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Abstract. For a positive integer `, A`(n) denotes the number of over-

partitions of n into parts not divisible by `. In this article, we find certain

Ramanujan-type congruences for Ar`(n), when r ∈ {8, 9} and we deduce
infinite families of congruences for them. Furthermore, we also obtain

Ramanujan-type congruences for A13(n) by using an algorithm developed
by Radu and Sellers [15].

1. Introduction

A partition of n is a non-increasing sequence of positive integers whose sum
is n and the positive integers are called parts of the partitions. The number
partitions of n is denoted by p(n). The function p(n) was first studied by Euler
[10], where he showed that the number of partitions of n into odd parts is same
as the number of partition of n into distinct parts. In 2004, S. Corteel and
J. Lovejoy [8] introduced overpartitions. An overpartition of n is a partition of
n, in which the first occurrence of a number may be overlined. For example,
the overpartitions of 4 are 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1. In 2003, Lovejoy [12]
introduced the function A`(n) which counts the number of overpartitions of n
into parts which are not divisible by `. For example A3(4) = 10. Its relevant
partitions are 4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,
1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

For any complex numbers a and q, the q shifted factorial is defined as

(a; q)∞ =

∞∏
n=0

(1− aqn+1), |q| < 1.
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The generating function for A`(n) is

(1.1)

∞∑
n=0

A`(n)qn =
(−q; q)∞(q`; q`)∞
(q; q)∞(−q`; q`)∞

=
ϕ(−q`)
ϕ(−q)

,

where the function ϕ(q) is as defined in (2.1).
In 2016, Shen [18] obtained 2, 3 and 4 dissections of the generating function

A`(n) when ` = 3, 4 and deduced some congruences modulo 3, 6 and 24. In
2018, Ray and Barman [4] found infinite families of congruences A2`(n) modulo
4 and A4`(n) modulo 4, 8 and 16.

Andrews [3] introduced the singular overpartitions function Ck,i(n), which
counts the number of overpartitions of n in which no part is divisible by k and
only parts ≡ ±i (mod k) may be overlined. Note that for n ≥ 0,

A3(n) = C3,1(n).

Many researchers investigated the arithmetic properties of C3,1(n). Andrews
[3] proved the Ramanujan-type congruences

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3) for n ≥ 0.

Chen et al. [7] investigated the parity of C3,1(n) and proved that C3,1(n) is
always even. Naika and Gireesh [13] found infinite families of congruences for
C3,1(n) modulo 12, 18, 48 and 72. They conjectured that C3,1(12n + 11) ≡ 0
(mod 144) for all n ≥ 0, which was proved by Barman and Ray [4]. Ahmed and
Baruah [1] proved many congruences for C3,1(n) modulo 4, 18 and 36. Recently,

Ray and Chakraborty [16] proved that if q2aii ≥ `, then A`(n) is almost always

divisible by qji where j is a fixed integer and ` = qa11 qa22 · · · qamm with qi ≥ 3

are primes. They also obtained infinite families of congruences for A5(n) and
certain Ramanujan type congruences for A7(n). In this article, we find new
Ramanujan type simple congruences for A8`(n) and A9`(n).

Theorem 1. For any positive integer `, we have the following congruences:

A8`(8n+ 1) ≡ 0 (mod 2),(1.2)

A8`(8n+ 3) ≡ 0 (mod 8),(1.3)

A8`(8n+ 5) ≡ 0 (mod 8),(1.4)

A8`(8n+ 7) ≡ 0 (mod 64),(1.5)

A8`(8n+ 6) ≡ 0 (mod 4),(1.6)

A8`(4n+ 3) ≡ 0 (mod 4).(1.7)

Next, we prove three infinite families of congruences for A8`(n) modulo 16.

