://doi.org/10.1111/jbi.12263
  49. Wichachucherd, B., Prathep, A. & Zuccarello, G. C. 2014. Phylogeography of Padina boryana (Dictyotales, Phaeophyceae) around the Thai-Malay Peninsula. Eur. J. Phycol. 49:313-323. https://doi.org/10.1080/09670262.2014.918658
  50. Wyrtki, K. 1961. Physical oceanography of the Southeast Asian waters. Scripps Institution of Oceanography, The University of California, La Jolla, CA, 195 pp.
  51. Zanolla, M., Altamirano, M., Carmona, R., De la Rosa, J., Souza-Egipsy, V., Sherwood, A., Tsiamis, K., Barbosa, A. M., Munoz, A. R. & Andreakis, N. 2018. Assessing global range expansion in a cryptic species complex: insights from the red seaweed genus Asparagopsis (Florideophyceae). J. Phycol. 54:12-24. https://doi.org/10.1111/jpy.12598
  52. Zuccarello, G. C. & Martin, P. 2016. Phylogeography of the Lessonia variegata species complex (Phaeophyceae, Laminariales) in New Zealand. Algae 31:91-103. https://doi.org/10.4490/algae.2016.31.4.15
  53. Zuccarello, G. C., Muangmai, N., Preuss, M., Sanchez, L. B., Loiseaux de Goer, S. & West, J. A. 2015. The Bostrychia tenella species complex: morphospecies and genetic cryptic species with resurrection of B. binderi. Phycologia 54:261-270. https://doi.org/10.2216/15-005.1
  54. Zuccarello, G. C., Sandercock, B. & West, J. A. 2002. Diversity within red algal species: variation in world-wide samples of Spyridia filamentosa (Ceramiaceae) and Murrayella periclados (Rhodomelaceae) using DNA markers and breeding studies. Eur. J. Phycol. 37:403-417. https://doi.org/10.1017/S0967026202003827
  55. Zuccarello, G. C. & West, J. A. 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol. 39:948-959. https://doi.org/10.1046/j.1529-8817.2003.02171.x
  56. Zuccarello, G. C. & West, J. A. 2011. Insights into evolution and speciation in the red alga Bostrychia: 15 years of research. Algae 26:21-32. https://doi.org/10.4490/algae.2011.26.1.021
  57. Zuccarello, G. C., West, J. A., Kamiya, M. & King, R. J. 1999. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401:207-214. https://doi.org/10.1023/A:1003706931897