

시판 건조 인삼류(백삼, 홍삼)의 곰팡이 발생

Occurrence of Fungal Species in Dried Ginseng Products from Retail Market

Jang Nam Choi, So Soo Kim, Seul Gi Baek, Jin Ju Park, Jung Hye Choi, Ja Yeong Jang, Jeom-Soon Kim, Theresa Lee*

Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea

(Received June 22, 2022/Revised August 08, 2022/Accepted August 13, 2022)

ABSTRACT - To investigate the occurrence of fungi in dried ginseng products, we collected 24 white and 26 red ginseng samples from the retail market. Fungi were detected in 50% and 46% of white and red ginseng samples, respectively. The average level of fungal contamination was 0.5 and 0.2 log₁₀ CFU/g in white and red ginseng, respectively. In white ginseng, *Penicillium polonicum*, *P. chrysogenum*, and *Rhizopus microsporus* dominated with each having an occurrence of 18.2%. In red ginseng, *Aspergillus* spp. was dominant with an occurrence of 87.6%, with *A. chevalieri* having the highest occurrence (50%). PCR screening for mycotoxigenic potential showed that the 13 isolates of 4 species (*P. polonicum*, *P. chrysogenum*, *P. melanoconidium*, and *A. chevalieri*) tested were negative for the citrinin biosynthetic gene. These results show that the samples tested in this study had low risk of mycotoxin contamination. However, there is a possibility of dried ginseng products, such as white and red ginseng, being contaminated with fungi.

Key words: White ginseng, Red ginseng, Aspergillus, Penicillium, Mycotoxin

인삼(Panax ginseng C. A. Mayer)은 오갈피나무과 (Araliaceae) 인삼속(Panax)에 속하는 다년생 식물로 수천 년간 약용작물로써 사용되어오며 다양한 약리효능이 입증되어 의약품 및 건강 기능성 식품의 원료로 이용되고 있다! 4). 인삼은 저장, 운반, 유통에 편의성을 갖추기 위해 오래 전부터 가공이 발달해왔으며 특히, 가공된 형태에 따라 부가가치도 향상되는 것으로 보고되었다. 6). 인삼은 가공 방법에 따라 그 명칭이 다른데 장기간 저장할 목적으로 건조한 1차 가공 인삼의 대표적인 예로는 홍삼과 백삼이 있다 24.6). 홍삼은 수삼을 증기나 그 밖의 방법으로 쪄서 익혀 말린 것이며 백삼은 수삼을 햇볕 열풍 또는 그 밖의 방법으로 익히지 않고 말린 것으로 정의하고 있다. 4.7). 백삼

Tel: +82-63-238-3401, Fax: +82-63-238-3840

E.mail: tessyl1@korea.kr

Copyright © The Korean Society of Food Hygiene and Safety. All rights reserved. The Journal of Food Hygiene and Safety is an Open-Access journal distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution,and reproduction in any medium, provided the original work is properly cited.

과 홍삼과 같은 대부분의 한약재들은 이러한 건조 과정을 통해 저장성이 높아지는 한편, 장기간의 저장과 불충분한 환기에 노출되어있어 유통 및 저장 기간 중 언제든지 유 해 곰팡이 오염 가능성이 높다고 보고되었고8,9)전 세계적 으로도 중요한 생약자원 중 하나로 취급되고 있는 인삼은 특히, 저장 및 취급 시 부패성 미생물에 의한 유해물질 생 성 가능성 때문에 미생물학적 안전성 확보가 중요하다". 그동안 국내에서는 인삼보다는 시중에 유통되는 한약재 및 약용작물의 생물학적 위해요소에 대한 연구로 위생지 표세균(총 호기성세균, 대장균, 대장균군)과 병원성 미생 물(대장균, 대장균군, 황생포도상구균, 살모넬라, 리스테리아 속균), 총곰팡이의 정량 분석을 통한 이들의 오염 가능성이 주로 보고되었다9-11). 곰팡이독소와 관련해서는 일부 유통 한 약재에서 aflatoxin이 검출되었음이 보고되었다^{8,12-15)}. Lee 등¹⁶⁾ 은 곰팡이에 오염된 시판 유통 한약재로부터 Aspergillus spp., Penicillium spp., Fusarium spp.의 독성곰팡이가 60% 이상 분리·동정 되어 유통 한약재 보관 방법에 대한 개선이 필요함을 시사하였다. 특히, Aspergillus spp.과 Penicillium spp.의 독성 곰팡이종은 aflatoxin, ochratoxin A, patulin, citrinin 등의 곰팡이독소를 생성하며 이들은 각각 간독성,

^{*}Correspondence to: Theresa Lee, Microbial Safety Division, Department of Agro-Food Safety & Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea

신장독성, 면역독성, 급성 신장독성을 일으키는 것으로 알려져 있다^{17.9)}. 한편, 국외에서는 인삼을 포함한 다양한 약용작물 및 가공품에서의 aflatoxin, ochratoxin A, fumonisin, zearalenone 등의 곰팡이독소 오염실태가 주로 보고 되었다²⁰⁻²²⁾. 중국에서는 지역 약재 시장에서 수집한 약초류 및뿌리 약초 중 전칠삼, 미국인삼, 고려인삼에서 *Aspergillus* spp.과 *Penicillium* spp.의 독성 곰팡이를 분리 및 동정 하였으며^{23,24)} 특히, Su 등²⁴⁾의 연구에서는 미국인삼에서 aflatoxin (0.97-6.66 μ g/kg)이, 고려인삼에서는 alfatoxin (9.58-17.00 μ g/kg)과 ochratoxin A (1.67 μ g/kg)가 각각 검출되었음이 보고되었다.

