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THOMAS ALGORITHMS FOR SYSTEMS OF

FOURTH-ORDER FINITE DIFFERENCE METHODS

Soyoon Bak, Philsu Kim, and Sangbeom Park

Abstract. The main objective of this paper is to develop a concrete in-

verse formula of the system induced by the fourth-order finite difference
method for two-point boundary value problems with Robin boundary

conditions. This inverse formula facilitates to make a fast algorithm for
solving the problems. Our numerical results show the efficiency and ac-

curacy of the proposed method, which is implemented by the Thomas

algorithm.

1. Introduction

Finite difference method is one of the popular numerical methods to solve
various ordinary and partial differential equations. It goes without saying that
simple inverse formulas for finite difference matrices can be of great impor-
tance in developing efficient numerical algorithms. When the second-order
central finite difference method is applied in a differential equation involving
the second-order differential, the resulting in a system of equations is generally
governed by a tridiagonal matrix. The analysis of the typical system of tridiag-
onal Jacobi matrices is well known, and Usmani [6] created its inverse formula
represented by the principal minors in 1994. Further, the tridiagonal system
can be solved numerically and quickly by the familiar Thomas algorithm [5].

The implementation of an approximate solution with high accuracy is of
great important in numerical analysis, and one can find many finite difference
methods with high accuracy in various problems. In spite of these many re-
search results and their significance, to the best of the author’s knowledge, few
studies have focused on inversion formulas and fast numerical solvers for sys-
tems dominated by the standard higher-order finite difference matrices. The
main purpose of this paper is to develop inverse formulas of the systems of
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equations governed by the fourth-order finite difference matrix of size N

D4 =
1

12h2



−15 −4 14 −6 1
16 −30 16 −1
−1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1
−1 16 −30 16 −1

−1 16 −30 16
1 −6 14 −4 −15


.

In addition, we find a fast solver for the systems of equations which consist of
only the Thomas algorithm.

To achieve the purpose, we first provide an extended version of the formula
for calculating the finite difference weights introduced by Fornberg [1]. Using
this formula, we find a decomposition of D4 represented by

D4 = A2D2

and make an explicit inverse formula of D4 based on the inverse formula for the
quasi-tridiagonal matrix A2 made by the results of Usmani [6] and the well-
known Sherman-Morrison formula [3]. Here, D2 is the standard tridiagonal
matrix made by the standard central finite difference matrix for the second
derivative. It is also shown that the inverse formula enables us to make a
fast Thomas algorithm for solving the system D4u = f . We extend these
results to find both the inverse formula and the Thomas algorithm for the
system governed by D4 that is induced from the fourth-order finite difference
method for solving two-point boundary value problems with Robin boundary
conditions.

The rest of the paper is structured as follows. In Section 2, the relation
between a higher-order finite difference formula and the second-order one is
derived. In addition, the explicit inverse formula of quasi-tridiagonal matrix
A2 is derived. In Section 3, we extend the results to the system for two-point
boundary value problems with Robin boundary conditions. Finally, in Sec-
tion 4, we provide numerical results as evidence of the proposed fast algorithm
based on the Thomas algorithm.

In the following discussion, we will use the formula for the inverse of a
tridiagonal Jacobi matrix [6]. The inversion formula is described as follows.
Let An = [aij ] be an n× n tridiagonal Jacobi matrix such that

aij =


bi, i = j,

ci, j = i+ 1,

ai, j = i− 1,

0, |i− j| > 1.
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Theorem 1.1. Let A−1n = [αij ]. Then, each entry αij satisfies [6]

αij =
(−1)i+j

θn


cici+1 · · · cj−1θi−1φj+1, i < j,

θi−1φi+1, i = j,

aj+1aj+2 · · · aiθj−1φi+1, i > j,

where {φi} is a sequence satisfying the recurrence formula

φi = biφi+1 − ciai+1φi+2, i = n, n− 1, . . . , 2, 1,

φn+1 = 1, φn+2 = 0,

and θi is the principal minors satisfying

θi = biθi−1 − aici−1θi−2, i = 1, 2, . . . , n.

Here, θn = det
(
An
)
, θ−1 = 0, and θ0 = 1, where detAn denotes the determi-

nant of the matrix An.

2. Decomposition of D4 and its explicit inverse formula

The aim of this section is to derive the relation between the fourth-order
and second-order finite differences for the kth-derivative. To do this, let us
introduce the uniform grid defined by

a = x0 < x1 < x2 < · · · < xn = b, xi = x0 + ih, h = b−a
n .

We first recall that the Newton interpolation polynomial of degree n, that
interpolates fi = f(xi) (i = 0, 1, . . . , n), is given by

Ln(x) = f0 +

n∑
i=1

f [x0, . . . , xi]li(x),

where f [x0, . . . , xi] and li(x) are the ith-order Newton divided difference of f
and the Newton basis polynomial, respectively, defined by

f [xi, . . . , xj ] =

{
fi, i = j,
f [xi+1,...,xj ]−f [xi,...,xj−1]

xj−xi
, i < j,

li(x) =

i∏
j=0

(x− xj).