Theorem 2. Let p ≥ 5 be a prime number and β be a non-negative integer.
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(a) If
(
−2
p

)
= −1, then for any positive integer `, we have

∞∑
n=0

A8`(8p
2βn+ p2β)qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).(1.8)

(b) If
(
−8
p

)
= −1, then for any positive integer `, we have

∞∑
n=0

A8`(8p
2βn+ 3p2β)qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).(1.9)

(c) If p ≡ 3 (mod 4), then for any positive integer `, we have
∞∑
n=0

A8`(8p
2βn+ 5p2β)qn ≡ 8f(−q4)3ψ(q) (mod 16).(1.10)

Corollary 1.1. Let p ≥ 5 be a prime number and β be a non-negative integer.

(a) If
(
−2
p

)
= −1, then for any positive integer `, we have

A8`(8p
2βn+ (8j + p)p2β−1) ≡ 0 (mod 4),

where j = 1, 2, . . . , p− 1.

(b) If
(
−8
p

)
= −1, then for any positive integer `, we have

A8`(8p
2βn+ (8j + 3p)p2β−1) ≡ 0 (mod 16),

where j = 1, 2, . . . , p− 1.
(c) If p ≡ 3 (mod 4), then for any positive integer `, we get

A8`(8p
2βn+ (8j + 5p)p2β−1) ≡ 0 (mod 16),

where j = 1, 2, . . . , p− 1.

We also prove three simple congruences for A13(n) by using the methods of
Radu and Sellers [15].

Theorem 3. For all n ≥ 0, we have

A13(54n+ 18) ≡ 0 (mod 13),(1.11)

A13(54n+ 36) ≡ 0 (mod 13),(1.12)

A13(256n+ 128) ≡ 0 (mod 13).(1.13)

In 2018, Barman and Ray [4] proved the following congruences modulo 8
and 16 for A9(n). We show that these results also hold true for A9`(n).

Theorem 4. For any positive integer `, we have the following congruences
modulo 8 and 16 for A9`(n).

A9`(9n+ 3) ≡ 0 (mod 8),(1.14)

A9`(9n+ 6) ≡ 0 (mod 8),(1.15)
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A9`(18n+ 15) ≡ 0 (mod 16),(1.16)

A9`(36n+ 21) ≡ 0 (mod 16),(1.17)

A9`(36n+ 30) ≡ 0 (mod 16).(1.18)

In Section 2, we include the preliminaries required in the paper. In Section
3, we give proofs of Theorems 1-4 and Corollary 1.1.

2. Preliminaries

For |ab| < 1, we denote Ramanujan’s general theta function as

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2.

In Ramanujan’s notation, the Jacobi triple product identity [6, Entry 19, Page
36] is given by

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

We list three special cases of f(a, b) as follows.

(2.1)

ϕ(q) := f(q, q) = 1 + 2

∞∑
n=1

qn
2

= (−q; q2)2∞(q2; q2)2∞

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
,

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
(q2; q2)2∞
(q; q)∞

,

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

Further we have

ϕ(−q) =
(q; q)2∞

(q2; q2)∞
,

ψ(−q) =
(q; q)∞(q4; q4)∞

(q2; q2)∞
.

Lemma 2.1 (Hirschhorn and Sellers [11]).

1

ϕ(−q)
=

1

ϕ(−q2)2
(
ϕ(q4) + 2qψ(q8)

)(2.2)

=
ϕ(−q9)

ϕ(−q3)4
(
ϕ(−q9)2 + 2qϕ(−q9)Ω(−q3) + 4q2Ω(−q3)2

)
(2.3)

=
1

ϕ(−q4)4
(
ϕ(q4)3 + 2qϕ(q4)2ψ(q8) + 4q2ϕ(q4)ψ(q8)2 + 8q3ψ(q8)3

)
,(2.4)



NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS 949

where Ω denotes an octagonal number (a number of the form 3n2 + 2n) and

Ω(q) :=

∞∑
n=−∞

q3n
2+2n =

(q2; q2)2∞(q3; q3)∞(q12; q12)∞
(q; q)∞(q4; q4)∞(q6; q6)∞

and

(2.5) Ω(−q) :=

∞∑
n=−∞

(−1)nq3n
2+2n =

(q; q)∞(q6; q6)2∞
(q2; q2)∞(q3; q3)∞

.