이와 같이 인삼의 곰팡이독소 오염이 보고되고 있으나, 국 내에서는 Kwon 등²⁵⁾의 제조연도별 홍삼 제품의 미생물 분 포 조사와 Shim 등²⁶의 국내 인삼 및 인삼 제품류의 미생물 오염도 평가에서 수행된 총곰팡이의 정량 분석을 제외하면, 인삼 가공 제품류에 대한 구체적인 곰팡이 오염실태 또는 곰 팡이독소에 관한 연구가 현재까지 미흡한 실정이다. 이에 본 연구에서는 향후 인삼류 가공의 안전한 위생 관리 기술 개발을 위한 기초자료로 활용하기 위해 국내 유통 중인 건조 인삼류 중 백삼과 홍삼 제품을 대상으로 곰팡이 오염빈도를 조사하고 발생 곰팡이 종과 독소 생성 가능성을 분석하였다.

Materials and Methods

시료 수집

2021년 4월과 5월에 충남 금산군에 소재한 인삼 도매

Table 1. Dried ginseng samples tested in the study

White ginseng						Red ginseng						
No.	Sample	Age (year)	Product year	Size ¹⁾	Grade ²⁾	No.	Sample	Age (year)	Product year	Size ³⁾	Grade ⁴	
1	WG-1	4	2020	M	1	1	RG-1	4	2020	FTR	1	
2	WG-2	6	2020	L	1	2	RG-2	4	2019	MTR	3	
3	WG-3	4	2020	M	1	3	RG-3	6	2019	M	-	
4	WG-4	4	2019	M	1	4	RG-4	6	2020	S	-	
5	WG-5	4	2020	L	-	5	RG-5	6	2017	L	-	
6	WG-6	5	2019	L	1	6	RG-6	4	2018	S	-	
7	WG-7	4	2018	FTR	-	7	RG-7	6	2018	S	-	
8	WG-8	4	2019	M	3	8	RG-8	6	2017	S	-	
9	WG-9	4	2019	M	1	9	RG-9	6	2018	L	3	
10	WG-10	4	2019	L	1	10	RG-10	6	2018	L	-	
11	WG-11	6	2019	L	1	11	RG-11	4	2017	M	-	
12	WG-12	4	2019	L	1	12	RG-12	5	2017	S	-	
13	WG-13	4	2018	L	3	13	RG-13	4	2020	S	-	
14	WG-14	6	2021	L	1	14	RG-14	6	2018	L	-	
15	WG-15	5	2019	L	1	15	RG-15	6	2019	-	-	
16	WG-16	4	2019	L	-	16	RG-16	5	2017	S	-	
17	WG-17	4	2020	M	1	17	RG-17	4	2020	S	-	
18	WG-18	4	2019	M	2	18	RG-18	5	2017	M	-	
19	WG-19	6	2020	L	3	19	RG-19	5	2019	M	-	
20	WG-20	4	2020	M	-	20	RG-20	6	2015	S	-	
21	WG-21	4	2019	M	1	21	RG-21	4	2017	M	-	
22	WG-22	4	2020	M	2	22	RG-22	5	2017	S	-	
23	WG-23	4	2020	M	1	23	RG-23	4	2018	-	-	
24	WG-24	4	2019	L	1	24	RG-24	6	2018	L	-	
						25	RG-25	6	2018	L	-	
						26	RG-26	6	2018	L	-	

¹⁾L: large (15-25 samples/300 g), M: medium (30-50 samples/300 g), FTR: fine tail root only (less than 4 mm in diameter, 300 g).

²⁾Product grade (1-3) by 'Enforcement Decree of the Ginseng Industry Act' in Korea. -: Out of grade.

³⁾L: large (11-20 samples/300 g), M: medium (21-30 samples/300 g), S: small (31-50 samples/300 g), FTR: fine tail root only (less than 4 mm in diameter, 300 g), MTR: Mid tail root only (4-6 mm in diameter, 300 g).

⁴⁾Product grade 1 and 3 by 'Enforcement Decree of the Ginseng Industry Act' in Korea. -: Out of grade.

센터에서 제조사가 다른 포장 제품을 대상으로 백삼 24점, 홍삼 26점을 각각 구입하여 사용하였다. 각 구입 시료들 은 4-6년근 인삼을 원료로 한 제품이다(Table 1).

곰팡이 발생 조사

백삼과 홍삼의 곰팡이 발생 조사를 위해 각각의 시료 25 g 과 멸균된 0.1% peptone water 225 mL을 멸균 bag (3M, St. Paul, MN, USA)에 넣고 균질기(BagMixer, Interscience, St. Nom, France)를 이용하여 1분간 균질화하였다. 이후 균질화 된 원액을 0.2 mL씩 취해 감자한천배지(Potato Dextrose Agar, PDA)에 3 플레이트씩 3 반복으로 도말 하여 25°C에서 3일 간 배양한 뒤 각각의 플레이트에 발생한 곰팡이 균총을 계 수하여 발생빈도 log10 CFU/g으로 환산하였다.

