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MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE

EQUATION ON GRAPH

Yang Liu

Abstract. Let u be a function on a locally finite graph G = (V,E) and
Ω be a bounded subset of V . Let ε > 0, p > 2 and 0 ≤ λ < λ1(Ω) be

constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian,

and h : V → R be a function satisfying h ≥ 0 and h 6≡ 0. We consider a
perturbed Yamabe equation, say{

−∆u− λu = |u|p−2u+ εh, in Ω,

u = 0, on ∂Ω,

where Ω and ∂Ω denote the interior and the boundary of Ω, respectively.

Using variational methods, we prove that there exists some positive con-

stant ε0 > 0 such that for all ε ∈ (0, ε0), the above equation has two
distinct solutions. Moreover, we consider a more general nonlinear equa-

tion {
−∆u = f(u) + εh, in Ω,

u = 0, on ∂Ω,

and prove similar result for certain nonlinear term f(u).

1. Introduction

In a series of works [8–10], Grigor’yan, Lin and Yang solved several discrete
differential equations, say the Yamabe equation, the Kazdan-Warner equation
and the Schrödinger equation, by finding critical points for various function-
als. Their main contribution is to establish a functional framework on graphs,
through which a direct method of variation, the mountain-pass theorem, and
the principle of upper-lower solutions are applied. Recently, the research in this
field has received great interests. Inspired by [10], Zhang-Zhao [22] obtained
nontrivial solutions to certain nonlinear Schrödinger equation on locally finite
graphs. Similar problem on infinite metric graphs were discussed by Akduman-
Pankov [2]. The Kazdan-Warner equation was generalized by Keller-Schwarz
[15] to canonically compactifiable graphs, and by Ge-Jiang [6] to certain infinite
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graph. For other related works, we refer the reader to [7, 11, 12, 14, 17–19, 21]
and the references therein.

In this paper, we concern multiplicity of solutions to a perturbed Yamabe
equation on graphs. Similar topic was studied by Grigor’yan, Lin and Yang
[10] on the Schrödinger equation, by Liu and Yang [16] on the Kazdan-Warner
equation, and by Hou [13] on the bi-Laplacian equation. Earlier results on
Euclidean space are referred to [1,4,5,20]. To state our results, we recall some
definitions on graphs. Let G=(V, E ) be a graph, where V denotes the vertex
set and E denotes the edge set. Ω is said to be a domain if it is a connected
subset of V . Throughout this paper, we always assume that G satisfies the
following conditions (a)-(d) and Ω is a domain satisfying the condition (e).

(a) (Locally finite) For any x ∈ V , there exist only finite vertices y ∈ V
such that xy ∈ E.

(b) (Connected) For any x, y ∈ V , there exist finite edges connecting x and
y.

(c) (Symmetric weight) For any x, y ∈ V , let ω : V × V → R be a positive
symmetric weight, i.e., ωxy > 0 and ωxy = ωyx.

(d) (Positive finite measure) µ : V → R+ defines a positive finite measure
on a graph G.

(e) (Bounded domain) For any two vertices x, y ∈ Ω, the distance d(x, y) is
uniformly bounded from above, where d(x, y) is defined as the minimal
number of edges which connect x and y.

For any function u : V → R, the µ-Laplacian of u at any vertex x is defined
by

4u(x) =
1

µ(x)

∑
y∼x

ωxy(u(y)− u(x)),

where y ∼ x means xy ∈ E. The associated gradient form of two functions u
and v at any vertex x reads

Γ(u, v)(x) =
1

2µ(x)

∑
y∼x

ωxy(u(y)− u(x))(v(y)− v(x)).

For our convenience, we write Γ(u)(x) = Γ(u, u)(x), and denote the length of
the gradient

|∇u|(x) =
√

Γ(u)(x) =

(
1

2µ(x)

∑
y∼x

ωxy(u(y)− u(x))2

) 1
2

.

For any function h : V → R, the integral of h on a bounded domain Ω is
denoted by ∫

Ω

hdµ =
∑
x∈Ω

µ(x)h(x).
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We consider the following perturbed Yamabe equation

(1)

{
−∆u− λu = |u|p−2u+ εh, in Ω,
u = 0, on ∂Ω,

where ∂Ω = {y ∈ V, y 6∈ Ω : ∃x ∈ Ω such that xy ∈ E} denotes the boundary
of Ω, ε is a positive real number, h : V → R is a function, and λ1(Ω) is the first
eigenvalue of the µ-Laplacian with respect to Dirichlet boundary condition,
which is defined by

(2) λ1(Ω) = inf
u6≡0,u|∂Ω=0

∫
Ω∪∂Ω

|∇u|2dµ∫
Ω
u2dµ

.

According to [16], Lp(Ω) on graphs is defined by

Lp(Ω) = {u : Ω→ R, ‖u‖Lp(Ω) < +∞}, 1 ≤ p ≤ ∞,

where the norm of u ∈ Lp(Ω) is defined by

‖u‖Lp(Ω) =

{
(
∑
x∈Ω µ(x)|u(x)|p)

1
p , 1 ≤ p <∞,

maxx∈Ω |u(x)|, p =∞.