Lemma 2.2 (Baruah and Ojah [5]).

1

(q; q)∞(q3; q3)∞
=

(q8; q8)2∞(q12; q12)5∞
(q2; q2)2∞(q4; q4)∞(q6; q6)4∞(q24; q24)2∞

+ q
(q4; q4)5∞(q24; q24)2∞

(q2; q2)4∞(q6; q6)2∞(q8; q8)2∞(q12; q12)∞
.

(2.6)

The following result follows from the dissection formulas of Ramanujan col-
lected by Berndt [6, Entry 25, Page 40].

Lemma 2.3.

1

(q; q)4∞
=

(q4; q4)14∞
(q2; q2)14∞(q8; q8)4∞

+ 4q
(q4; q4)2∞(q8; q8)4∞

(q2; q2)10∞
.

The following p-dissection of f(−q) is due to Cui and Gu [9, Theorem 2.2].

Lemma 2.4. Let p ≥ 5 be a prime number. Then

(q; q)∞ = f(−q) =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+(−1)
±p−1

6 q
p2−1
24 f(−qp

2

),

where

±p− 1

6
:=

{
p−1
6 if p ≡ 1 (mod 6);
−p−1

6 if p ≡ −1 (mod 6).

Furthermore, for −(p−1)2 ≤ k ≤ (p−1)
2 and k 6= ±p−1

6 ,

3k2 + k

2
6≡ p2 − 1

24
(mod p).

The following lemma gives a p-dissection of (q4; q4)3∞. This result directly
follows from [2, Lemma 2.3] by replacing q with q4.

Lemma 2.5. Let p ≥ 3 be a prime. Then we have

(q4; q4)3∞ = f(−q4)3
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=

p−1∑
k=0

k 6= p−1
2

(−1)kq4
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)q4pn
pn+2k+1

2

+ p(−1)
p−1
2 q4

p2−1
8 f(−q4p

2

)3.

Furthermore, if 0 ≤ k ≤ p− 1 and k 6= p−1
2 , then 2(k2 + k) 6≡ p2−1

2 (mod p).

The following p-dissection of ψ(q) is given by Cui and Gu [9, Theorem 2.1].

Lemma 2.6. Let p be an odd prime. Then

ψ(q) =

p−3
2∑

k=0

q
k2+k

2 f

(
p2 + (2k + 1)p

2
,
p2 − (2k + 1)p

2

)
+ q

p2−1
8 ψ(qp

2

).

Moreover, k
2+k
2 6≡ p2−1

8 (mod p) for 0 ≤ k ≤ p−3
2 .

The following p-dissection of ϕ(q) is mentioned in Berndt [6, Page 49].

Lemma 2.7. For any prime p,

ϕ(q) = ϕ(qp
2

) +

p−1∑
r=1

qr
2

f
(
qp(p−2r), qp(p+2r)

)
.

In order to prove Theorem 3, we recall an algorithm developed by Radu
and Sellers [15]. Let M be a positive integer and let R(M) denote the set
of integers sequences r = (rδ)δ|M indexed by the positive divisors of M . For
r ∈ R(M) and the positive divisors 1 = δ1 < δ2 < · · · < δk = M of M , we set
r = (rδ1 , rδ2 , . . . , rδk). We define cr(n) by

∞∑
n=0

cr(n)qn :=
∏
δ|M

(qδ; qδ)rδ∞ =
∏
δ|M

∞∏
n=1

(1− qnδ)rδ .

Radu and Sellers [15] approach to prove congruences for cr(n) modulo a positive
integer reduced the number of cases that we need to check as compared with
the classical method which uses Sturm’s bound alone.