The following lemma gives a special form of the differentiation of Ln(x) that
will be used in deriving a decomposition of the finite difference matrix.

Lemma 2.1. For a fixed positive integer k, if we write the kth-derivative

L
(k)
n (xj) of Ln(x) as

(1) L(k)
n (xj) =

n∑
i=k0

w
(k0,j)
i−k0 k0!f [xi−k0 , . . . , xi], j = 0, 1, 2, . . . , n, 0 ≤ k0 ≤ k,

then, it can be seen that coefficients w
(k0,j)
i−k0 are implicitly defined by the poly-

nomial
n∑

i=k0

w
(k0,j)
i−k0 y

i−k0 = hk0−kyj
n−j−k0∑
m=0

G(m)(1)

m!
(y − 1)m,
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where G(m) is mth-derivative of a smooth function defined by

G(y) :=

(
ln y
)k

(y − 1)k0
.

Proof. We first note that

(2)

f (k)(xj) = L(k)
n (xj) +O(hn−k+1),

k0!f [xi−k0 , . . . , xi] =
1

hk0

k0∑
l=0

(
k0
l

)
(−1)lfi−l.

Now, using the function f(x) = eiwx, we combine (1) and (2) to get

(iw)keiwjheix0

=
1

hk0

n∑
i=k0

w
(k0,j)
i−k0

k0∑
l=0

(
k0
l

)
(−1)leiw(i−l)heix0 +O(hn−k+1)

=
1

hk0

n∑
i=k0

w
(k0,j)
i−k0 e

iw(i−k0)h
k0∑
l=0

(
k0
l

)
(−1)leiw(k0−l)heix0 +O(hn−k+1).

Cancelling the fact eix0 , and substituting eiwh = y, i.e., iwh = ln y, gives

hk0−kyj(ln y)k =

n∑
i=k0

w
(k0,j)
i−k0 y

i−k0(y − 1)k0 +O(hn−k+1).

Hence, the coefficient w
(k0,j)
i−k0 can be calculated with the equation

hk0−kyj
(ln y)k

(y − 1)k0
=

n∑
i=k0

w
(k0,j)
i−k0 y

i−k0 +O(hn−k+1).

Expanding ln y around y = 1 and bouncing the maximum degree of y, the proof
is completed. �

Remark 2.2. When k0 = 0, the formula of (1) is exactly same with the formula
calculated by Fornberg [1]. Hence, the formula (1) is an extension of the formula
in [1].

In the following, we give two special cases for calculating the weights w
(k0,j)
i−k0

by using a single line of Mathematica code:

CoefficientList[Normal[Series[y^{j}*Log[y]^{k}/(y-1)^{k0} h^{k0-k},{y,1,n-k0}]],y]

In the first case, we present the relation between higher-order and lower-order
approximation of the first derivative. For n = 4, the fourth-order approxi-
mations of the first derivative at the grids xi (i = 0, 1, . . . , 4) are defined as
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follows:

(3)

f ′(xj) =

4∑
i=0

w
(0,j)
i fi +O(h4)

=

3∑
i=0

w
(1,j)
i f [xi, xi+1] +O(h4), j = 0, 1, 2, 3, 4,

where

w
(0,0)
i =

{−25, 48,−36, 16,−3}
12h

, w
(1,0)
i =

{25,−23, 13,−3}
12

,

w
(0,1)
i =

{−3,−10, 18,−6, 1}
12h

, w
(1,1)
i =

{3, 13,−5, 1}
12

,

w
(0,2)
i =

{1,−8, 0, 8,−1}
12h

, w
(1,2)
i =

{−1, 7, 7,−1}
12

,

w
(0,3)
i =

{−1, 6,−18, 10, 3}
12h

, w
(1,3)
i =

{1,−5, 13, 3}
12

,

w
(0,4)
i =

{3,−16, 36,−48, 25}
12h

, w
(1,4)
i =

{−3, 13,−23, 25}
12

.

The second case shows the relation between the fourth-order and second-
order approximation of the second derivative. For n = 5, the fourth-order
approximations of the second derivative at the grids xi (i = 0, 1, . . . , 5) are
defined as follows:

(4)

f ′′(xj) =

5∑
i=0

w
(0,j)
i fi +O(h4)

=

3∑
i=0

w
(2,j)
i 2f [xi, xi+1, xi+2] +O(h4), j = 0, 1, 2, 3, 4, 5,

where

w
(0,0)
i =

{45,−154, 214,−156, 61,−10}
12h2

, w
(2,0)
i =

{45,−64, 41,−10}
12

,

w
(0,1)
i =

{10,−15,−4, 14,−6, 1}
12h2

, w
(2,1)
i =

{10, 5,−4, 1}
12

,

w
(0,2)
i =

{−1, 16,−30, 16,−1}
12h2

, w
(2,2)
i =

{−1, 14,−1, 0}
12

,

w
(0,3)
i =

{0,−1, 16,−30, 16,−1}
12h2

, w
(2,3)
i =

{0,−1, 14,−1}
12

,

w
(0,4)
i =

{1,−6, 14,−4,−15, 10}
12h2

, w
(2,4)
i =

{1,−4, 5, 10}
12

,

w
(0,5)
i =

{−10, 61,−156, 214,−154, 45}
12h2

, w
(2,5)
i =

{−10, 41,−64, 45}
12

.
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If we introduce the fourth-order difference matrices of size N := n− 1, then
the relation between coefficients in (4) gives the following decomposition of D4:

(5) D4 = A2D2,

where both matrices D2 and A2 are of order N defined by

D2 =
1

h2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 , A2 =
1

12


10 5 −4 1
−1 14 −1

. . .
. . .

. . .

−1 14 −1
1 −4 5 10

 .
Let us introduce the matrices q, p, and B2 of sizes N × 2, N × 2, and N ×N
whose (i, j)th-entries are defined by

(
B2
)
i,j

=
1

12


14 i = j,

−1 |i− j| = 1,

0 otherwise,

(
q
)
i,j

=
1

12

{
1 (i, j) = (1, 1), (N, 2),

0 otherwise,

(
p
)
i,j

=


−4 (i, j) = (1, 1), (3, 1), (N, 2), (N − 2, 2),

6 (i, j) = (2, 1), (N − 1, 2),

1 (i, j) = (4, 1), (N − 3, 2),

0 otherwise,

respectively. Also, let ej be the canonical unit vector of size N with 1 in jth
entry and zeros elsewhere. Then, we can see that

−4 6 −4 1
0 0 0

. . .
. . .

. . .

0 0 0
1 −4 6 −4


= e1(−4e1 + 6e2 − 4e3 + e4)T

+ eN (−4eN + 6eN−1 − 4eN−2 + eN−3)T .

Eventually, the quasi-tridiagonal matrix A2 is split into

(6)
A2 =

1

12


14 −1 0 0
−1 14 −1

. . .
. . .

. . .

−1 14 −1
0 0 −1 14

+
1

12


−4 6 −4 1
0 0 0

. . .
. . .

. . .

0 0 0
1 −4 6 −4

 ,
= B2 + qpT .

The tridiagonal matrix B2 is then symmetric diagonally dominant and hence
invertible. In particular, the following theorem shows the invertibility of the
2× 2 matrix I2 + pTB−12 q.
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Theorem 2.3. The matrix I2 + pTB−12 q has the explicit form

I2 + pTB−12 q =
144λ2N

λ2N+2 − 1

[
1− λ−4N 28

√
48λ1−N

28
√

48λ1−N 1− λ−4N
]
, λ = 7 +

√
48.

Proof. If we let r = B−12 q, then a direct calculation from the definition of pT

gives

I2 + pTB−12 q

= I2 + pT r

=

[
1− 4r1,1 + 6r2,1 − 4r3,1 + r4,1 −4r1,2 + 6r2,2 − 4r3,2 + r4,2

−4rN,1 + 6rN−1,1 − 4rN−2,1 + rN−3,1 1− 4rN,2 + 6rN−1,2 − 4rN−2,2 + rN−3,2

]
.

Since the matrix r is the solution of the system B2r = q, the definition of q
gives

(7)



14r1,1 − r2,1 = 1,

−r1,1 + 14r2,1 − r3,1 = 0,

...

−rN−2,1 + 14rN−1,1 − rN,1 = 0,

−rN−1,1 + 14rN,1 = 0,



14r1,2 − r2,2 = 0,

−r1,2 + 14r2,2 − r3,2 = 0,

...

−rN−2,2 + 14rN−1,2 − rN,2 = 0,

−rN−1,2 + 14rN,2 = 1.

From the left system of equations of (7), we simplify the (1, 1)-entry of I2 +
pTB−12 q as

1− 4r1,1 + 6r2,1 − 4r3,1 + r4,1

= 1− 4r1,1 + 5r2,1 + 10r3,1 + γ1 (γ1 := r2,1 − 14r3,1 + r4,1 = 0)

= 1− 14r1,1 + 145r2,1 + γ2 (γ2 := 10(r1,1 − 14r2,1 + r3,1) = 0)

= 144r2,1.

From similar procedures, the matrix of (6) can be simplified by

(8) I2 + pTB−12 q =

[
144r2,1 144r2,2

144rN−1,1 144rN−1,2

]
.

According to the explicit formula for the inverse of the tridiagonal matrix given
by Theorem 1.1, the two systems of (7) show that

(9) r2,1 = rN−1,2 = φ3/θN , r2,2 = rN−1,1 = 14/θN ,

where φi and θi are, respectively, the solutions of the three-term recurrence
equations:

(10)
θi = 14θi−1 − θi−2, θ0 = 1, θ1 = 14,

φi = 14φi+1 − φi+2, φN+1 = 1, φN = 14.