Grigor’yan et al. [8] defined the Sobolev space W 1,2
0 (Ω) and its norm on graphs

by

(3) W 1,2
0 (Ω) =

{
u : Ω→ R

∣∣∣ u|∂Ω = 0,

∫
Ω∪∂Ω

|∇u|2dµ < +∞
}

and

(4) ‖u‖W 1,2
0 (Ω) =

(∫
Ω∪∂Ω

|∇u|2dµ
) 1

2

.

In fact, W 1,2
0 (Ω) is exactly a finite dimensional linear space since the bounded

domain Ω only contains finite vertexes. Without loss of generality, we may as-
sume Ω = {x1, x2, . . . , xn}, then W 1,2

0 (Ω) = Rn, and the norm (4) is equivalent

to (
∫

Ω∪∂Ω
|∇u|2dµ+

∫
Ω
u2dµ)

1
2 , which is the traditional norm of Sobolev space

W 1,2
0 (Ω).

Obviously, W 1,2
0 (Ω) is a Hilbert space with the inner product

〈u, v〉 =

∫
Ω∪∂Ω

Γ(u, v)dµ, ∀u, u ∈W 1,2
0 (Ω).

Set H(Ω) as the dual space of the W 1,2
0 (Ω) with the norm

‖h‖H(Ω) = sup
‖u‖

W
1,2
0 (Ω)

≤1

|
∫

Ω

hudµ|, ∀h ∈ H(Ω).

Because the Hilbert space is reflexive, by Riesz representation theorem, W 1,2
0 (Ω)

is equivalent to H(Ω) in the sense of isomorphism. That is to say, ignoring their

concrete contents, W 1,2
0 (Ω) and H(Ω) can be regarded as the same abstract
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space without distinction. What’s interesting about the graph is that they are
all Euclidean space Rn. Now we are ready to state our first result.

Theorem 1.1. Let G = (V,E) be a graph satisfies conditions (a)-(d), Ω be a
connected domain satisfies (e) with Ω 6= ∅, λ1(Ω) is defined by (2). Suppose that
h ∈ H(Ω) satisfies 0 ≤ h(x) 6≡ 0 for all x ∈ Ω. Then for any 0 ≤ λ < λ1(Ω)
and p > 2, there exists a constant ε0 > 0 such that for any ε ∈ (0, ε0), (1) has
two distinct strictly positive solutions.

We also consider a more general case of (1), which is the following perturbed
Dirichlet boundary value problem

(5)

{
−∆u = f(u) + εh, in Ω,
u = 0, on ∂Ω.

As we make the equation more general, our theorem condition becomes corre-
spondingly more stronger, which is the following theorem that we get here.

Theorem 1.2. Let G = (V,E) be a graph satisfies (a)-(d), Ω be a connected
domain satisfies (e) with Ω 6= ∅, λ1(Ω) is defined by (2). Suppose that h ∈ H(Ω)
satisfies 0 ≤ h(x) 6≡ 0 for all x ∈ Ω. Let f : R→ R be a function satisfying the
following conditions:

(H1) f(s) is continuous with respect to s. For any s ∈ [0,+∞) there always
holds f(s) ≥ 0 and f(0) = 0;

(H2) for any fixed L > 0, there exists a constant ML such that maxs∈[0,L] f(s)
≤ML;

(H3) there exists a constant q > 2 such that for any s ≥ 0, it holds

0 < F (s) =

∫ s

0

f(t)dt ≤ sf(s)

q
;

(H4) lim sups→0+ 2F (s)/s2 < λ1(Ω).

Then there exists a constant ε1 > 0 such that for any ε ∈ (0, ε1), (5) has two
distinct strictly positive solutions.

Following the lines of [10,13], we prove Theorems 1.1 and 1.2 by employing
the mountain-pass theorem, which is studied by Ambrosetti-Rabinowitz [3], and
a direct method of variation. Compared with [10, 13], where the Schrödinger
equation and the bi-Laplacian equation were studied respectively, our results
are nontrivial extensions. In this paper, we only care about the multiple so-
lutions of the perturbed Yamabe equation on graphs, and the general solvable
problem of the Yamabe equation on graphs is not discussed. Furthermore, we
do not distinguish sequence and its subsequence.

The remaining parts of this paper are organized as follow: In Section 2, we
give the Sobolev embedding theorem on a locally finite graph and the varia-
tional form of the equation under the functional framework. Then we introduce
the mountain-pass theorem and the weak solution of the equation, then prove
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that the solution is strictly positive. In Section 3, we use the variational meth-
ods to prove Theorem 1.1 by two steps. And then Theorem 1.2 is proved in
Section 4.

2. Preliminary analysis

In this section, we review some important facts on graphs.

2.1. Sobolev embedding theorem

For any function u : V → R on a graph, we assert that it maps to an exact
finite real number for every vertex on the graph. Thus, if G = (V,E) is a graph
satisfies (a)-(d) and Ω ⊂ V is a bounded connected domain, then there are only
finite vertexes in domain Ω and we can simplify (3) by

W 1,2
0 (Ω) =

{
u : Ω→ R

∣∣ u|∂Ω = 0
}

since
∫

Ω∪∂Ω
|∇u|2dµ < +∞ is held for the bounded domain Ω. To better

illustrate the properties of W 1,2
0 (Ω) and to be used by variational methods, we

recall the following Sobolev embedding theorem. It is not difficult for reader
to prove the under lemma. For the details of the proof, we refer the reader to
[8].