Let m ≥ 0 and s be integers. We denote by [s]m the residue class of s in Zm
and we denote by Sm the set of squares in Z∗m. For t ∈ {0, 1, . . . ,m − 1} and
r ∈ R(M), the subset Pm,r(t) ⊆ {0, 1, . . . ,m− 1} is defined as

Pm,r(t) :=

t′ : ∃[s]24m such that t
′

= ts+
s− 1

24

∑
δ|M

δrδ (mod m)

 .

Definition 2.8. For positive integers m, M and N , let r = (rδ) ∈ R(M) and
t ∈ {0, 1, . . . ,m− 1}. Let k = k(m) := gcd(m2 − 1, 24) and write∏

δ|M

δ|rδ| = 2s · j,
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where s and j are non-negative integers with j odd. The set ∆∗ is the collection
of all tuples (m,M,N, (rδ), t) satisfying the following conditions.

(a) Every prime divisor of m is also a divisor of N .
(b) If δ |M , then δ | mN for every δ > 1 such that rδ 6= 0.
(c) kN

∑
δ|M

rδmN/δ ≡ 0 (mod 24).

(d) kN
∑
δ|M

rδ ≡ 0 (mod 8).

(e) 24m
gcd(−24kt−k

∑
δ|M

δrδ,24m)divides N .

(f) If 2 | m, then either (4 | kN and 8 | sN) or (2 | s and 8 | (1− j)N).

We denote by Γ := SL2(Z), the full modular group of 2-by-2 matrices of
determinant 1. For a positive integer N , we define

Γ0(N) :=

{[
a b
c d

]
: c ≡ 0 (mod N)

}
.

The congruence subgroup Γ∞ of level N is defined as

Γ∞ :=

{[
1 n
0 1

]
: n ∈ Z

}
.

For positive integers m, M and N , γ =
[
a b
c d

]
∈ Γ, r ∈ R(M) and a ∈ R(N),

we define

pm,r(γ) := min
λ∈{0,1,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δa+ δkλc,mc)

δm

and

p∗a(γ) :=
1

24

∑
δ|N

aδ
gcd2(δ, c)

δ
.

The following lemma is given by Radu [14, Lemma 4.5].

Lemma 2.9. Let u be a positive integer, (m,M,N, (rδ), t) ∈ ∆∗ and a =
(aδ) ∈ R(N). Let {γ1, γ2, . . . , γn} ⊆ Γ denote a complete set of representatives
of the double cosets of Γ0(N)\Γ/Γ∞. Assume that pm,r(γi) + p∗a(γ) ≥ 0 for all

1 ≤ i ≤ n. Let tmin = mint′∈Pm,r(t) t
′
and

ν :=
1

24


∑
δ|M

rδ +
∑
δ|N

aδ

 [Γ : Γ0(N)]−
∑
δ|N

δaδ

− 1

24m

∑
δ|M

δrδ −
tmin

m
.

If the congruence cr(mn + t
′
) ≡ 0 (mod u) holds for all t

′ ∈ Pm,r(t) and

0 ≤ n ≤ bνc, then cr(mn + t
′
) ≡ 0 (mod u) holds for all t

′ ∈ Pm,r(t) and
n ≥ 0.
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The next lemma is given by Wang [19, Lemma 4.3]. This result gives the
complete set of representatives of the double cosets in Γ0(N)\Γ/Γ∞ when N
or N

2 is a square-free integer.

Lemma 2.10. If N or N
2 is a square-free integer, then

∪δ|NΓ0(N)

[
1 0
δ 1

]
Γ∞ = Γ.

In order to prove Theorem 2, we need the following lemma.

Lemma 2.11. Let ` be a positive integer. Then we have the following.

(a)
∞∑
n=0

A8`(8n+ 1)qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).

(b)
∞∑
n=0

A8`(8n+ 3)qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).

(c)
∞∑
n=0

A8`(8n+ 5)qn ≡ 8f(−q4)3ψ(q) (mod 16).

