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MATRICES SIMILAR TO CENTROSYMMETRIC MATRICES

BENJAMIN A. ITZA-ORTIZ AND RUBEN A. MARTINEZ- AVENDANO

ABSTRACT. In this paper we give conditions on a matrix which guaran-
tee that it is similar to a centrosymmetric matrix. We use this conditions
to show that some 4 x 4 and 6 x 6 Toeplitz matrices are similar to cen-
trosymmetric matrices. Furthermore, we give conditions for a matrix to
be similar to a matrix which has a centrosymmetric principal submatrix,
and conditions under which a matrix can be dilated to a matrix similar
to a centrosymmetric matrix.

Introduction

A matrix is centrosymmetric if it is “symmetric about its center” [9]; that is,
if it remains unchanged if we reflect it horizontally and vertically (see Defini-
tion 1). Although the term “centrosymmetric” was first introduced by Aitken
in his comprehensive study of determinants [2], the study of these type of
matrices seems to have started with the study of the so-called Sylvester-Kac
determinant (see [8]). Centrosymmetric matrices appear naturally in many
places and have several applications (see the list given in the introduction of
[3] for some of them), particularly in the study of Markov processes (see, for
example, [9]). Centrosymmetric matrices have many interesting properties: we
refer the reader to the papers of Abu-Jeib [1], Cantoni and Butler [3], Good [4]
and Weaver [9] for some of them.

Since many matrix-theoretic properties are preserved under similarity, find-
ing conditions under which a matrix is similar to a centrosymmetric matrix is
a natural question. In this paper, we show that if we write a matrix M as
a block-matrix and a system of matrix equations built from these blocks ad-
mits an invertible solution, then the matrix M is similar to a centrosymmetric

Received March 6, 2022; Revised April 23, 2022; Accepted May 13, 2022.

2010 Mathematics Subject Classification. 15B99, 15A15, 15A24.

Key words and phrases. Centrosymmetric matrices, determinants, similarity, matrix
equations.

This paper was motivated by the factorization of determinants used in [5], which arose
from an idea by Prof. Hiroshi Nakazato. The authors would like to thank Prof. Nakazato for
sharing his insights with us and for all the help provided throughout the investigation that
resulted in this paper. The authors are thankful to the reviewer for his/her careful reading
of this paper and for the comments, which helped to improve the manuscript. The second
author’s research is partially supported by the Asociacién Mexicana de Cultura A.C.

(©2022 Korean Mathematical Society
997



998 B. A. ITZA-ORTIZ AND R. A. MARTINEZ-AVENDANO

matrix. Of course, if the matrix M itself is centrosymmetric, it is well-known
that a solution to this system is a concrete permutation matrix; it turns out
that whenever this permutation matrix is a solution, the matrix M itself is
centrosymmetric, a known fact (see, e.g. [2]). Furthermore, in this paper we
show that if the solution to this system of matrix equations is not invertible,
then, depending on the rank of the solution, we have that M is similar to a
matrix containing a centrosymmetric principal submatrix or M can be dilated
to a matrix which is similar to a centrosymmetric matrix.

It is worth observing that a solution to the system of equations mentioned
above is also a solution to an algebraic matrix Riccati equation (see, for ex-
ample, [6] for a discussion of the algebraic matrix Riccati equation). But in
general, it is not true that having a solution to the algebraic Riccati equation,
implies that the matrix M is similar to a centrosymmetric matrix, as we will
show later in this paper.

We now describe the contents of this paper. In Section 1, after giving a well-
known characterization of centrosymmetric matrices, we show that if we form
a system of equations with the blocks of the matrix M and this system has an
invertible solution, then M is similar to a centrosymmetric matrix; furthermore,
in the case where such solution is unitary, then M is unitarily equivalent to
a centrosymmetric matrix. We use this theorem to show that some Toeplitz
matrices are similar to centrosymmetric matrices. We also show that if the
solution X is not invertible, then depending on the rank of X, the matrix M
is similar to a matrix which has a centrosymmetric principal submatrix or the
matrix M can be dilated to a matrix which is similar to a centrosymmetric
matrix (it may be even unitarily equivalent to one).