주요 곰팡이 속 균 동정과 계통발생학적 분석

발생 곰팡이는 균총 색, 형태, 포자의 모양 등 형태적 특징의 관찰을 통해 일차적으로 속(genus)을 추정하였다. 이후 종 동정을 위해, PDA에서 5일간 분리균주를 배양한 후 DNA를 추출하였으며²⁷⁾, 기존에 보고된 방법에 따라 ITS (Internal Transcribed Spacer)²⁸⁾와 BT (β-tublin)²⁹⁾ 영역 을 증폭하였다(C1000 Thermal cycler, Bio-Rad, CA, USA). 각 PCR product의 염기서열은 마크로젠(Macrogen, Seoul, Korea)에 분석을 의뢰하였고 NCBI (National center for biotechnology information) BLAST search를 통해 일차적 으로 동정하였다.

백삼과 홍삼에 발생한 균총 중 주요 독성 곰팡이 그룹 의 계통발생학적 분석을 위해 동정된 Aspergillus spp.과 Penicillium spp. 분리 종들 중 각 1점씩을 대표 균주로 선 발하였다. Aspergillus spp.와 Pencillim spp.은 BT (500 bp) 와 ITS (700 bp) 두 유전자를 조합하여 유연관계를 분석하 고 최종 동정하였다. 각 염기서열은 Segman Pro 15 program (DNASTAR, Inc., Madison, WI, USA)을 이용하여 분석하였 고 CLUSTAL W³⁰⁾로 정렬하였으며 MEGA v10.0 program³¹⁾ 을 이용하여 두 곰팡이 속의 분리균주들 간 계통을 확인 하였다. Bootstrap 분석은 1,000반복으로 수행하였다.

독성 곰팡이의 독소형 확인

독성 곰팡이의 독소 생성 가능성을 확인하기 위해 분리 한 균주들을 대상으로 독소형을 조사하였다. Aflatoxin 생 성에 관여하는 norB-cvpA 유전자는 AP1729 [94°C:10분-(94°C:30초-52°C:30초-72°C:1분40초)×30반복-72°C:5분] primer를 사용하여 증폭하였으며³²⁾, citrinin은 AoLC35-12L [94°C:4분-(94°C40초-62°C:40초-72°C:40초)×35반복-72°C:10 분] primer를 사용하여 polyketide 유전자를 증폭하여 확인 하였다33).

통계분석

모든 실험은 3 반복으로 수행하였으며 건조 인삼류 시 료에서 발생한 곰팡이 조사 결과는 SAS Enterprise guide (ver. 7.1, SAS Institute Inc., Cary, NC, USA) 프로그램을 이용하여 5% 유의수준에서 Duncan's multiple range test 로 비교 분석하였다.

Results and Discussion

백삼과 홍삼의 곰팡이 발생

백삼은 총 24점 중 12점(50%)에서 곰팡이가 검출되었고 검출시료 12점의 총곰팡이 오염도는 평균 0.5 log10 CFU/g

Table 2. Fungal occurrence in white ginseng samples

Commlo	Age (year)	Fungal incidence (log ₁₀ CFU/g)							
Sample		Total fungi	Aspergillus	Penicillium	Fusarium	Cladosporium	Mucor/Rhizopus		
WG-1	4	0±0	0±0	0±0	0±0	0±0	0±0		
WG-2	6	$0.2 \pm 0.52^{\circ}$	0±0	0.2 ± 0.52^a	0±0	0±0	0±0		
WG-3	4	0.2 ± 0.52^{c}	0±0	0±0	0±0	0±0	0.2 ± 0.52^{b}		
WG-4	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-5	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-6	4	0.2 ± 0.52^{c}	0±0	0±0	0±0	0.2 ± 0.52	0±0		
WG-7	4	$0.2 \pm 0.52^{\circ}$	0±0	0.2 ± 0.52^a	0±0	0±0	0±0		
WG-8	4	$2.3{\pm}0.08^a$	0±0	0±0	0±0	0±0	$2.3{\pm}0.08^a$		
WG-9	4	1.0 ± 1.51^{b}	0±0	1.0 ± 1.51^a	0±0	0±0	0±0		
WG-10	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-11	6	0.2 ± 0.52^{c}	0±0	0±0	0±0	0±0	0±0		
WG-12	4	0±0	0±0	0±0	0±0	0±0	0±0		
WG-13	4	0.2 ± 0.52^{c}	0±0	0±0	0±0	0±0	0±0		
WG-14	6	0.2 ± 0.52^{c}	0±0	0 ± 0	0±0	0±0	0±0		