A proof of above lemma is given in Section 3.2.

3. Proofs

3.1. Proof for Theorem 1

From (1.1), we have
∞∑
n=0

A8`(n) =
ϕ(−q8`)
ϕ(−q)

.

Using (2.2), we get
∞∑
n=0

A8`(n)qn =
ϕ(−q8`)
ϕ(−q2)2

(
ϕ(q4) + 2qψ(q8)

)
.

Extracting the terms containing q2n and q2n+1 from both sides, we deduce that
∞∑
n=0

A8`(2n)qn =
ϕ(−q4`)ϕ(q2)

ϕ(−q)2
,(3.1)

∞∑
n=0

A8`(2n+ 1)qn = 2
ϕ(−q4`)ψ(q4)

ϕ(−q)2
.(3.2)

Using (2.4) in (3.2), we obtain
∞∑
n=0

A8`(2n+ 1)qn
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= 2
ϕ(−q4`)ψ(q4)

ϕ(−q4)8
(
ϕ(q4)3 + 2qϕ(q4)2ψ(q8) + 4q2ϕ(q4)ψ(q8)2 + 8q3ψ(q8)3

)2
= 2

ϕ(−q4`)ψ(q4)

ϕ(−q4)8

(
ϕ(q4)6 + 4qϕ(q4)5ψ(q8) + 12q2ϕ(q4)4ψ(q8)2

+ 32q3ϕ(q4)3ψ(q8)3 + 48q4ϕ(q4)2ψ(q8)4 + 64q5ϕ(q4)ψ(q8)5 + 64q6ψ(q8)6

)
.

Extracting the terms containing q4n+i for i = 0, 1, 2, 3, respectively, we obtain

∞∑
n=0

A8`(8n+ 1)qn = 2
ϕ(−q`)ψ(q)

ϕ(−q)8
(
ϕ(q)6 + 48qϕ(q)2ψ(q2)4

)
,(3.3)

∞∑
n=0

A8`(8n+ 3)qn = 8
ϕ(−q`)ψ(q)

ϕ(−q)8
(
ϕ(q)5ψ(q2) + 16qϕ(q)ψ(q2)5

)
,(3.4)

∞∑
n=0

A8`(8n+ 5)qn = 8
ϕ(−q`)ψ(q)

ϕ(−q)8
(
3ϕ(q)4ψ(q2)2 + 16qψ(q2)6

)
,(3.5)

∞∑
n=0

A8`(8n+ 7)qn = 64
ϕ(−q`)ψ(q)

ϕ(−q)8
ϕ(q)3ψ(q2)3.(3.6)

Now, the congruences (1.2), (1.3), (1.4) and (1.5) directly follows from (3.3),
(3.4), (3.5) and (3.6), respectively.

Using (2.2) in (3.1), we get

∞∑
n=0

A8`(2n)qn =
ϕ(−q4`)ϕ(q2)

ϕ(−q2)4
(
ϕ(q4) + 2qψ(q8)

)2
=
ϕ(−q4`)ϕ(q2)

ϕ(−q2)4
(
ϕ(q4)2 + 4q2ψ(q8)2 + 2qϕ(q4)ψ(q8)

)
.

Extracting the terms containing q2n+1 from both sides, we get

∞∑
n=0

A8`(4n+ 2)qn = 2
ϕ(−q2`)ϕ(q)ϕ(q2)ψ(q4)

ϕ(−q)4
.(3.7)

From [6, Entry 25, Page 40], we have

ϕ(q)ϕ(−q) = ϕ(−q2)2,(3.8)

ϕ(q)ψ(q2) = ψ(q)2.(3.9)

Using (3.8) and (3.9) in (3.7), we get

∞∑
n=0

A8`(4n+ 2)qn = 2
ϕ(−q2`)ϕ(q)ψ(q2)2

ϕ(−q)4
= 2

ϕ(−q2`)ϕ(−q2)2ψ(q2)2

ϕ(−q)5
.
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Further using (2.2), we obtain
∞∑
n=0

A8`(4n+ 2)qn = 2
ϕ(−q2`)ϕ(−q2)2ψ(q2)2

ϕ(−q2)10
(
ϕ(q4) + 2qψ(q8)

)5
.