It is well-known that if the Riccati equation has a solution, then the de-
terminant of the matrix M can be computed as the product of two smaller
determinants. Motivated by this fact and by the connection of our results to
the Riccati equation, in Section 2, we show that the matrix M is singular if
there is a nonzero solution to an specific system of equations (which will also be
a solution to the Riccati equation). We end this section by posing a question
on the uniqueness of the factorization of the determinant of M, whenever two
different Riccati equations are satisfied.

We finish by proving, in Section 3, two results which are used in [5] and
which originally motivated the results in this paper.

1. Similarity to centrosymmetric matrices

Throughout this paper, K will denote an arbitrary field (not necessarily of
characteristic zero) and all matrices will have entries in the field K. As usual,
N will denote the set of positive integers and I = I,, will denote the identity
matrix of size n x n.

The following definition is classical (e.g, [2]).
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Definition 1. Let n € N and let M be an n x n matrix. We say that M
is centrosymmetric if m; ; = Mmp_ig1n—j1 for 4,5 = 1,2,...,n, where m; ;
denotes the (7, j)-th entry of M.

We denote by J; the 1 x 1 matrix J; = (1) and for n € N, with n > 2, we
denote by J,, the n x n centrosymmetric matrix

00 -+ 01
00 -+ 10
o=
01 -+ 00
10 - 00

When there is no confusion about the size, we will denote this matrix by
J, dropping the subindex n. It is easy to check that a square matrix M is
centrosymmetric if and only if MJ = JM (see, for example, [9, Proposition
6]). Using this fact, the following lemma is straightforward ([2, p. 124]).

Lemma 1.1. Letn € N and let M be a n X n matriz.

o Assume n is even. Then M is centrosymmetric if and only if M can
be written as a block matriz of the form

A|B
(211
where A, B,C, D are all 5§ X § matrices, JA = DJ and C = JBJ,
where J = Jz.

o Assume n > 3 is odd. Then M 1is centrosymmetric if and only if M
can be written as a block matriz of the form

Alx | B
M=\ ylp|lz |,
Clw|D

where A, B,C, D are all an X an matrices, where x,w are %4 x 1

matrices, where y,z are 1 X ”T_l matrices, p € K, and JA = DJ,

C=JBJ,w=Jzx andy = zJ, whereJ:Janl.
If we replace the matrix J in the previous lemma by an arbitrary invertible
matrix X we show, in the next theorem, that we obtain matrices similar to
centrosymmetric matrices.

Theorem 1.2. Let n € N and let M be an n X n matrix.

o Assume n is even and M is written as

- (45).

where A, B, C and D are § X 5 matrices. Assume there exists an

invertible matriz X, of size § x5, such that XA = DX and C = XBX.
Then M is similar to a centrosymmetric matriz.
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o Assume n >3 is odd and M is written as

Alz | B
M=\ y|p|z |,
Clw|D

where A, B,C, D are all ”Tfl X "Tfl matrices, where x,w are %71 x 1

matrices, where y,z are 1 X "T_l matrices, and p € K. Assume there

exists an invertible matrix X, of size ";1 X "771, such that XA =

DX, C = XBX, w = Xz and y = zX. Then M is similar to a
centrosymmetric matric.

Proof. We prove the case where n is even first. Let (Q be the block matrix

I| 0
0|XJ )’

where I = I% and J = J%. Then
i (1] 0 A|B 110
@ MQ_(OJ)(l)(CD)(OXJ

B A | BXJ
“\UxTC|IxDXJ )"

Observe that
XA=DX = A=X"'DX
— JA=J(X'DX)
= JA=(JX'DXJ)J
and
XBX=C = BX=X1'C
= J(BX)=J(X"'C)
— J(BXJ)J=JX"'C

so by Lemma 1.1 we obtain that Q' MQ is centrosymmetric.
Now, if n is odd, let @@ be the block matrix

I1o| o
olt] o |,
00/ XJ

where I = Ianl, J = Janl and the central block is the element 1 € K. Then

I|0 0 Alxz | B I10| O
[T - o1 0
olo|Jx! Clw|D 00| XJ

o

[t

e}
<
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A x BXJ
= Y W zXJ
JX-C|JXw | JXIDXJ
Observe that by the same computation as before we have that if XA = DX,
then JA = (JX 'DXJ)J and if XBX = C, then J(BXJ)J = JX 'C. But
also, we have

w=Xr = r=X"'w = r=JJX 'w)and y = 2X = y = (2XJ)J.