Lemma 2.1 (Sobolev embedding theorem). Let G = (V,E) be a graph satisfies

(a)-(d), Ω be a connected domain satisfies (e) with Ω 6= ∅. Then W 1,2
0 (Ω) is

compactly embedded into Lq(Ω) for all 1 ≤ q ≤ +∞. Namely, there exists a
constant C only depending on q and Ω such that for all 1 ≤ q ≤ +∞ and for
all u ∈W 1,2

0 (Ω)

(6) ‖u‖Lq(Ω) ≤ C(q,Ω)‖u‖W 1,2
0 (Ω).

Moreover, W 1,2
0 (Ω) is a pre-compact and reflexive Hilbert space, so for any

bounded sequence {uk} ⊂ W 1,2
0 (Ω), there exists some u ∈ W 1,2

0 (Ω) such that
up to a subsequence, uk → u in W 1,2

0 (Ω),
uk → u in Lq(Ω), ∀ q ∈ [1,+∞],∫

Ω
hukdµ→

∫
Ω
hudµ, ∀ h ∈ H(Ω).

2.2. Mountain-pass theorem

Define

(7) Jε(u) =
1

2

∫
Ω∪∂Ω

|∇u|2dµ− λ

2

∫
Ω

u2dµ− 1

p

∫
Ω

|u|pdµ− ε
∫

Ω

hudµ,

(8) Jf (u) =
1

2

∫
Ω∪∂Ω

|∇u|2dµ−
∫

Ω

F (u)dµ− ε
∫

Ω

hudµ

as the variational forms of (1) and (5), respectively. It’s clear that W 1,2
0 (Ω)

under the form (4) is a Banach space, thus Jε(u) and Jf (u) are the functionals
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of (W 1,2
0 (Ω), ‖ ·‖). Next we give the mountain-pass theorem, which comes from

[8] directly.

Lemma 2.2 (Mountain-pass theorem [3]). Let (X, ‖ · ‖) be a Banach space,
J ∈ C1(X,R), e ∈ X and r > 0, which satisfy ‖e‖ > r and

b = inf
‖u‖=r

J(u) > J(0) ≥ J(e).

If J satisfies the (PS)c condition with c = minγ∈Γ maxt∈[0,1] J(γ(t)), where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 1, γ(1) = e},

then c is a critical value of J .

The mountain-pass theorem is a method to find the critical point of the
functional satisfying the (PS)c condition. As for the (PS)c condition, we refer
the reader to [10], namely, if {uk} ⊂ X and satisfy J(uk)→ c and J ′(uk)→ 0,
then there exists some u ∈ X such that up to a subsequence, uk → u in X. In
Section 3 and Section 4, we will see Jε(u) and Jf (u) satisfy the (PS)c condition.
Hence we can use Lemma 2.2 to find the critical points of Jε(u) and Jf (u) when
we find the multiple solutions of perturbed Yamabe equation.

2.3. Weak solution

Now we define the weak solution of the equation (1).

Definition 2.3. If u ∈W 1,2
0 (Ω) holds that

(9)

∫
Ω∪∂Ω

Γ(u, φ)dµ−λ
∫

Ω

uφdµ=

∫
Ω

|u|p−2uφdµ+ε

∫
Ω

hφdµ, ∀φ ∈W 1,2
0 (Ω),

then u is called a weak solution of the equation (1).
Next we introduce an important fact.

Proposition 2.4. If u ∈W 1,2
0 (Ω) is a weak solution of the equation (1), then

u is also a point-wise solution of the equation (1).

Proof. Since u ∈ W 1,2
0 (Ω) is a weak solution of the equation (1), from (9) we

can get

(10) −
∫

Ω

∆uφdµ− λ
∫

Ω

uφdµ =

∫
Ω

|u|p−2uφdµ+ ε

∫
Ω

hφdµ, ∀φ ∈W 1,2
0 (Ω).

For any fixed x0 ∈ Ω, take a test function φ : Ω→ R in (10) as

φ(x) =

{
1, x = x0,
0, x 6= x0.

We have

−∆u(x0)− λu(x0) = |u(x0)|p−2u(x0) + εh(x0).

Since x0 is arbitrary, then the proposition is proved. �
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As the same way, we can also define the weak solution of the equation (5) by
analogy. And choosing the same test function can prove that Proposition 2.4
holds for equation (5). From now on, we only need to find the weak solution in
the functional framework other than the point-wise solution, which only needs
to find critical point of the functional.

2.4. Strictly positive solution

In this part, we will prove that if u ∈W 1,2
0 (Ω) is a nontrivial weak solution,

then it is a strictly positive weak solution.
For the equation (1), inspirited by [1, 5, 20], we let

u+ = max {u, 0}, u− = min {u, 0}.
Suppose u ∈W 1,2

0 (Ω) is a nontrivial weak solution of the following equation

(11) −∆u− λu = (u+)p−1 + εh.