The solutions of (10) can be easily obtained using the standard methods, which
are given by

(11) θi = φN+1−i =
1

2
√

48

(
λi+1 −

( 1

λ

)i+1)
, i = 0, 1, . . . , N.
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Hence, the proof can be completed using (8), (9), and (11). �

Remark 2.4. Since λN →∞ as N →∞, Theorem 2.3 shows that for sufficiently
large N , the matrix I2 +pTB−12 q is almost a scalar matrix. More precisely, we
have

I2 + pTB−12 q =
144

97 + 56
√

3
I2 + T , ‖T ‖∞ = 9.99× 10−16

for N ≥ 16.

Remark 2.4 guarantees that the quasi-tridiagonal matrix A2 has an explicit
inverse formula, which can be proved by the Sherman-Morrison formula [3].

Corollary 1. The matrix A2 of (6) has an explicit inverse formula [3]

(12) A−12 =
(
I − K

)
B−12 ,

where K is a known matrix defined by

K := B−12 q
(
I2 + pTB−12 q

)−1
pT .

Summarizing, if we apply the fourth-order finite difference method to the
basic two-point boundary value problem with the Dirichlet boundary condition

(13) u′′(x) = f(x), x ∈ (a, b); u(a) = g1, u(b) = g2,

the formulas (5) and (12) show that we can obtain the numerical solution by
solving only two tridiagonal systems

(14) B2x = f , D2u = x− r
(

(I2 + pTB−12 q)−1(pTx)
)
,

where r is calculated only once while solving the system. In particular, assum-
ing N ≥ 16, the numerical solution can be quickly obtained by solving two
tridiagonal system:

(15) B2x = f , D2u = x− 97 + 56
√

3

144
r(pTx).

The systems (14) and (15) can be calculated with the Thomas algorithm. This
skill will be directly applied the first system in (16) for solving the two-point
boundary value problem with the Robin boundary condition.

3. Application to two-point boundary value problems

The aim of this section is to extend the discussion presented in Section 2 and
derive the Thomas algorithm for solving two-point boundary value problems
with Robin boundary condition

(16)
u′′(x) = f(x), x ∈ (a, b),

α1u(a) + β1u
′(a) = g1, α2u(b) + β2u

′(b) = g2,
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where |αk| + |βk| 6= 0, k = 1, 2. For the discretization of the Robin boundary
condition, we introduce two vectors

(17)
L =

[
α1 −

25β1
12h

,
4β1
h
,−3β1

h
,

4β1
3h

,−β1
4h

]
,

R =
[β2

4h
,−4β2

3h
,

3β2
h
,−4β1

h
, α2 +

25β2
12h

]
.

Then, the vectors of (17) and the fourth-order finite difference scheme for first
derivative (3) for the boundary conditions in (16) give

(18) g1 =

5∑
k=1

Lkuk−1 +O(h4), g2 =

5∑
k=1

RkuN−4+k +O(h4),

where Lk and Rk are the kth-components of L and R, respectively.
Now, we introduce matrices Q, P of size N × 2, a vector f of size N × 1 and

2× 1 vector g defined by

Q =



q1,1
q2,1

qN−1,2
qN,2


N×2

, P =



L2

...
L5

R1

...
R4


N×2

, f =

 f1...
fN


N×1

, g =

[
g1
g2

]
2×1

,

where

[q1,1, q2,1] =
1

12h2L1
[−10, 1], [qN,2, qN−1,2] =

1

12h2R5
[−10, 1].

Then, the fourth-order finite difference schemes of (5) and (18) give a fourth-
order discretization system for solving (16) stated as

(19)

(
D4 + QPT

)
u = f + Qg,

u0 =
(
g1 −

4∑
k=1

Lk+1uk

)
/L1, uN+1 =

(
g2 −

4∑
k=1

RkuN−4+k

)
/R5.

To derive the Thomas algorithm for the system (19), the following lemma
analyze the matrix I2 + PTD−14 Q.

Lemma 3.1. For the 2 × 2 matrix I2 + PTD−14 Q, its determinant can be
calculated as

det
(
I2 + PTD−14 Q

)
=

144h2

(12α1h− 25β1)(12α2h+ 25β2)

(
α1α2 +

α1β2 − α2β1
b− a

)
.
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Hence, the matrix I2 + PTD−14 Q is invertible, when |α1|+ |α2| 6= 0.

Proof. We first note that the exact solution of the two-point boundary value
problem

(20) u′′(x) = 0, x ∈ (a, b); u(a) =
1

L1
, u(b) = 0

is given by

u(x) =
b− x

(b− a)L1
.

If we define N × 2 matrix r by r = D−14 Q, the definitions of D4 and Q give the
relation

(21) L1ri,1 = R5rN+1−i,2, i = 1, 2, . . . , N.

Further, the first column r1 of r is the solution of the system

D4r1 =
1

12h2L1


−10

1
0
...
0

 ,
which is obtained from the fourth-order finite difference method for the bound-
ary value problem (20). Hence, the solution r1 can be exactly calculated by

(22) ri,1 =
1

L1

(
1− i

N + 1

)
, i = 1, 2, . . . , N.