Hence, by Lemma 1.1, the matrix Q' MQ is centrosymmetric. O

Remark 1. Observe that if K is the field of complex numbers, then in the
theorem above, if X is a unitary matrix, it follows that the matrix () in the
proof is also unitary and hence M is unitarily equivalent to a centrosymmetric
matrix.

It is natural to ask if the conditions in the above theorem are necessary.
They are not. For example, if K is the field of complex numbers, consider the

2 X 2 matrix
1 3
=3 3):

for which there is no 1 x 1 invertible matrix X satisfying XA = DX and
C = XBX. However, M is similar to the centrosymmetric matrix

(1)

as can be easily seen, for example by noticing that the set of eigenvalues of
both matrices is {—1,4}.

In fact, it is not hard to show that if K is the field of complex numbers, a
2 x 2 matrix is similar to a centrosymmetric matrix if and only if it is either a
multiple of the identity or it has two distinct eigenvalues.

The following two examples show an application of Theorem 1.2 to certain
Toeplitz matrices.

NJOT N[
N Nt

Example 1.3. Let a be a complex number and let M be the 4 x 4 Toeplitz
matrix

« a—1 a—2 a—3
_|a+1 o) a—1 o —2
T la+2 a+1 o a—1

a+3 a+ 2 a+1 «

Let A, B, C and D be the 2 x 2 matrices

o a—1 a—2 a—3
A_D_(a+1 o )’B_<a—1 a—2>’ and

= a+2 a—+1
“\a+3 a+2)°
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If a # i\/g, we define X to be the 2 x 2 matrix

v 1 < 2 a-— 1> '
a2 —5 \a+1 2
It is straightforward to check that XA = DX, that C = X BX and that X is in-
vertible. Hence, by Theorem 1.2, the matrix M is similar to a centrosymmetric
matrix.

It is interesting to notice that if & = ++/5 the only two solutions to the
matrix equation C' = X BX do not satisfy XA = DX and hence our method
does not answer the question of similarity of M to a centrosymmetric matrix
in this case.

Example 1.4. Let a be a complex number and let M be the 6 x 6 Toeplitz
matrix

o a—1 a—2 a—3 a—4 a—>5
a—+1 « a—1 a—2 a—3 a—4
M— a+2 a+1 Q a—1 a—2 a—3
a—+3 o+ 2 a—+1 « a—1 oa—2
a+4 a+3 o+ 2 a+1 « a—1
a+5 a+4 a+3 a—+2 a+1 «
Let A, B, C and D be the 3 x 3 matrices
« a—1 a—2 a—3 a—4 a—2>5
A=D=|a+1 o a—1], B=|la-2 a—3 a—4|,
a+2 a—+1 o a—1 oa—2 a—3

a—+3 a—+2 a+1
andC=|a+4 a+3 o+ 2
a+5 a+4 a—+3

Ifa#+ %, we define X to be the 3 x 3 matrix

) 0 16 3a—13
X=—"-| 20 30a-9) 16
9a7 =105 \ 34 _ 5 20 0

It is straightforward to check that XA = DX, that C = XBX and that X
is invertible if o # 15. Hence, by Theorem 1.2, the matrix M is similar to
a centrosymmetric matrix in this case. If @ = 15, we can use instead the

invertible matrix
-9 50 55

1
— 58 0 50|,
16v30 \ 71 58  —9

which shows that M is similar to a centrosymmetric matrix in this case as well.

It is interesting to notice that if @« = £,/ % the only two solutions to the
matrix equation C' = X BX do not satisfy XA = DX and hence our method
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does not answer the question of similarity of M to a centrosymmetric matrix
in this case, as before.