Then we take u− as the test function of (11) and have

−
∫

Ω

u−∆udµ− λ
∫

Ω

uu−dµ =

∫
Ω

(u+)p−1u−dµ+ ε

∫
Ω

hu−dµ.

Noting that u+u− = 0, u−u = (u−)2 and u = u+ + u−, we get

(12) −
∫

Ω

u−∆u+dµ− ε
∫

Ω

hu−dµ ≤ λ− λ1(Ω)

λ1(Ω)

∫
Ω∪∂Ω

|∇u−|2dµ.

However,

−
∫

Ω

u−∆u+dµ = −
∑
x∈Ω

µ(x)u−(x)
( 1

µ(x)

∑
y∼x

wxy(u+(y)− u+(x))
)

= −
∑
x∈Ω

∑
y∼x

wxyu
−(x)u+(y) ≥ 0.

In view of h(x) ≥ 0 and u−(x) ≤ 0 for any x ∈ Ω, together with 0 ≤ λ < λ1(Ω)
we have

∫
Ω∪∂Ω

|∇u−|2dµ = 0 in (12), which implies that u− ≡ 0. Thus we
obtain u(x) ≥ 0 for all x ∈ Ω and the equation (11) is equivalent to

(13)

 −∆u− λu = |u|p−2u+ εh, in Ω,
u ≥ 0, in Ω,
u = 0, on ∂Ω.

That is to say, if u ∈ W 1,2
0 (Ω) is a nontrivial weak solution of (11), then it’s

also the nontrivial weak solution of (13). Now we claim that u(x) > 0 for all
x ∈ Ω. To prove this, by contradiction, suppose there exists some x0 such
that u(x0) = minx∈Ω u(x) = 0, then insert it into the equation (13). On the
one hand, we have −∆u(x0) = εh(x0) ≥ 0. On the other hand, it’s obvious
that ∆u(x0) ≥ 0 since x0 is the minimum vertex. From these it follows that
∆u(x0) = 0. Noting that Ω is a connected bounded domain, it implies that
u(y) = u(x0) = 0 for all y ∼ x0, and u(x) = 0 for all x ∈ Ω. Finally, this leads
to u ≡ 0 in (13). That would be contradict with the fact that u is a nontrivial
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weak solution. Thus we have proved that if u ∈ W 1,2
0 (Ω) is a nontrivial weak

solution of (1), then it is a strictly positive weak solution.
As for the equation (5), we have the same conclusion. Assume that f(s) ≡

0 if s < 0, hence we let

f̃(s) =

{
0, f(s) < 0,
f(s), f(s) ≥ 0.

Suppose u ∈W 1,2
0 (Ω) is the weak solution of the following equation

(14) −∆u = f̃(u) + εh.

Take u− = min {u, 0} as the test function of (14), and then

−
∫

Ω

u−∆udµ =

∫
Ω

f̃u−dµ+ ε

∫
Ω

hu−dµ.

Noting that u = u+ + u−, we have

0 ≤
∫

Ω∪∂Ω

|∇u−|2dµ =

∫
Ω

f̃(u)u−dµ+ ε

∫
Ω

hu−dµ+

∫
Ω

u−∆u+dµ ≤ 0.

Then we have
∫

Ω∪∂Ω
|∇u−|2dµ = 0. It follows that u− ≡ 0. Thus we obtain

u(x) ≥ 0 for all x ∈ Ω. Then we have f(u) ≥ 0 since f satisfies (H1). Thus

f̃(u) = f(u), which implies our assumption is true. Therefore, the function
(14) is equivalent to  −∆u = f(u) + εh, in Ω,

u ≥ 0, in Ω,
u = 0, on ∂Ω.

Through the same analysis as above, with (H1), we get the same contradiction.
It is not difficult for the reader to prove the contradiction, and we omit this
part of the proof.

3. Proof of Theorem 1.1

In this section, we use Lemma 2.1 and Lemma 2.2 to prove Theorem 1.1 by
two steps.

Step 1. There exists a strictly positive weak solution uP such that Jε(uP ) =
cP > 0, where cP is the critical value of Jε(u).

Lemma 3.1. There exist positive constants ρε and δε such that Jε(u) ≥ δε for

all u ∈ W 1,2
0 (Ω) with ρε/2 ≤ ‖u‖W 1,2

0 (Ω) ≤ 2ρε if 0 < ε < ε0 for a sufficiently

small ε0 > 0.
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Proof. Inserting (6) into functional (7) and noting that 0 ≤ λ < λ1(Ω), we
have

Jε(u) ≥ 1

2
‖u‖2

W 1,2
0 (Ω)

− λ

2

∫
Ω

u2dµ− C

p
‖u‖p

W 1,2
0 (Ω)

− ε‖h‖H(Ω)‖u‖W 1,2
0 (Ω)

≥ η

2
‖u‖2

W 1,2
0 (Ω)

− C

p
‖u‖p

W 1,2
0 (Ω)

− ε‖h‖H(Ω)‖u‖W 1,2
0 (Ω)

≥ ‖u‖W 1,2
0 (Ω)

(η
2
‖u‖W 1,2

0 (Ω) −
C

2
‖u‖p−1

W 1,2
0 (Ω)

− ε‖h‖H(Ω)

)
,

where η = (λ1(Ω)− λ)/λ1(Ω) > 0. Let ρε =
√
ε. By ρε/2 ≤ ‖u‖W 1,2

0 (Ω) ≤ 2ρε,

we have

lim
ε→0+

η
4ε

1
2 − C2p−2ε

p−1
2 − ε‖h‖H(Ω)

η
4ε

1
2

= 1.