Table 2. (Continued) Fungal occurrence in white ginseng samples

Sample	Age	Fungal incidence (log ₁₀ CFU/g)							
	(year)	Total fungi	Aspergillus	Penicillium	Fusarium	Cladosporium	Mucor/Rhizopus		
WG-15	5	0.2±0.52°	0±0	0±0	0±0	0±0	0.2±0.52 ^b		
WG-16	4	0.6 ± 0.89^{cb}	0±0	$0.4{\pm}0.79^{a}$	0±0	0±0	0±0		
WG-17	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-18	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-19	6	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-20	4	0 ± 0	0±0	0 ± 0	0±0	0 ± 0	0 ± 0		
WG-21	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-22	4	0.2 ± 0.52^{c}	0±0	0±0	0±0	0±0	0.2 ± 0.52^{b}		
WG-23	4	0 ± 0	0±0	0±0	0±0	0±0	0±0		
WG-24	4	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
Average ¹⁾		0.5±0.60	0±0	0.5±0.84	0±0	0.2±0.52	0.7±0.41		

 $^{^{-1}}$ An average was calculated with those which fungal incidence was positive. The numbers followed with same letter in a column did not significantly differ according to Duncan's multiple range test at P < 0.05.

Table 3. Fungal occurrence in red ginseng samples

Commis	Age	Fungal incidence (log ₁₀ CFU/g)							
Sample	(year)	Total fungi	Aspergillus	Penicillium	Fusarium	Cladosporium	Mucor/Rhizopus		
RG-1	5	0.6±0.51 ^a	0.4 ± 0.47^{a}	0±0	0±0	0±0	0±0		
RG-2	5	0.1 ± 0.30^{b}	0.1 ± 0.30^{a}	0±0	0±0	0±0	0 ± 0		
RG-3	6	0.1 ± 0.30^{b}	0 ± 0	0±0	0±0	0±0	0.1 ± 0.30		
RG-4	5	0.1 ± 0.30^{b}	0.1 ± 0.30^{a}	0±0	0 ± 0	0±0	0 ± 0		
RG-5	5	0.1 ± 0.30^{b}	$0.1{\pm}0.30^{a}$	0±0	0±0	0±0	0 ± 0		
RG-6	4	0 ± 0	0 ± 0	0±0	0±0	0±0	0 ± 0		
RG-7	4	0.1 ± 0.30^{b}	0.1 ± 0.30^{a}	0±0	0±0	0±0	0 ± 0		
RG-8	5	$0.4{\pm}0.55^{ab}$	$0.4{\pm}0.55^{a}$	0±0	0±0	0±0	0 ± 0		
RG-9	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-10	5	0.1 ± 0.30^{b}	$0.1{\pm}0.30^{a}$	0±0	0±0	0±0	0 ± 0		
RG-11	4	0.1 ± 0.30^{b}	$0.1{\pm}0.30^{a}$	0±0	0±0	0±0	0 ± 0		
RG-12	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-13	4	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-14	6	0 ± 0	0 ± 0	0±0	0±0	0±0	0 ± 0		
RG-15	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-16	5	0.2 ± 0.60^{b}	$0.1{\pm}0.30^{a}$	0±0	0.1 ± 0.30	0±0	0 ± 0		
RG-17	6	0.1 ± 0.30^{b}	0.1 ± 0.30^{a}	0±0	0±0	0±0	0±0		
RG-18	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-19	5	0.1 ± 0.30^{b}	0 ± 0	0.1 ± 0.30	0±0	0±0	0±0		
RG-20	4	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-21	5	0±0	0±0	0±0	0 ± 0	0±0	0 ± 0		
RG-22	6	0 ± 0	0±0	0±0	0±0	0±0	0 ± 0		
RG-23	6	0 ± 0	0 ± 0	0±0	0±0	0±0	0 ± 0		
RG-24	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0 ± 0		
RG-25	4	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
RG-26	5	0 ± 0	0 ± 0	0±0	0±0	0±0	0±0		
Average ¹⁾		0.2±0.35	0.2±0.34	0.1±0.30	0.1±0.30	0±0	0.1±0.30		

¹⁾An average was calculated with those which fungal incidence was positive. The numbers followed with same letter in a column did not significantly differ according to Duncan's multiple range test at P < 0.05.

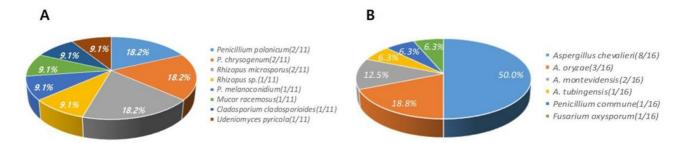
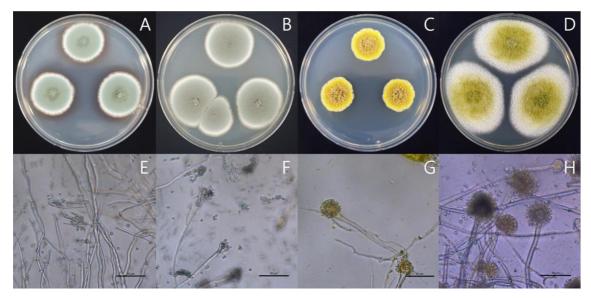
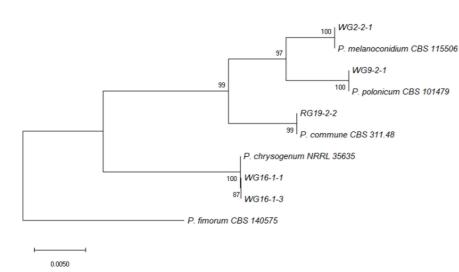


Fig. 1. Frequency of fungal species occurred in white ginseng (A) and red ginseng (B) samples. The fungal frequency was calculated by (isolate/total)×100.