The examples above show that the Toeplitz matrices M of sizes 4 x 4 and
6 x 6 are similar to centrosymmetric matrices for all values of «, except for
perhaps two values in each case. It is easy to check that in the 2 x 2 case, the
matrix M is similar to a centrosymetric matrix, by Theorem 1.2, except for the
values o = %1; in fact, for these values of o the matrix M is not similar to a
centrosymmetric matrix. It would be interesting to know if for all sizes of the
matrix M, it is similar to a centrosymmetric matrix for all values of a except
for two. We leave this question open for future research.

In the next theorem, we generalize Theorem 1.2 to the case where X is not
necessarily invertible or even a square matrix.

Theorem 1.5. Letn € N and let M be an n x n matriz. Assume M is written
as a block matrix of the form

- ()

where A is an s X s matriz, B is an s X (n — s) matriz, C is an (n — s) X s
matriz and D is an (n—s) X (n—s) matriz, where 1 < s < n. If there exists an
(n—s) x s matriz X, of rank r > 0 such that XA = DX and C = XBX, then
M is similar to a matriz containing a centrosymmetric principal submatriz of
size 2r. More precisely, M is similar to a matrix of the form

()

where U is a centrosymmetric (2r) x (2r) matriz, V is a (2r) X (n—2r) matriz,
W is a (n—2r) x (2r) matriz and Z is a (n — 2r) X (n — 2r) matriz.

Proof. If r = s =n — s, then this theorem is just Theorem 1.2.
Let us assume that r < min{s,n — s}. Since X is of rank r there exist an
invertible (n — s) X (n — s) matrix T" and an invertible s x s matrix S such that

X’::TXS:(I(; O).

Observe that
s7'|o A|B S| 0\ _ (S1'As|s'BT!
0 |T c|D ojrt ) \ TCS | TDT!

A B
= (%W) =M

where A’ is an s x s matrix, B’ is an s X (n — s) matrix, C' is an (n — s) X s
matrix and D’ is an (n — s) X (n — s) matrix. Hence M is similar to M’.
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We now write A’, B/, C’ and D’ as block matrices of the form
o () (B oo (Gl
b | Ay )7 By | By ) Ch | Coo

/ /

11 12
and D' = ( ; - ) ,

21 | Dao

where Ay, B};, C1; and D/, are r x r matrices (the sizes of the rest of the
blocks can be easily determined but we will not write them since they will not
be needed).

A computation shows that XA = DX implies X'A’ = D’X’ and that C =
X DX implies C' = X'B’X’. But, observe that

< 1 /12><Ir 0)( 1 /12>
0| 0 00 )\, T4y,
— X/A/ — D/X/
_ 11 12 I, | 0 _ 10
51 | Do 010 Dhy |0 )7
and
11| Ciz
— C/ — X/B/X/
(et ter)
_ I, | 0 11 12 I, | 0 _ 1|0
010 Bél Bé2 010 0 0 )’

which implies that A}, = D}, and C}; = Bj;.
We now show that the matrix M’ is similar to a matrix of the form

(i)

where U is a centrosymmetric (2r) x (2r) matrix. Indeed, observe that

L] o |o 0 Al | A | Bl | Bl Llo] o 0
0] 0 |[J,] O Al | AL, | B, | B 00 J_,| O
0 J_, ] 0 0 cl, [ cr, | D D, 0J.| 0 0
0] 0 [0 | Ina, Ch, | Ch, | Db, | Dby 010 0 |Ina,
Ay | B | Awde, | Bl
1.CT | 0D | 5 Cladsy | JoDly
o Jsf'rA,Ql JsfrBéljr JsfrA/QZ*]sz JsfrBé2 ’

Can Doy Jr CaaJs—r D3y

and that the upper-left 2 x 2 block in the above matrix, namely,

/ / J
U= ( 11 ‘ 1197 )
J.Cr | DL T, )
/

. . .. oy ;L
is a centrosymmetric matrix, since Aj; = D}, and C7; = By;.
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The proofs for each of the cases where r =s<n—sandr=n—s < s are
similar and we omit them. ([

In the following theorem we observe that if X is a not necessarily square
matrix, but is of full rank, then M can be dilated to a matrix which is similar
to a centrosymmetric matrix.