Combining (21) and (22) gives the explicit formula of I2 +PTD−14 Q as follows:

(23) I2 + PTD−14 Q = 12h

[
α1−β1/(b−a)
12α1h−25β1

β1/(b−a)
12α2h+25β2

−β2/(b−a)
12α1h−25β1

α2+β2/(b−a)
12α2h+25β2

]
.

Therefore, the determinant can be easily checked from a direct calculation and
one can complete the proof. �

As discussed in Corollary 1, this lemma and the Sherman-Morrison formula
[3] provide an explicit formula for the solution of the system of (19) defined by

(24) u =
(
D−14 −D

−1
4 Q(I2 + PTD−14 Q)−1PTD−14

)(
f + Qg

)
.

The explicit formula (24) indicates that we can quickly obtain the numerical
solution by solving only two tridiagonal systems based on the Thomas algo-
rithm. First we note that as derived the formula (22) and using the relation
(21), one can explicitly solve the equation

D4r = Q
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with

(25) r =


N

L1(N+1)
1

R5(N+1)
N−1

L1(N+1)
2

R5(N+1)

...
...

1
L1(N+1)

N
R5(N+1)

 .
Hence, the numerical solution can be obtained by solving

(26) D4x = f + Qg, y = PTx, u = x− r
(
I2 + PTD−14 Q

)−1
y.

Here, the first equation of (26) can be solved with the Thomas algorithm
discussed in (14) or (15). The pseudo code of (26) is described in Algorithm 1.

Algorithm 1 Pseudo code of (26)

Input: (a, b, αi, βi, gi, (i = 1, 2), h and f)

1: Discretize the spatial domain (a, b) with an uniform step size h and con-
struct two vectors f and g.

2: Explicitly construct two matrices r and
(
I2 +PTD−14 Q

)−1
defined in (25)

and (23), respectively.
3: Solve the tridiagonal system B2z = f +Qg by using the Thomas algorithm.

4: Solve the tridiagonal system D2x = z − 97+56
√
3

144 r(PT z) by using the
Thomas algorithm.

5: Compute y = PTx.

6: Compute u = x− r
(
I2 + PTD−14 Q

)−1
y.

Output: u

Remark 3.2. We observe that the banded system (19) of size n = N − 1 has
the bandwidth w = 4 and hence a general banded matrix solver for the system

(19) requires at least a total of
(
w2 + 4w

)
n = 32n multiplication [4]. While

the proposed method solve only two tridiagonal systems and saves the multi-
plication operation of 22n since a total of 5n multiplications are required for
solving a tridiagonal system for the Thomas algorithm.

Remark 3.3. Lemma 3.1 indicates that the equation (24) is not available when
α1 = α2 = 0. To solve the pure Neumann boundary problem, we suggest the
following procedure:

û =
(
D−14 −D

−1
4 Q̂PTD−14

)(
f + Q̂g

)
,

ûN+1 = 0, û0 =
(
g1 −

4∑
k=1

Lk+1ûk

)
/L1,

(27)
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where
Q̂(:, 1) = Q(:, 1), Q̂(:, 2) = 0.

Finally, we set uk = ûk + uN+1, k = 0, 1, . . . , N + 1.

Remark 3.4. In this remark, we consider an application of the proposed algo-
rithm for solving a general two-point boundary value problem described by

(28)

d2

dx2
u(x) + p(x)

d

dx
u(x) + q(x)u(x) = f(x), x ∈ (a, b),

α1u(a) + β1u
′(a) = g1, α2u(b) + β2u

′(b) = g2.

As a direct application, we propose a simple iterative algorithm such as

d2

dx2
u(k+1)(x) = f(x)− p(x)

d

dx
u(k)(x)− q(x)u(k)(x), k = 0, 1, 2, . . . .

To ensure a fast convergence of the iterative method while maintaining the
efficiency of the proposed algorithm based on the Thomas algorithm, we sug-
gest the central finite difference method to get the initial guess u(0). For the
convenience of readers, we introduce the second-order central finite difference
scheme for solving the problem (28) as follows:(

α1(2− hp(x0))

β1h
− 2− h2q(x0)

h2

)
u0 +

2

h2
u1 = f(x0) +

2− hp(x0)

hβ1
g1,

2− hp(xi)
2h2

ui−1 −
2− h2q(xi)

h2
ui +

2 + hp(xi)

2h2
ui+1 = fi, i = 2, 3, . . . , N,(

−α1(2 + hp(xN+1))

β2h
− 2− h2q(xN+1)

h2

)
uN+1 +

2

h2
uN

= f(xN+1)− 2 + hp(xN+1)

hβ2
g2.

4. Numerical experiments

This section aims to present the numerical investigation of the proposed
scheme for solving the two-point boundary value problems. For this, we mea-
sure the error defined as follows:

Error =
‖uapprox − uexact‖

‖uexact‖
,

where uexact and uapprox are the analytic and approximate solutions, respec-
tively, and ‖ · ‖ is the L2-norm.