이었으며 최고 수준은 2.3 log₁₀ CFU/g 이었다(Table 2). 홍 삼은 26점 중 12점(46.1%)에서 평균 0.2 log₁₀ CFU/g 발생 하였고 최고 수준은 0.6 log₁₀ CFU/g 이었다(Table 3). 백삼 에서는 Penicillium spp.과 Rhizopus spp.이 각각 4점의 시료 (16.7%)에서 검출된 반면, 홍삼에서는 10점의 시료(38.5%) 에서 검출된 Aspergillus spp.의 빈도가 가장 높았다. 백삼과 홍삼 시료의 곰팡이 검출빈도는 46-50%로 유사하였으나 검 출 시료 중 평균 오염도는 백삼(0.5 log₁₀ CFU/g)이 홍삼(0.2 log, CFU/g)보다 높았다. 백삼과 홍삼 모두 생산연도, 연근 , 크기, 등급과 곰팡이 오염도와의 연관성은 보이지 않았다 . Kwon 등²⁵⁾은 제조연도별(1986년-1991년) 홍삼 제품의 미 생물 분포 조사를 통해 1.3-1.5 log₁₀ CFU/g 범위의 총곰팡 이 분포를 보고한 바 있으며 국내 유통 중인 인삼류의 미 생물 오염도를 조사한 Shim 등²⁶⁾의 연구에서는 2013년에 수 집한 백삼과 홍삼 제품에서 평균 0.4 log, CFU/g의 수준으 로 총곰팡이가 검출되었음을 보고하였다. 본 연구에서는 국 내 유통 백삼과 홍삼의 곰팡이 오염 수준이 기존 연구 결 과와 비교했을 때, 여전히 낮게 발생함을 확인하였다.


한편, 백삼과 홍삼에 발생한 우점 곰팡이 종은 Fig. 1과 같다. 백삼은 Penicillium polonicum, P. chrysogenum, Rhizopus microsporus의 검출빈도가 각각 18.2%로 가장 높 았으며 P. melanoconidium, Mucor racemosus, Cladosporium cladosporioides, Udeniomyces prycola, Rhizopus sp.가 각각 9.1%로 나타났다. 홍삼의 분리균주 중에서는 Aspergillus spp. 분리균주가 전체 87.6%를 차지했으며 특히, A. chevalieri가 50.0%로 가장 높게 우점 하는 것으로 나타났 고 P. commune과 Fusarium oxysporum은 각각 6.3%로 나 타났다. 본 연구에서는 낮은 수준이지만 다수의 홍삼과 백 삼 제품에서 Penicillium spp.과 Aspergillus spp.이 검출되 어 건조 인삼류에도 곰팡이가 발생함을 확인하였고 국내 건조 인삼에 발생하는 곰팡이의 종을 처음으로 구명하였 다. 백삼과 홍삼의 경우, 밭에서 수확한 직후 뿌리째 유통 되는 수삼과 달리, 제조 과정 중 건조 및 증숙 단계가 포 함되어 있고 인삼산업법 시행규칙³⁴⁾에 백삼 및 홍삼의 수 분 함량 기준을 15% 이하로 정하고 있어 곰팡이가 증식 할 수 있는 환경은 아니라고 보고되었다²⁶⁾. 그러나 Zheng

등23)은 건조 약초 15종 45점 중 대표적인 중국 인삼인 전 칠삼에서 Aspergillus와 Penicillium을 분리했다고 보고하였 고 Su 등²⁴⁾도 8종 48점의 중국산 약초 중 인삼류에 해당 하는 미국인삼, 고려인삼, 전칠삼에서 총곰팡이 검출빈도 가 각각 평균 1.86, 1.26, 3.03 log₁₀ CFU/g임을 보고하였다. 또한 Aspergillus와 Penicillium도 분리하였는데 총곰팡이 오염 도는 본 연구 결과에 비해 다소 높았지만, 건조 인삼에 발생 한 곰팡이 속이 본 연구와 유사함을 보여준다. Aspergillus spp., Penicillium spp. 및 Fusarium spp. 곰팡이들은 주로 농 산물에서 발생하면서 곰팡이독소를 생산하는데 이렇게 한 번 생산된 곰팡이독소는 식품이나 농산물의 가공, 저장 및 유통 과정에서도 쉽게 없어지지 않고 남아서 인체 건강에 유해한 작용을 하는 것으로 알려져 있다³⁵⁾. Shim 등²⁶⁾은 홍삼에서 곰팡이가 원료삼인 수삼의 세척 단계에서 감소 했다가 증숙 후 다시 증가한 것으로 나타났으며 증숙 단 계 중 내부 시설의 온도 증가에 따른 응결수 발생 가능성, 증숙 후 수분 함량 증가, 증숙 후 열을 식히는 환경이 곰 팡이 증식의 원인이 될 수 있다고 보고하였다.