Theorem 1.6. Letn € N and let M be an n x n matriz. Assume M is written
as a block matriz of the form

- (44).

where A is an s X s matriz, B is an s X (n — 8) matriz, C is an (n — s) X s
matriz and D is an (n—s) X (n—s) matriz, where 1 < s < n. If there exists an
(n—s)xs matriz X, of rank min{s,n—s} such that XA = DX and C = XBX,
then the matriz M is a principal submatrixz of a matriz M\, which is similar to
a centrosymmetric matriz. More precisely, if k = max{s,n — s}, there exist an
n X (2k — n) matriz B’, a (2k —n) X n matriz C' and a (2k —n) x (2k — n)
matriz D' such that the (2k) x (2k) matriz

— M| B
MZ(W)

is similar to a centrosymmetric matriz.

Proof. If s = 5, then this theorem is just Theorem 1.2.
We first assume that § < s. In this case k = 5. Since X is an (n —s) x s
matrix of rank n — s, there exists a (2s —n) x s matrix Y such that

()

is an invertible s x s matrix. (Observe that ¥ must be of rank 2s — n.)
Let us rewrite the (2s — n) x s matrix YAX ! as

( Dot | Doy ),

where Do is a (2s —n) X (n — s) matrix and Das is a (2s —n) X (2s —n) matrix.
Now, if we define the s x s matrix

~ D 0
D= ,
( Dyy | Dy )
then observe that

S X XA DX
XA = ( Y )A_ ( YA > = ( DX + DV )
D | o0 X ~
= == .D_.)(7
(i) ()
where the third equalAity follows from the hypothesis XA = DX and from
YA=( Dy ‘ Dy ) X.
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Now, we choose an s X (2s —n) matrix By such that X By = 0 and we define
a (2s —n) x s matrix Cy as Cy = YBX + Y BoY. Then, if we define the s x s
matrices B and C as
E:(B‘Bg) and 6:(&),

we can see that

C oo (X X\ ([ XBX4XBY\ [ C\ _ A
XBX_(Y)(BB2)<Y>_<YBX+YBQY>_(Cg>_c’

where the third equality follows from the hypothesis X BX = C and the choice
of matrices By and Cs.
Therefore, by Theorem 1.2, the matrix

) A| B | B
—~ A| B 2 /
M = (T‘T) = C D 0 = < ]\CI/ g/ )
¢|D Cs | D21 | Do
is similar to a centrosymmetric matrix, which finishes the case & < s.

Now we assume that 1 < s < g In this case k = n — s. Since X is of rank
s there exists an (n — s) X (n — 2s) matrix Y such that

X=(v]x)
is an invertible (n — s) x (n — s) matrix. (Observe that ¥ must be of rank

n — 2s.) Now, proceeding in a similar fashion as above, we can choose an
(n —2s) x (n — 2s) matrix A1, an s X (n — 2s) matrix As; such that

All v—1
= X""DY,

an (n — 2s) x (n — s) matrix By such that B1X = 0, and we can set the
(n—s) x (n—2s) matrix C; as C; = YB1Y + XBY. Then the (n—s) x (n—s)
matrices

~ (Ao 5 B ~
A:(Ai A), B:(Bl), and C=(C1|C)

satisfy the equations

XA=DX, and C=XBX.

Therefore, by Theorem 1.2, the 2(n — s) X 2(n — s) matrix
T B A 0|B
—~ A|B 11 1 BNel
M = < — ) = A21 A B = < g, % >
¢|D Ci |C|D

is similar to a centrosymmetric matrix. Finally, since

M| B\ _ 0 | I D | C 0 | Tn—as
C'I|D" ) \Iia| 0 B | M I, 0 ’

the result follows. O
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Remark 2. If K is the field of complex numbers, observe that in the proof above,
if the rows of the matrix X are orthonormal, then the matrix X can be chosen
to be unitary. In this case, M will be unitarily equivalent to a centrosymmetric
matrix (by the remark following Theorem 1.2).