To show the efficiency and superiority of the proposed method, its results
are compared with those of Matlab’s built-in function “mldivide.” For a fair
comparison, the codes for all programs are written in Matlab R2020a and run
on a Windows 10 PC with 3.59 GHz Ryzen 5 3600 processor.

Since the matrix D4 + QPT in (19) is a sparse and banded matrix, the
“mldivide” uses a banded solver, which can be checked using the Matlab func-
tion“spparms(‘spumoni’,2)”. In particular, we check how much the proposed
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method improves the computational speed, for which we measure Speed defined
as

Speed = cpum/cpup,

where cpum and cpup are the computational costs for “mldivide” and the pro-
posed scheme, respectively.

Example 4.1. We consider two-point boundary value problem (16) with the
analytic solution

u(x) = sin(x), −100 ≤ x ≤ 100

and the boundary condition{
α1u(−100) + β1u

′(−100) = g1,

α2u(100) + β2u
′(100) = g2,

where gk are chosen from the analytic solution.

This problem can deal with four boundary conditions, such as Dirichlet,
Neumann, Robin, and Mixed boundaries, by selecting αk, and βk (k = 1, 2) as
0 or 1. We consider the following for five cases.
- For the Dirichlet boundary condition, we choose (α1, β1, α2, β2) = (1, 0, 1, 0).
- For the Neumann boundary condition, we choose (α1, β1, α2, β2) = (0, 1, 0, 1).
- For the Mixed boundary condition, we choose (α1, β1, α2, β2) = (1, 0, 1, 1),
and (1, 0, 0, 1).
- For the Robin boundary condition, we choose (α1, β1, α2, β2) = (1, 1, 1, 1).

For each case, we measured the error, computational cost, and Speed for the
numerical results obtained by both the proposed method and “mldivide” by
varying resolution N from 210 to 214. These results are recorded in Tables 1-5.
In all tables, it can be seen that both methods have fourth-order accuracy, and
their obtained results are almost the same in the sense of both accuracy and
the order of convergence. However, the proposed method is at least six times
and on average 11.76-times faster than “mldivide,” in terms of computational
cost, which guarantee the effectiveness of the developed Thomas algorithm.

Table 1. Numerical performances of Example 4.1 with
(α1, β1, α2, β2) = (1, 0, 1, 0).

N
Scheme (19) with mldivide Proposed scheme (26)

Speed
Error rate cpum Error rate cpup

210 1.91× 10−5 − 8.21× 10−4 1.91× 10−5 − 8.97× 10−5 9.16

211 1.10× 10−6 4.11 1.57× 10−3 1.10× 10−6 4.11 1.13× 10−4 13.82

212 6.81× 10−8 4.02 2.89× 10−3 6.81× 10−8 4.02 2.89× 10−4 9.99

213 4.24× 10−9 4.00 6.10× 10−3 4.24× 10−9 4.00 5.25× 10−4 11.63

214 2.70×10−10 3.97 1.24× 10−2 2.65×10−10 4.00 8.71× 10−4 14.20
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Table 2. Numerical performances of Example 4.1 with
(α1, β1, α2, β2) = (0, 1, 0, 1).

N
Scheme (19) with mldivide Proposed scheme (27)

Speed
Error rate cpum Error rate cpup

210 3.60× 10−2 − 9.09× 10−4 3.60× 10−2 − 1.32× 10−4 6.88

211 2.33× 10−3 3.95 1.58× 10−3 2.33× 10−3 3.95 1.21× 10−4 13.13

212 1.48× 10−4 3.98 3.12× 10−3 1.48× 10−4 3.98 3.36× 10−4 9.28

213 9.34× 10−6 3.99 6.00× 10−3 9.34× 10−6 3.99 5.01× 10−4 11.98

214 5.87× 10−7 3.99 1.22× 10−2 5.86× 10−7 3.99 8.29× 10−4 14.77

Table 3. Numerical performances of Example 4.1 with
(α1, β1, α2, β2) = (1, 0, 1, 1).

N
Scheme (19) with mldivide Proposed scheme (26)

Speed
Error rate cpum Error rate cpup

210 1.85× 10−4 − 9.29× 10−4 1.85× 10−4 − 1.39× 10−4 6.70

211 1.19× 10−5 3.97 1.55× 10−3 1.19× 10−5 3.97 1.18× 10−4 13.14

212 7.52× 10−7 3.98 2.84× 10−3 7.52× 10−7 3.98 2.15× 10−4 13.17

213 4.74× 10−8 3.99 6.56× 10−3 4.74× 10−8 3.99 4.45× 10−4 14.74

214 2.97× 10−9 4.00 1.20× 10−2 2.99× 10−9 3.99 7.99× 10−4 15.01

Table 4. Numerical performances of Example 4.1 with
(α1, β1, α2, β2) = (1, 0, 0, 1).