주요 우점 곰팡이의 동정과 독소형

백삼과 홍삼에서 분리한 총 27점의 분리 균주 중 독성 곰 팡이 그룹에 해당하는 Penicillium spp. 5 균주, Aspergillus spp. 11 균주를 대표 균주로 각각 선발하여 각 그룹 내 유연관계 를 분석하였다. 이를 통해 Penicillium spp. (P. melanoconidium, P. polonicum, P. commune, P. chrysogenum) Aspergillus spp. (A. chevalieri, A. montevidensis, A. tubingensis, A. oryzae) 균주 들이 각각 4개 종으로 최종 동정 되었다(Fig. 2-4).

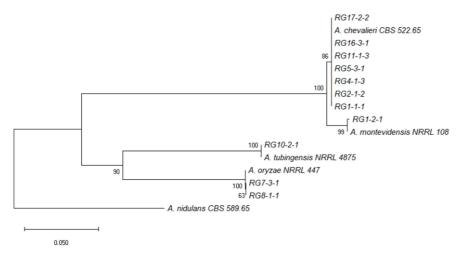

다양한 2차 대사산물을 생성하는 Penicillium spp.에서 P. polonicum과 P. melanoconidium은 citrinin과 더불어 penicillic acid 독소를³⁶⁻³⁸⁾, P. chrysogenum은 roquefortine C와 citrinin 독소를 생성하는 것으로 보고 되었다³⁹⁾. 또한, A. chevalieri도 citrinin 독소를 생성하며 0.64-0.75 a..의 낮 은 수분 활성도에서도 생장 능력이 뛰어나 견과류, 건조콩, 항신료 등에서 우점하는 것으로 알려져 있다⁴⁰⁾. A. chevalieri, P. chrysogenum, P. polonicum, P. melanoconidium은 공통적 으로 citrinin 생성이 보고되었으므로 본 연구에서 분리한

Fig. 2. Cultural (Upper) and microscopic (lower) features of major dominant fungal species isolated from white ginseng and red ginseng samples. A: *Penicillium polonicum*, B: *P. chrysogenum*, C: *Aspergillus chevalieri*, D: *A. oryzae*. Fungal colonies (A-D) were cultured at 25°C for 7 days in PDA. E and F: branched conidiophores, G and F: conidial heads (scale bar= 50 μm).

Fig. 3. Neighbor joinging tree of *Penicillium* isolates from white ginseng (WG) and red gingeng (RG). It was constructed by using combined sequences of *BT* and *ITS* gene (844 bp) and the bootstrap values based on 1,000 replications. *P. fimorum* CBS 140575 was used as an outgroup.

Fig. 4. Neighbor joinging tree of *Aspergillus* isolates from red ginseng. It was constructed by using combined sequences of *BT* and *ITS* gene (975 bp) and the bootstrap values based or 1,000 replications. *A. nidulans* CBS 589.65 was used as an outgroup.

총 13점의 균주를 대상으로 citrinin 특이적 primer를 통해 citrinin 생성가능성을 조사하였다³³⁾. 그러나 모두 citrinin 독소 유전자가 검출되지 않았으며 따라서 시료의 독소 분 석은 실시하지 않았다. 한편 aflatoxin 생성종인 Aspergillus flavus로 의심되는 균주는 aflatoxin 유전자가 검출되지 않 았으며 3점 모두 A. oryzae로 최종 동정 되었다.

이 연구에서 백삼과 홍삼의 곰팡이 발생 수준은 낮았지 만, 독성 종으로 알려진 곰팡이가 다수 분리됨에 따라 이들 인삼류에 독성 곰팡이의 오염 가능성이 있음을 알 수 있었 다. 곰팡이독소는 적은 양으로도 인축에 큰 피해를 주고 있 는 것으로 알려진 만큼41), 인삼류 제조, 저장, 유통 과정 등 중요관리점(critical control point)에서의 곰팡이 발생에 대한 지속적인 모니터링과 관리가 필요할 것으로 사료 된다. 또 한, 인삼 제조 시, 열수 익힘 후 건조, 다회 증숙 후 건조 등 각각의 다른 제조 방법에 따라서도 저장과 유통 환경이 달 라지기 때문에 태극삼, 흑삼과 같은 다른 건조 인삼류에 대 한 곰팡이 발생 조사도 필요한 것으로 보인다.

Acknowledgement

본 연구는 2021년 농촌진흥청 국립농업과학원 전문연구원 과정 지원사업(과제번호: PJ01579003)에 의해 이루어진 것임.

국문요약

시판 유통 중인 건조 인삼류(백삼 24점, 홍삼 26점) 포 장 제품을 수집하여 곰팡이 발생 조사를 수행하였다. 백 삼과 홍삼은 각각 50%와 46%의 시료에서 곰팡이가 검출 되었고 검출 시료의 평균 곰팡이 오염도는 각각 0.5와 0.2 log₁₀ CFU/g이었다. 백삼에서는 Penicillium polonicum, P. chrysogenum, Rhizopus microsporus가 각각 18.2%로 우점하 였으나 홍삼은 Aspergillus spp.이 87.6%로 우점하였으며 이 중 A. chevalieri가 50.0%로 가장 높았다. 이 중 독성 종으로 알려진 P. polonicum, P. chrysogenum, P. melanoconidium, A. chevalieri 균주의 citrinin 독소 생성 가능성을 분석한 결 과, 13 균주 모두 독소 유전자가 검출되지 않았다. 이 결 과는 조사한 시료의 곰팡이독소 오염 위험은 매우 낮지만, 건조 인삼류에 곰팡이 오염이 가능함을 보여준다.