2. Factorization of determinants

One of the interesting facts about centrosymmetric matrices is that the de-
terminant of a centrosymmetric matrix can be factored as the product of the
determinants of two particular matrices, as described in the following well-
known theorem (a proof can be found in, for example [2, p. 125]).

Theorem 2.1. Let M be an n X n centrosymmetric matriz.
o Assume n is even and M is written as
A| B
v=(etr)
where A, B, C and D are 2 x 2 matrices. Then det(M) = det(A +

2 X2
BJ)det(A — BJ).
o Assume n is odd and M is written as

Alz | B
M=1|ylp|z |,
Clw|D
where A, B,C, D are all “5* x "1 matrices, where z,w are 5% x 1

2 2
1

matrices, where y, z are 1 x 5= matrices, and p € K. Then,

det(M) = det (ﬂ‘i) det(A — BJ).
2y 1%

In view of the results in the previous section, it is natural to ask if the
determinant of a block matrix

A|B
v-(e1p)
satisfying the equations XA = DX and C = XBX for some matrix X, has a

corresponding factorization. In fact, the following theorem, which establishes a
factorization of the determinant under more general conditions, is well-known.

2

Theorem 2.2. Letn € N and let M be an n x n matriz. Assume M is written
as a block matriz of the form

- (4).

where A is an s X s matriz, B is an s X (n — s) matriz, C is an (n — 8) X s
matriz and D is an (n — s) X (n — s) matriz. If there exists an (n — s) X s
matric X such that C = XA — DX + XBX, then

det(M) = det(A + BX)det(D — XB).
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Proof. The result will follow by performing the multiplication:
I, | 0 A|B I, | 0
—-X \ I, s C \ D X \ I, s

B A+ BX | B _(A+BX| B
~\C-XA+DX -XBX |D-XB )~ 0 |D-XB )

where the last equality follows by the hypothesis. Taking determinants on both
sides, the result follows. O

This theorem can also be found, for example, in [6] or [7].

In view of Theorem 2.2, and recalling Theorem 1.2, it is natural to ask if the
existence of an invertible matrix X such that C = XA — DX + X BX implies
that M is similar to a centrosymmetric matrix. However, this is false, as the
next example shows.

Example 2.3. Assume K is a field of characteristic not equal to 2. The 2 x 2

matrix
1 -1
u=(i 7)

satisfies the equations C = XA— DX+ X BX for X = 1, but it is not similar to
a centrosymmetric matrix. Indeed, M? = 0 and hence every matrix () similar
to M must satisfy the equation Q? = 0. But it is easy to see that the only
2 x 2 centrosymmetric matrix ) which satisfies Q2 = 0 is the zero matrix. But
clearly M is not similar to the zero matrix.

Observe that this example also shows that the equations C = XA and
DX = XBX, or the equations C = —DX and XA = —XBX do not imply
that M is similar to a centrosymmetric matrix.

Similarly to Theorem 2.2, it is possible to show the following theorem, which
is also well-known.

Theorem 2.4. Let M be an n x n matriz. Assume M is written as a block

matriz of the form
A|B
v=(etr)

where A is an s X s matriz, B is an s X (n — s) matriz, C is an (n — s) X s
matriz and D is an (n — s) X (n — s) matriz. If there exists an s x (n — s)
matriz Y such that B=YD — AY + YCY, then

det(M) = det(A —YC)det(D + CY).

Proof. The proof is similar to the proof of Theorem 2.2. Just observe that

I | =Y A|B L|Y \ (A-YC| o0
0 | In—s C|D 0 lis ) C |D+cCYy )
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Nevertheless, the following question arises. Assume that both equations
C=XA-DX+XBX, and B=YD-AY +YCY

are satisfied: are the factorizations given by Theorems 2.2 and 2.4 the same?
In case X is invertible (here we assume 7 is even and s = %) it immediately

follows that B= X "'D—-AX "'+ X"!CX~!and hence B=YD—-AY +YCY

is satisfied with Y = X ~!. In this case the factorizations are the same. Indeed,

observe that if C = XA — DX + XBX, then Theorem 2.2 gives that
det(M) = det(A + BX) det(D — XB).
Since B=X"'D - AX"!' + X 'CX~!, Theorem 2.4 gives that
det(M) = det(A — X 'C)det(D + CX ).