N
Scheme (19) with mldivide Proposed scheme (26)

Speed
Error rate cpum Error rate cpup

210 3.60× 10−2 − 8.40× 10−4 3.60× 10−2 − 8.66× 10−5 9.70

211 2.33× 10−3 3.95 1.66× 10−3 2.33× 10−3 3.95 1.17× 10−4 14.11

212 1.48× 10−4 3.98 3.13× 10−3 1.48× 10−4 3.98 3.42× 10−4 9.15

213 9.34× 10−6 3.99 5.77× 10−3 9.34× 10−6 3.99 4.96× 10−4 11.65

214 5.86× 10−7 3.99 1.21× 10−2 5.86× 10−7 3.99 8.55× 10−4 14.16
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Table 5. Numerical performances of Example 4.1 with
(α1, β1, α2, β2) = (1, 1, 1, 1).

N
Scheme (19) with mldivide Proposed scheme (26)

Speed
Error rate cpum Error rate cpup

210 3.13× 10−4 − 9.36× 10−4 3.13× 10−4 − 1.52× 10−4 6.17

211 2.02× 10−5 3.95 1.57× 10−3 2.02× 10−5 3.95 1.42× 10−4 11.09

212 1.28× 10−6 3.98 2.95× 10−3 1.28× 10−6 3.98 3.58× 10−4 8.24

213 8.09× 10−8 3.99 6.93× 10−3 8.10× 10−8 3.99 4.62× 10−4 15.00

214 5.11× 10−9 3.99 1.24× 10−2 5.09× 10−9 3.99 7.55× 10−4 16.43

Example 4.2. We consider the two-point boundary value problem given by

u′′(x) = − sin(x), x ∈ (a, b),{
α1u(a) + β1u

′(a) = g1,

α2u(b) + β2u
′(b) = g2,

whose analytic solution is calculated by

u(x) = sin(x) +
(α2ĝ1 − α1ĝ2)x+ (α1a+ β1)ĝ2 − (α2b+ β2)ĝ1

(β1 + aα1)α2 − (β2 + bα2)α1

for the case (β1 +aα1)α2 6= (β2 + bα2)α1. Here, ĝ1 = g1−α1 sin(a)−β1 cos(a),
and ĝ2 = g2−α2 sin(b)−β2 cos(b). The computational domain is set as (a, b) =
(−100, 100).

In our experiment, g1 and g2 are set as 1 and 0, respectively. Additionally,
we only consider the three cases, Robin, Dirichlet, and two mixed boundary
conditions without the pure Neumann boundary, because the analytic solution
does not exist when αk = 0 and βk = 1, in this example. To examine the
precision and superiority of the proposed method, the error, computational
cost, and Speed are measured by both the proposed method and “mldivide”
by varying resolution N from 210 to 214. The results are listed in Tables 6-
9. As with Example 4.1, the proposed method is at least seven-times and on
average 11.51-times faster than “mldivide,” in terms of computational costs.
These tables show that the proposed method has the fourth-order accuracy
in all cases. Further, it is worth observing that the solver “mldivide” has a
phenomenon of order reduction for both cases, Dirichlet boundary and Mixed
boundary conditions. In contrast, the proposed method does not have such
phenomena.
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Table 6. Numerical performances of Example 4.2 with
(α1, β1, α2, β2) = (1, 0, 1, 0).

N
Scheme (19) with mldivide Proposed scheme (24)

Speed
Error rate cpum Error rate cpup

210 1.56× 10−5 4.64 8.88× 10−4 1.56× 10−5 4.64 8.22× 10−5 10.80

211 9.02× 10−7 4.11 1.64× 10−3 9.02× 10−7 4.11 1.57× 10−4 10.41

212 5.56× 10−8 4.02 3.54× 10−3 5.56× 10−8 4.02 2.74× 10−4 12.93

213 3.49× 10−9 3.99 6.62× 10−3 3.47× 10−9 4.00 4.72× 10−4 14.03

214 1.64× 10−9 1.09 1.24× 10−2 2.17×10−10 4.00 8.01× 10−4 15.47

Table 7. Numerical performances of Example 4.2 with
(α1, β1, α2, β2) = (1, 0, 1, 1).

N
Scheme (19) with mldivide Proposed scheme (24)

Speed
Error rate cpum Error rate cpup

210 1.73× 10−4 3.94 9.88× 10−4 1.73× 10−4 3.94 1.40× 10−4 7.04

211 1.11× 10−5 3.97 1.67× 10−3 1.11× 10−5 3.97 2.00× 10−4 8.37

212 7.03× 10−7 3.98 3.22× 10−3 7.03× 10−7 3.98 2.76× 10−4 11.65

213 4.43× 10−8 3.99 6.26× 10−3 4.43× 10−8 3.99 5.00× 10−4 12.52

214 2.66× 10−9 4.06 1.36× 10−2 2.80× 10−9 3.99 8.02× 10−4 16.98

Table 8. Numerical performances of Example 4.2 with
(α1, β1, α2, β2) = (1, 0, 0, 1).