Conflict of interests

The authors declare no potential conflict of interest.

ORCID

Jang Nam Choi https://orcid.org/0000-0002-7719-2720 So Soo Kim Seul Gi Baek Jin Ju Park Jung Hye Choi Ja Yeong Jang Jeom-Soon Kim Theresa Lee

https://orcid.org/0000-0002-0328-7831 https://orcid.org/0000-0002-3510-3881 https://orcid.org/0000-0002-5561-4902 https://orcid.org/0000-0001-8062-8436 https://orcid.org/0000-0002-1719-6535 https://orcid.org/0000-0001-8062-8436 https://orcid.org/0000-0002-8230-650X

References

- 1. Kwak, Y.S., Understanding of the safety of Korean ginseng in terms of food hygiene. J. ginseng Res., 14, 9-25 (2020).
- 2. Ha, D.C., Rye, G.H., Chemical component of white, red and extruded root ginseng. J. Korean Soc. Food Sci. Nutr., 34, 247-254 (2005).
- 3. Jang, A.Y., Seung, Y.C., Ji, J.G., The comparative study on physiological activity of white ginseng, red ginseng and black ginseng extract. J. Digit. Converg., 14, 459-471 (2016).
- 4. Kong, B.M., Park, M.J., Min, J.W., Kim, H.B., Kim, S.H., Kim, S.Y., Yang, D.C., Physico-chemical characteristics of white, fermented and red ginseng extracts. J. Ginseng Res., 32, 238-243 (2008).
- 5. Shim, W.B., Lee, C.W., Choi, Y.D., Park, S.G., Jeong, M.I., Kim, J.S., Kim, S.R., Park, K.H., Chung, D.H., Analysis of the level of microbial contamination in the manufacturing company of ginseng products. J. Fd. Hyg. Safety, 30, 15-165
- 6. Jeon, B.S., Kwak, I.S., Baek, S.S., Research prospect of Korean ginseng processing. J. Ginseng Res., 2, 7-12 (2012).
- 7. Bae, B.S., Lee, M.W., Lee, J.S., Pack, C.S., Han, M.W., Comparison of the constituents of processed Korean and American ginseng grown in Korea for six years. Korean J. Medicinal crop Sci., 29, 35-44 (2021).
- 8. Jo, S.A., Lee, S.D., Kim, D.G., Lee, H.K., Jung, S.O., Kim, K.S., Yoo, I.S., Jung, K., A survey of aflatoxin contamination in medicinal herbs for food and medicine. Kor. J. Pharmacogn., 45, 154-160 (2014).
- 9. Lee, J.S., Yoon, Y.S., Studies on bacterial and fungal contamination in the herbal medicines. J. Kor. Acad-Ind. Coop. Soc., 11, 4826-4832 (2010).
- 10. Lee, Y.S., Lee, S.W., Kim, Y.B., Kim, O.T., Park, K.H., Lee, J.W., Lee, D.Y., Kim, G.S., Kwon, D.Y., Han, S.H., Monitoring of biological hazards in herbal crops from Korean market. Korean J. Medicinal Crop Sci., 24, 143-151 (2016).
- 11. Ham, H.J., Yu, I.S., Lee, J.H., Kim, S.J., Yu, Y.A., Lee, E.S., Kim, H.S., Investigation of pathogenic microbial contamination in medicinal herb products on the market. Korean J. Medicinal Crop Sci., 25, 108-114 (2017).
- 12. Lee, S.D., Kim, Y.S., Yoon, Y.T., Park, A.S., Shin, Y., Kim, H.S., Kim, Y.K., Choi, B.H., Monitoring of aflatoxins in herb medicines. Korean J. Medicinal Crop Sci., 18, 338-344 (2010).
- 13. Sim, W.B., Kim, K.Y., Ofori, J.A., Chung, Y.C., Chung,