But observe that since BX = X 'DX — A+ X~ 'C, then A — X~!C =
(X7'D—-B)X, and hence A— X~'C = X~1(D - XB)X, from which det(A —
X~1C) = det(D — X B). Analogously, since XB =D~ XAX"1+CX~! then
D+CX1'=XB+XAX!'=X(A+BX)X!, and hence det(D+CX 1) =
det(A+ BX). Therefore, in this case, the factorizations given by Theorems 2.2
and 2.4 are the same.

On the other hand, it is possible that C = XA — DX + XBX and B =
YD — AY + YCY are satisfied but X and Y are not inverses of each other.

Indeed, observe that if
1|1
M= ( 02l ) ’

then C = XA - DX 4+ XBX with X =0and B=YD — AY + YCY with
Y =1 and hence X and Y are not inverses of each other. But in this case, the
factorizations given by Theorems 2.2 and 2.4 are the same.

In general, regardless of the parity of n, is it possible that both equations

C=XA-DX+XBX, and B=YD-AY +YCY

are satisfied and the factorizations given by Theorems 2.2 and 2.4 are not the
same? We leave this question open for future research.

One way to obtain examples for Theorem 2.2 is by solving a system of
matrix equations like the ones in the first section of this paper: XA = DX and
C = XBX, instead of the equation C = XA— DX + XBX. Alternatively, one
may require the existence of a matrix X such that C = XA and DX = XBX.
If this case occurs and X # 0, the determinant of M turns out to be zero. The
same happens with other pairs of equations, as the next proposition shows.

Proposition 2.5. Let M be an n X n matriz. Assume M is written as a block

matriz of the form
A| B
B <T‘7> ’

where A is an s X s matriz, B is an s X (n — s) matriz, C is an (n — s) X s
matriz and D is an (n—s) X (n—s) matriz. Assume there exists an (n—s) X s
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matric X # 0 or an s X (n — 8) matriz Y # 0 such that one of the following
four systems of equations hold:

(1) C=XA and DX = XBX;

(2) C=—-DX and XA =-XBX;

(3) B=YD and AY =YCY;

(4) B=—-AY and YD =-YCY.

Then det(M) = 0.

Proof. In the first case, observe that since (D — XB)X = 0 and X # 0, then
D — X B is singular and hence det(D — X B) = 0. Applying Theorem 2.2, we
obtain the desired result.

In the second case, observe that since X(A + BX) = 0 and X # 0, then
A+ BX is singular and hence det(A+ BX) = 0. Again, applying Theorem 2.2,
we obtain the desired result. The rest of the cases are proved similarly. (]

3. Two useful examples

As an application of some of the previous results, we obtain the following
two corollaries, which we needed to obtain the results in [5].

Corollary 3.1. Let n € N with n > 2 and consider the two (n+ 1) x (n+ 1)
matrices

t 1 0 0 0 0 *ry
To t r 0 0 0 0
0 T1 t T9 0 0 0
0 0 ro 2 0 0 0
A= . S

0 o o 0 -- t Tn—2 0
0 0 0 0 - 7Tp_o t Tn—1

+r, 0 O 0 .- 0  rp_1 t

o Ifn+1 is odd, assume that vj = rn_ji1 for j =1,2,..., % (we make

no assumption on o). Then the determinant of A* equals the product

ti?”o 1 0 0 0 0

moot ors ... 0 0 0 “;"0 " f 8 8
. 1 2
0 r ¢t ... 0 0 0 0 ot o0 0
det : oo : : det . o ) )
0 0 0 ... t raq O 0 o0 o P
0 0 0 ... rz_1 t T 0 0 0 . 2t
0 0 0 ... 0 2 ¢ B