By the properties of the limit, there exists some ε0 > 0 such that for any
ε ∈ (0, ε0),

η

4
ε

1
2 − C2p−2ε

p−1
2 − ε‖h‖H(Ω) ≥

η

8
ε

1
2 .

Let δε = ηε/16. Then there holds Jε(u) ≥ δε if ε ∈ (0, ε0). �

Lemma 3.2. Jε satisfies the (PS)c condition.

Proof. For any c ∈ R, take {uk} ⊂ W 1,2
0 (Ω) such that Jε(uk) → c and

dJε(uk)(φ)→ 0 for all φ ∈W 1,2
0 (Ω) as k → +∞. Namely, for all φ ∈W 1,2

0 (Ω),
there hold

(15)
1

2

∫
Ω∪∂Ω

|∇uk|2dµ−
λ

2

∫
Ω

u2
kdµ−

1

p

∫
Ω

|uk|pdµ− ε
∫

Ω

hukdµ = c+ ok(1),

(16)

∣∣∣ ∫
Ω∪∂Ω

Γ(uk, φ)dµ− λ
∫

Ω

ukφdµ−
∫

Ω

|uk|p−2ukφdµ− ε
∫

Ω

hφdµ
∣∣∣

= ‖φ‖ok(1).

Taking {uk} as the test function φ in (16), we get

(17)

∫
Ω

|uk|pdµ = ‖uk‖2W 1,2
0 (Ω)

− λ
∫

Ω

u2
kdµ− ε

∫
Ω

hukdµ+ ‖uk‖W 1,2
0 (Ω)ok(1).

Inserting (17) into (15), we have

‖uk‖2W 1,2
0 (Ω)

≤ 2c+
2

p
‖uk‖2W 1,2

0 (Ω)
+ λ(1− 2

p
)

∫
Ω

u2
kdµ

+ 2ε(1− 1

p
)‖h‖H(Ω)‖uk‖W 1,2

0 (Ω) + ‖uk‖W 1,2
0 (Ω)ok(1) + ok(1)

≤ 2c+ [
2

p
+

λ

λ1(Ω)
(1− 2

p
)]‖uk‖2W 1,2

0 (Ω)
+

4ε2(p− 1)2

p(p− 2)η
‖h‖2H(Ω)

+
η(p− 2)

4p
‖uk‖2W 1,2

0 (Ω)
+
η(p− 2)

4p
‖uk‖2W 1,2

0 (Ω)
+ ok(1),
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which implies that

‖uk‖2W 1,2
0 (Ω)

≤ 4pc

(p− 2)η
+

8ε2(p− 1)2

η2(p− 2)2
‖h‖2H(Ω) + ok(1).

Thus {uk} is bounded in W 1,2
0 (Ω) due to p > 2. By Lemma 2.1, there exists

some u ∈W 1,2
0 (Ω) such that up to a subsequence, uk → u in W 1,2

0 (Ω). �

Lemma 3.3. There exists some strictly positive function ũ ∈ W 1,2
0 (Ω) such

that Jε(ũ) < 0 with ‖ũ‖W 1,2
0 (Ω) > ρε.

Proof. Lemma 3.3 is equivalent to the fact that there exists u ∈W 1,2
0 (Ω) such

that Jε(tu)→ −∞ as t→ +∞ for any ε > 0. For any fixed x0 ∈ Ω, let

u(x) =

{
1, x = x0,
0, x 6= x0.

Thus,

Jε(tu) = −µ(x0)

p
tp +

1

2

( ∑
x∼x0

x∈Ω∪∂Ω

µ(x)|∇u|2(x)− λµ(x0)
)
t2 − εh(x0)µ(x0)t

→ −∞
as t→ +∞ since Ω contains finite vertexes and p > 2. �

Now we can use Lemma 2.2. Obviously, Jε(u) ∈ C1(W 1,2
0 (Ω), ‖ · ‖), Jε(0) =

0; Jε(ũ) < 0 with ‖ũ‖W 1,2
0 (Ω) > ρε; Jε(u) ≥ δε > 0 with ‖u‖W 1,2

0 (Ω) = ρε.

Besides, Jε satisfies the (PS)c condition with cP = minγ∈Γ maxt∈[0,1] J(γ(t)),
where

Γ =
{
γ ∈ C

(
[0, 1],W 1,2

0 (Ω)
)

: γ(0) = 1, γ(1) = ũ
}
.

Then cP is the critical value of Jε(u). Correspondingly, we can find the critical

point uP ∈ W 1,2
0 (Ω) such that Jε(uP ) = cP ≥ δε > 0. Thus the critical point

uP of Jε(u) is a strictly positive weak solution of the equation (1).

Step 2. There exists another strictly positive weak solution uN such that
Jε(uN ) = cN < 0, where cN is another critical value of Jε(u).