N
Scheme (19) with mldivide Proposed scheme (24)

Speed
Error rate cpum Error rate cpup

210 2.58× 10−4 3.87 9.41× 10−4 2.58× 10−4 3.87 8.94× 10−5 10.52

211 1.66× 10−5 3.95 1.75× 10−3 1.66× 10−5 3.95 1.53× 10−4 11.44

212 1.06× 10−6 3.97 3.23× 10−3 1.06× 10−6 3.98 3.19× 10−4 10.12

213 7.02× 10−8 3.91 6.01× 10−3 6.67× 10−8 3.99 5.34× 10−4 11.25

214 1.74× 10−8 2.01 1.30× 10−2 4.20× 10−9 3.99 7.71× 10−4 16.89
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Table 9. Numerical performances of Example 4.2 with
(α1, β1, α2, β2) = (1, 1, 1, 1).

N
Scheme (19) with mldivide Proposed scheme (24)

Speed
Error rate cpum Error rate cpup

210 2.78× 10−4 3.87 8.58× 10−4 2.78× 10−4 3.87 1.02× 10−4 8.37

211 1.80× 10−5 3.95 1.68× 10−3 1.80× 10−5 3.95 1.80× 10−4 9.32

212 1.14× 10−6 3.98 3.08× 10−3 1.14× 10−6 3.98 3.39× 10−4 9.09

213 7.24× 10−8 3.98 6.03× 10−3 7.21× 10−8 3.99 6.14× 10−4 9.82

214 5.70× 10−9 3.67 1.17× 10−2 4.53× 10−9 3.99 8.91× 10−4 13.14

Example 4.3. We consider a general two-point boundary value problem given
by

− u′′(x) +
2

x+ 1
u′(x) +

(
1− 2

(1 + x)2

)
u(x) = 4x(1 + x)ex, x ∈ (a, b),{

α1u(a) + β1u
′(a) = g1,

α2u(b) + β2u
′(b) = g2,

whose analytic solution is calculated by [2]

u(x) = x(1− x2)ex.

The computational domain is set as (a, b) = (0, 1).

Table 10. Numerical performances of Example 4.3 with
(α1, β1, α2, β2) = (1, 0, 1, 0).

N
Standard method with mldivide Proposed scheme with 8 iteration

Speed
Error rate cpum Error rate cpup

26 3.60× 10−8 4.03 1.70× 10−4 3.60× 10−8 4.03 1.75× 10−4 0.97

27 2.23× 10−9 4.01 2.29× 10−4 2.24× 10−9 4.01 2.04× 10−4 1.12

28 1.40×10−10 3.99 3.33× 10−4 1.40×10−10 4.00 2.31× 10−4 1.44

29 1.24×10−11 3.50 5.91× 10−4 8.78×10−12 3.99 3.28× 10−4 1.80

210 1.14×10−11 0.11 1.19× 10−3 7.49×10−13 3.55 5.33× 10−4 2.22
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Table 11. Numerical performances of Example 4.3 with
(α1, β1, α2, β2) = (1, 0, 1, 1).

N
Standard method with mldivide Proposed scheme with 12 iteration

Speed
Error rate cpum Error rate cpup

26 1.51× 10−6 3.98 1.69× 10−4 1.51× 10−6 3.98 2.17× 10−4 0.78

27 9.53× 10−8 3.99 2.34× 10−4 9.53× 10−8 3.99 2.45× 10−4 0.96

28 5.98× 10−9 3.99 3.25× 10−4 5.98× 10−9 3.99 2.84× 10−4 1.14

29 3.81×10−10 3.97 5.76× 10−4 3.75×10−10 4.00 3.96× 10−4 1.46

210 4.54×10−11 3.07 1.17× 10−3 2.36×10−11 3.99 6.47× 10−4 1.80

As mentioned in Remark 3.4, in this example, we investigate whether the
proposed method is applicable to a general second-order problem with both
Dirichlet and Robin boundary conditions. To examine the precision and supe-
riority of the proposed method, the error, computational cost, and Speed are
measured by both the proposed method and “mldivide” by varying resolution
N from 26 to 210. The results are listed in Tables 10-11. The proposed method
requires 8 and 12 iteration procedures to achieve the required convergence rate
according to the boundary conditions, respectively. First, the column of Speed
shows that the proposed method is slightly faster than “mldivide” as the spatial
resolution increases. Further, it is worth observing that the order reduction of
the solver ”mldivide” is more severe than the proposed method. However, the
proposed method can improve the order reduction phenomenon by increasing
the number of iterations.

5. Conclusions and perspectives

We developed a general formula to decompose the high-order finite-difference
matrix with the lower-order finite-difference. This formula is used to propose
both the inverse formula and the Thomas algorithm of the system induced by
the fourth-order finite difference method for two boundary value problems with
Robin boundary. The proposed algorithm can be applied in various problems
and ways to simulation using the finite-difference methodology with higher-
order accuracy. Furthermore, it is expected to provide a clue that can be
solved remarkably quickly through the application of the Thomas algorithm by
dividing the coefficient matrix of the high-order finite difference method into
tridiagonal matrices.
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