Observe that, if n + 1 = 3, the matrix in the determinant in the right-
hand-side of the expression above is the 1 x 1 matriz (t F ro).
o If n+ 1 is even, assume that r; = rp_j41 for j = 1,2,...,"771 (we

make no assumption on rg, nor on ra+1). Then the determinant of
2
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A% equals the product

t+rog rn 0 ... 0 0 0 tFro rn 0 ... 0 0 0
T t Ty ... 0 0 0 1 t o ry ... 0 0 0
0 ro ot ... 0 0 0 0 ro ot ... 0 0 0
det : R : : : det : ool : : :
0 0o 0 ... t Fati g 0 0 0o 0 ... t Tut1_y 0
0 0o 0 ... Tapi_y t Fugi g 0 0o 0 ... Tugi_y t Tagi_y
0 0o 0 ... 0 o1 g b4+ Tan 0 0o 0 ... 0 Tnt1 b —Tnt1
2 2 2

Proof. We divide the proof in two cases.

Case AT : First of all, let @ be the (n+ 1) x (n + 1) matrix:

01 00 0 0

0 01O 0 0

0 0 01 0 0

Q= 0 0 0 O 0 0

0 0 0O 0 1

10 00 0 0

It is straightforward to check that
t 1 0 0 0 0 To
. t r 0 0 0 0
0 7m t 13 0 0 0
0 0 r3 t .- 0 0 0
QATQ = . . . . . : : >

0 0 0 O t rn—1 O
0O 0 0 0 - 7ryp t T
n 0 0 0 - 0 Tn t

and hence det(QATQ 1) = det(AT).

By the hypothesis, QAT Q! is centrosymmetric. We now apply Theorem 2.1
to obtain the desired result.
Case A~ : In this case, let @ be the (n + 1) X (n + 1) matrix:

0 100 0 0
0 01 0 0 0
0 00 1 0 0
=0 000 0 0
0 0 0 0 01
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It is straightforward to check that

t r 0 0 0 0 —Tro
T1 t T2 0 0 0 0
0 T9 t T3 0 0 0
040t 0 0 r5 t -~ 0 0 0
0 0 0 O t Trn—1 0
0 O 0 0 -+ 7T t Tn
- 0 0 0 --- 0 T t

and hence det(QA~Q 1) = det(A7).
By the hypothesis, QA= Q™! is centrosymmetric. We now apply Theorem 2.1
to obtain the desired result. (]

The last result of this paper is now an immediate consequence of Theo-
rem 2.1.

Corollary 3.2. Let n € N with n > 2 and consider the two (n + 1) x (n+ 1)
matrices

t+ o T1 0 0 0 0 0
1 t ro 0 0 0 0
0 ) t rs 0 0 O
0 0 r3 t 0 0 0

B* = ,
0 o 0 0 - t Tn—1 0
0 o 0 0 - 7rp_q t Tn
0 o 0 0 - 0 rn, tErg
o Ifn+1 is odd, assume that vj; = rn_ji1 for j =1,2,..., % (we make

no assumption on ro), then the determinant of BT equals the product

ttrg . 0 .- 0 0 ttrg 1 0 .- 0 0 0
r t r 0 0 71 t ro --- 0 0 0
1 SRR
0 ry t .- 0 0 0 ry t 0 0 0
det . . .. . . det : Do ' : : :
0 0 0 t — 0 o 0 --- t ra_i 0
0 0 0 r 2 0 0 0 - 7z, t ra
n_1 0 0 0 0 Qrn t

Observe that, if n + 1 = 3, the matriz in the determinant in the left-

hand-side of the expression above is the 1 x 1 matriz (t £ o).
o Ifn+1 is even, assume that r; = rp_j41 for j = 1,2,...,"7_1 (we

make no assumption on 1o, nor on rni1), then the determinant of B
2
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equals the product

t:l:T’() 71 0 0 0 t:l:?”[) T1 0 0 0
71 t Ty e 0 0 71 t T2 0 0
0 ro t .- 0 0 0 ro 1 0 0

det . .- . . det .
0 o o0 .- t Tnot 0 o o .- t Tnoi
0 0 0 - 7Taz1 tHTng 0 0 0 - 7Ta-r t—7Tnq
2 2 2 2
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