Lemma 3.4. There exist ν0 > 0 and u ∈ W 1,2
0 (Ω) with ‖u‖W 1,2

0 (Ω) = 1 such

that Jε(tu) < 0 if 0 < t < ν0.

Proof. We consider the equation

(18)

{
−∆u− λu = h, in Ω,
u = 0, on ∂Ω.

Next we will find the weak solution of (18). From the functional we have

(19)

Jh(u) =
1

2

∫
Ω∪∂Ω

|∇u|2dµ− λ

2

∫
Ω

u2dµ−
∫

Ω

hudµ

≥ η

4
‖u‖2

W 1,2
0 (Ω)

− 1

η
‖h‖2H(Ω),



MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION 921

where η = (λ1(Ω) − λ)/λ1(Ω) is the same as Lemma 3.1. Hence Jh(u) has a

lower bound in W 1,2
0 (Ω). Let mh = infu∈W 1,2

0 (Ω) Jh(u). Then take a sequence

{uk} such that Jh(uk)→ mh as k → +∞. By (19), we obtain {uk} is bounded

in W 1,2
0 (Ω). Since the pre-compact and reflexivity of W 1,2

0 (Ω), by Lemma 2.1,

there exists some u∗ ∈ W 1,2
0 (Ω) such that up to a subsequence, uk → u∗

strongly in W 1,2
0 (Ω) and in Lq(Ω), the convergence is also weakly in W 1,2

0 (Ω).
It follows that

Jh(u∗) = lim
k→+∞

Jh(uk) = mh,

and u∗ is the weak solution of (18). It yields that

(20)

∫
Ω

hu∗dµ =

∫
Ω∪∂Ω

|∇u∗|2dµ− λ
∫

Ω

(u∗)2dµ ≥ η‖u∗‖2
W 1,2

0 (Ω)
> 0.

Now we consider the derivative of Jε(tu
∗), namely

d

dt
Jε(tu

∗) = t

∫
Ω∪∂Ω

|∇u∗|2dµ− λt
∫

Ω

(u∗)2dµ− tp−1

∫
Ω

|u∗|pdµ− ε
∫

Ω

hu∗dµ.

By (20), we have

d

dt

∣∣∣∣
t=0

Jε(tu
∗) < 0.

Then there exists some ν such that Jε(tu
∗) < 0 if 0 < t < ν. Set u =

u∗/‖u∗‖W 1,2
0 (Ω), let ν0 = ‖u∗‖W 1,2

0 (Ω)ν, this finishes the proof. In particularly,

we can get an equivalent conclusion that there exists some ν0 > 0 such that
Jε(u) < 0 if 0 < ‖u‖W 1,2

0 (Ω) < ν0. �

Now we prove that there exists another weak solution uN ∈ W 1,2
0 (Ω) with

‖uN‖W 1,2
0 (Ω) < ρε/2 such that Jε(uN ) = cN = inf‖u‖≤2ρε Jε(u) < 0 for any

ε ∈ (0, ε0), where ρε =
√
ε. Let ε0 be given as in Lemma 3.1, ε ∈ (0, ε0)

be fixed. By Lemma 3.1, we see that Jε(u) has a lower bound on B2ρε =

{u ∈ W 1,2
0 (Ω) : ‖u‖W 1,2

0 (Ω) ≤ 2ρε}. Together with Lemma 3.4, we have cN =

inf‖u‖≤2ρε Jε(u) < 0.

Take a function sequence {uk} ⊂W 1,2
0 (Ω) with ‖uk‖W 1,2

0 (Ω) ≤ 2ρε such that

Jε(uk) → cN as k → +∞. Since {uk} is bounded in W 1,2
0 (Ω), by Lemma 2.1,

we can find some uN ∈W 1,2
0 (Ω) such that up to a subsequence {uk} and have

‖uN‖W 1,2
0 (Ω) = lim

k→+∞
‖uk‖W 1,2

0 (Ω),

∫
Ω

huNdµ = lim
k→+∞

∫
Ω

hukdµ,

λ

∫
Ω

u2
Ndµ = lim

k→+∞
λ

∫
Ω

u2
kdµ,

∫
Ω

|uN |pdµ = lim
k→+∞

∫
Ω

|uk|pdµ.

Then

Jε(uN ) = lim
k→+∞

Jε(uk) = cN < 0
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and uN is the minimizer of Jε(u) on B2ρε . Moreover, Lemma 3.1 implies
that ‖uN‖W 1,2

0 (Ω) < ρε/2. By a straightforward calculation, we get the Euler-

Lagrange equation as follows

−∆uN − λuN = |uN |p−2uN + εh.

Hence, uN is another weak solution of (1). This completes the proof of Theorem
1.1.

4. Proof of Theorem 1.2

In this section, we use the same method to prove Theorem 1.2. In order
to avoid unnecessary repetition and simplify the proof, we give details of the
difference between two theorems. By analogy with Section 3, we directly give
the proof of the four lemmas in the general case.