- D.H., Occurrence of aflatoxins in herbal medicine distributed in South Korea. *J. Food Protec.*, **75**, 1991-1999 (2012).
- 14. Kim, S.D., Kim, A.K., Lee, H.K., Lee, S.R., Lee, H.J., Ryu, H,J., Lee, J.M., Yu, I.S., Jung, K., A monitoring of aflatoxins in commercial herbs for food and medicine. *J. Food Hyg. Saf.*, **32**, 267-274 (2017).
- Lee, H.K., Kim, A.K., Kim, O.H., Kim, S.D., Lee, Y.J., Lee, S.R., Kim, I.Y., Lee, J.M., Yu, I.S., Jung, K., Preliminary monitoring of mycotoxins for safety management of medicinal herbs. *J. Food Hyg. Saf.*, 32, 187-192 (2017).
- 16. Lee, Y.K., Park, O.S., Oh, Y.H., Kim, M.S., Kim, Y.S., A survey on the population of toxigenic fungi in crude drugs in Seoul. *Korean J. sanitation*, **20**, 29-32 (2005).
- 17. Jegal, S., Kim, J.H., Ju, G.S., Jung, S.J., Na, H.J., Jo, N.G., Lee, J.M., Kim, Y.H., Survey of aflatoxin B₁ and ochratoxin A on commercial dried red pepper and red pepper powder. *J. Fd Hyg. Safety*, 28, 267-271 (2013).
- Eom, J.H., Byun, J.A., Park, Y.G., Seo, E.C., Lee, E.M., Kim, M.R., Sun, N.K., Kim, C.S., Jung, W.Y., Jung, R.S., Na, M.A., Lee, J.H., Monitoring of patulin levels in fruit juices and beverages. *J. Fd Hyg. Safety*, 24, 56-62 (2009).
- 19. Flajs, D., Peraica, M., Toxicological properties of citrinin. *Arh. za Hig. Rada Toksikol.*, **60**, 457-464 (2009).
- 20. Altyn, I., Twarużek, M., Mycotoxin contamination concerns of herbs and medicinal plants. *Toxins*, **12**, 182 (2020).
- 21. Ashiq, S., Hussain, M., Ahmad, B., Natural occurrence of mycotoxins in medicinal plants: a review. *Fungal Genet. Biol.*, **66**, 1-10 (2014).
- 22. D'Ovidio, K., Trucksess, M., Weaver, C., Horn, E., Mcintosh, M., Bean, G., Aflatoxins in ginseng roots. *Food addit, Contam.*, **23**, 174-180 (2006).
- Zheng, R.S., Wang, W.I., Tan, J., Xu, H., Zhan, R.T., Chen, W.W., An investigation of fungal contamination on the surface of medicinal herbs in China. *Chin. Med. J*, 12, 1-8 (2017).
- Su, C., Hu, Y., Gao, D.A.N., Luo, Y.I., Chen, A.J., Jiao, X., Gao, W., Occurrence of toxigenic fungi and mycotoxins on root herbs from Chinese markets. *J. Food Prot.*, 81, 754-761 (2018).
- 25. Kwon, J.H., Byun, M.W., Chang, S.D., Lee, K.S., Improvement of quality stability of red ginseng by gamma irradiation. *Korean J. Postharvest Sci. Technol.*, **6**, 22-28 (1999).
- Shim, W.B., Kim, J.S., Kim, S.R., Park, K.H., Chung, D.H., Microbial contamination levels of ginseng and ginseng products distributed in Korean markets. *J. Food Hyg. Safety*, 28, 319-323 (2013).
- 27. Chi, J.H., Park, S.Y., Lee, Y.H., A quick and safe method for fungal DNA extraction. *Plant Pathol. J.*, **25**, 108-111 (2009).
- 28. White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and

- direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: a guide to methods and applications, Academic press*, 312-322 (1990).
- Glass, N.L., Donaldson, G., Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microbiol.*, 61, 1323-1330 (1995).
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL X windows interface; Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids. Res.*, 25, 4876-4882 (1997).
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.*, 35, 1547-1549 (2018).
- 32. Ehrlich, K.C., Chang, P.K., Yu, J., Cotty, P.J., Aflatoxin biosynthesis cluster gene *cypA* is required for G aflatoxin formation. *Appl. Environ. Microbiol.* **70**, 6518-6524 (2004).
- 33. Dao, H.P., Mathieu, F., Lebrihi, A., Two primer pairs to detect OTA producers by PCR method. *Int. J. Food Microbiol.*, **104**, 61-67 (2005).
- MAFRA (Ministry of Agriculture, Food and Rural Affairs):
 Enforcement rule of the ginseng industrial act-Standards method of inspection (article 15) (2014).
- Milani, J.M., Ecological conditions affecting mycotoxin production in cereals: A review. *Vet. Med.*, 58, 405-411 (2013).
- Lund, F., Frisvad, J.C., Chemotaxonomy of *Penicillium aurantiogriseum* and related species. *Mycol. Res.*, 98, 481-492 (1994).
- Frisvad, J.C., Smedsgaard, J., Larsen, T.O., Samson, R.A., Mycotoxins, drugs and other extrolites produced by species in *Penicillium* subgenus *Penicillium*. *Stud. Mycol.* 49, 201-241 (2004).
- Khalil, A.M.A., Amr, H.H., Amer, M.A., Occurrence of toxigenic *Penicillium polonicum* in retail green table olives from the saudi arabia market. *Biocatal. Agric. Biotechnol.* 21, p. 101314 (2019).
- Devi, P., Naik, C.G., Rodrigues, C., Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, *Moraxella* sp. MB1. *J. Mar. Biotech*nol., 8, 129-138 (2006).
- Nurtjahja, K., Zuhra, C.F., Sembiring, H., Bungsu, A., Simanullang, J., Silalahi, J.E., Infection and population of Aspergillus chevalieri on dried-stored tropical spices, Proc. Int. Conf. Eng. Sci. Appl., 117-120 (2020).
- 41. Alshannaq, A., Yu, J.H., Occurrence, toxicity, and analysis of major mycotoxins in food. *Int. J. Environ. Res. Public Health*, **14**, 632 (2017).