Lemma 4.1. Let f satisfy conditions (H1)-(H4). Then there exist positive

constants ρε and δε such that Jf (u) ≥ δε for all u ∈ W 1,2
0 (Ω) with ρε/2 ≤

‖u‖W 1,2
0 (Ω) ≤ 2ρε if 0 < ε < ε1 for a sufficiently small ε1 > 0.

Proof. By (H4), there exist constants η > 0, τ > 0 such that F (s) ≤ (λ1(Ω)−
η)s2/2 for any 0 < s < τ . By (H1) and (H3), for any s ≥ τ and p > 2 there
holds 0 < F (s) ≤ (spF (s))/τp. Thus for all s > 0 we get

(21) F (s) ≤ λ1(Ω)− η
2

s2 +
sp

τp
F (s).

For any u ∈W 1,2
0 (Ω) with ρε/2 ≤ ‖u‖W 1,2

0 (Ω) ≤ 2ρε, by Lemma 2.1, we obtain

‖u‖L∞(Ω) ≤ C1‖u‖W 1,2
0 (Ω) ≤ 2ρεC1 and ‖u‖Lp(Ω) ≤ C2‖u‖W 1,2

0 (Ω) for constants

C1 and C2. Then inserting (21) into (8), together with (H2) we have

Jf (u) ≥ 1

2
‖u‖2

W 1,2
0 (Ω)

− λ1(Ω)− η
2

∫
Ω

u2dµ

− 1

τp

∫
Ω

upF (u)dµ− ε‖h‖H(Ω)‖u‖W 1,2
0 (Ω)

≥ 1

2
‖u‖2

W 1,2
0 (Ω)

− λ1(Ω)− η
2λ1(Ω)

‖u‖2
W 1,2

0 (Ω)

− 1

τp
max

s∈[0,2ρεC1]
F (s)‖u‖pLp(Ω) − ε‖h‖H(Ω)‖u‖W 1,2

0 (Ω)

≥ η

2λ1(Ω)
‖u‖2

W 1,2
0 (Ω)

− Cp2M2ρεC1

τp
‖u‖p

W 1,2
0 (Ω)

− ε‖h‖H(Ω)‖u‖W 1,2
0 (Ω)

= ‖u‖W 1,2
0 (Ω)

( η

2λ1(Ω)
‖u‖W 1,2

0 (Ω) − C‖u‖
p−1

W 1,2
0 (Ω)

− ε‖h‖H(Ω)

)
,

where C = (Cp2M2ρεC1
)/τp. Let ρε =

√
ε. It follows that

lim
ε→0+

η
4λ1(Ω)ε

1
2 − C2p−1ε

p−1
2 − ε‖h‖H(Ω)

η
4λ1(Ω)ε

1
2

= 1.
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Thus there exists some ε1 > 0 such that for any ε ∈ (0, ε1),

η

4λ1(Ω)
ε

1
2 − C2p−2ε

p−1
2 − ε‖h‖H(Ω) ≥

η

8λ1(Ω)
ε

1
2 .

Let δε = ηε/(16λ1(Ω)). Then there holds Jε(u) ≥ δε if ε ∈ (0, ε1). �

Lemma 4.2. Let f satisfy conditions (H1)-(H3). Then Jf satisfies the (PS)c
condition.

Proof. For any c ∈ R, take {uk} ⊂W 1,2
0 (Ω). We obtain

(22)
1

2

∫
Ω∪∂Ω

|∇uk|2dµ−
∫

Ω

F (uk)dµ− ε
∫

Ω

hukdµ = c+ ok(1),

(23)
∣∣∣ ∫

Ω∪∂Ω

|∇uk|2dµ−
∫

Ω

f(uk)ukdµ− ε
∫

Ω

hukdµ
∣∣∣ = ‖uk‖ok(1).

Inserting (23) into (22), in view of (H3), one has

‖uk‖2W 1,2
0 (Ω)

≤ 2c+
2

q

∫
Ω

f(uk)ukdµ+ 2ε

∫
Ω

hukdµ+ ok(1)

≤ 2c+
2

q
‖uk‖2W 1,2

0 (Ω)
+ 2ε(1− 1

q
)‖h‖H(Ω)‖uk‖W 1,2

0 (Ω)

+ ‖uk‖W 1,2
0 (Ω)ok(1) + ok(1)

≤ 2c+
2

q
‖uk‖2W 1,2

0 (Ω)
+

4ε2(q − 1)2

q(q − 2)
‖h‖H(Ω)

+
q − 2

4q
‖uk‖2W 1,2

0 (Ω)
+
q − 2

4q
‖uk‖2W 1,2

0 (Ω)
+ ok(1),

which implies that

‖uk‖2W 1,2
0 (Ω)

≤ 4qc

(q − 2)
+

8ε2(q − 1)2

(q − 2)2
‖h‖2H(Ω) + ok(1).

Hence, there exists some u ∈ W 1,2
0 (Ω) such that up to a subsequence, uk → u

in W 1,2
0 (Ω). �

Lemma 4.3. Let f satisfy conditions (H1)-(H4) and 0 ≤ h(x) 6≡ 0 for any

x ∈ Ω. Then there exists some strictly positive function ũ ∈W 1,2
0 (Ω) such that

Jf (ũ) < 0 with ‖ũ‖W 1,2
0 (Ω) > ρε.

Proof. Equivalently, we can prove that there exists u ∈ W 1,2
0 (Ω) such that

Jf (tu)→ −∞ as t→ +∞ for any ε > 0. In view of (H3), there exist constants
c1 > 0, c2 > 0 such that F (s) ≥ c1s

q − c2 for any s ∈ [0,+∞) and q > 2. For
any fixed x0 ∈ Ω, we take u(x) the same as Lemma 3.3. Noting that Ω contains
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finite vertexes, together with q > 2 we have

Jf (tu) ≤ −c1µ(x0)tq +
1

2

( ∑
x∼x0

x∈Ω∪∂Ω

µ(x)|∇u|2(x)
)
t2 − εh(x0)µ(x0)t+ c2µ(x0)

→ −∞
as t→ +∞. This ends the proof of Lemma 4.3. �

Lemma 4.4. Let f satisfy conditions (H1)-(H3) and 0 ≤ h(x) 6≡ 0 for any x ∈
Ω. Then there exists some ν1 > 0 such that Jf (u) < 0 if 0 < ‖u‖W 1,2

0 (Ω) < ν1.

Proof. We consider the equation

(24)

{
−∆u = h, in Ω,
u = 0, on ∂Ω.

Then we prove (24) has a weak solution. It follows from Young inequality that

Jh(u) ≥ 1

4
‖u‖2

W 1,2
0 (Ω)

− ‖h‖2H(Ω).

Hence Jh(u) has a lower bound in W 1,2
0 (Ω) and certainly has infimum. It is not

difficult for the reader to find u∗ by variational methods, which is the minimizer
of functional Jh(u) in W 1,2

0 (Ω). It yields that dJh(u∗)(u∗) = 0, namely,

(25)

∫
Ω

hu∗dµ =

∫
Ω∪∂Ω

|∇u∗|2dµ > 0.

Now we calculate the derivative of Jf (tu∗) and have

d

dt
Jf (tu∗) = t‖u∗‖2

W 1,2
0 (Ω)

−
∫

Ω

u∗f(tu∗)dµ− ε
∫

Ω

hu∗dµ.

By (25), together with f(0) = 0 we obtain

d

dt

∣∣∣∣
t=0

Jf (tu∗) < 0.

Set u = u∗/‖u∗‖W 1,2
0 (Ω). This ends the proof of Lemma 4.4. �

Next, we will prove (5) has two distinct strictly positive solutions. By so-
lution analysis in Section 2, we just need to prove (5) has two distinct weak
solutions.

On the one hand, we can verify that Jf (u) satisfies all the hypotheses of

Lemma 2.2 by Lemmas 4.1-4.3: Jf (u) ∈ C1(W 1,2
0 (Ω), ‖ · ‖), Jf (0) = 0; Jf (ũ) <

0 with ‖ũ‖W 1,2
0 (Ω) > ρε; Jf (u) ≥ δε > 0 with ‖u‖W 1,2

0 (Ω) = ρε. Furthermore,

Jf satisfies the (PS)c condition. Thus we can use mountain-pass theorem and
find the minimizer of Jf (u) such that the appropriate critical value is strictly
positive. And the critical point of Jf (u) is a weak solution of the equation (5).

On the other hand, by Lemmas 4.1 and 4.4, we can get c = inf‖u‖≤2ρε Jf (u)

< 0. Take a function sequence {uk} ⊂ W 1,2
0 (Ω) with ‖uk‖W 1,2

0 (Ω) ≤ 2ρε such
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that Jf (uk) → c as k → +∞. Since {uk} is bounded in W 1,2
0 (Ω), by Lemma

2.1, we can find some uc ∈W 1,2
0 (Ω) such that up to a subsequence {uk},

‖uc‖W 1,2
0 (Ω) = lim

k→+∞
‖uk‖W 1,2

0 (Ω),∫
Ω

hucdµ = lim
k→+∞

∫
Ω

hukdµ.

By (H2), there exists some constant C such that

|F (uk)− F (uc)| ≤ C|uk − uc|,

which leads to ∫
Ω

F (uc)dµ = lim
k→+∞

∫
Ω

F (uk)dµ.

Then we conclude Jf (uc) = limk→+∞ Jf (uk) = c < 0 and uc is the minimizer of
Jf (u) on B2ρε . Moreover, it follows from Lemma 4.1 that ‖uc‖W 1,2

0 (Ω) < ρε/2.

Then we can get the Euler-Lagrange equation as follows

−∆uc = f(uc) + εh.

Therefore, we obtain another weak solution of (5) and complete the proof of
Theorem 1.2.

References

[1] Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trundinger-Moser

inequality in RN and its applications, Int. Math. Res. Not. IMRN 2010 (2010), no. 13,

2394–2426. https://doi.org/10.1093/imrn/rnp194
[2] S. Akduman and A. Pankov, Nonlinear Schrödinger equation with growing potential

on infinite metric graphs, Nonlinear Anal. 184 (2019), 258–272. https://doi.org/10.

1016/j.na.2019.02.020

[3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory

and applications, J. Functional Analysis 14 (1973), 349–381. https://doi.org/10.1016/

0022-1236(73)90051-7
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