Extracting the terms containing q2n+1 from both sides and then replacing q2

by q, we get the congruence (1.6).
Using (2.2) in (3.2), we get

∞∑
n=0

A8`(2n+ 1)qn = 2
ϕ(−q4`)ψ(q4)

ϕ(−q2)4
(
ϕ(q4) + 2qψ(q8)

)2
.

Now extracting the terms containing q2n+1 from both sides and replacing q2

by q and then using (3.9), we get
∞∑
n=0

A8`(4n+ 3)qn = 4
ϕ(−q2`)ψ(q2)ϕ(q2)ψ(q4)

ϕ(−q)4
= 4

ϕ(−q2`)ψ(q2)3

ϕ(−q)4
.

This implies the congruence (1.7).

3.2. Proof of Lemma 2.11

(a) From (3.3), we obtain
∞∑
n=0

A8`(8n+ 1)qn ≡ 2
ϕ(−q`)ψ(q)ϕ(q)6

ϕ(−q)8
(mod 4).(3.10)

Note that from the binomial theorem, for any positive integer r, we have

(qr; qr)2∞ ≡ (q2r; q2r)2∞ (mod 2).

Thus we have

ϕ(q) ≡
(
q2; q2

)5
∞

(q; q)
2
∞ (q4; q4)

2
∞

=

(
q2; q2

)
∞

(
q2; q2

)4
∞

(q; q)
2
∞ (q4; q4)

2
∞
≡ 1 (mod 2).(3.11)

Similarly

ϕ(−q) ≡ 1 (mod 2) and ϕ(−q`) ≡ 1 (mod 2).(3.12)

Also we have

ψ(q) ≡
(
q2; q2

)2
∞

(q; q)∞
≡ (q; q)∞

(
q2; q2

)
∞ (mod 2).(3.13)

Using (3.11), (3.12) and (3.13) in (3.10), we conclude that
∞∑
n=0

A8`(8n+ 1)qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).

(b) From (3.4), we obtain
∞∑
n=0

A8`(8n+ 3)qn ≡ 8
ϕ(−q`)ψ(q)ϕ(q)5ψ(q2)

ϕ(−q)8
(mod 16).(3.14)
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Since
(
q4; q4

)2
∞ ≡

(
q8; q8

)
∞ (mod 2), from (3.12), we get

(3.15)
ψ(q)ψ(q2) ≡ (q; q)∞

(
q2; q2

)
∞

(
q4; q4

)2
∞

(q2; q2)∞

≡ (q; q)∞
(
q8; q8

)
∞ (mod 2).

Now using (3.11), (3.12) and (3.15) in (3.14), we obtain

∞∑
n=0

A8`(8n+ 3)qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).

(c) From (3.5), we obtain

∞∑
n=0

A8`(8n+ 5)qn ≡ 8
ϕ(−q`)ψ(q)ϕ(q)4ψ(q2)2

ϕ(−q)8
(mod 16).(3.16)

Note that

ψ(q2)2 =

(
q4; q4

)4
∞

(q2; q2)
2
∞

=
(
q4; q4

)3
∞

(
q4; q4

)
∞

(q2; q2)
2
∞
≡
(
q4; q4

)3
∞ (mod 2)

and thus

ψ(q2)2 ≡ f(−q4)3 (mod 2).(3.17)

So using (3.11), (3.12) and (3.17) in (3.16), we obtain

∞∑
n=0

A8`(8n+ 5)qn ≡ 8f(−q4)3ψ(q) (mod 16).

3.3. Proof for Theorem 2

(a) From Lemma 2.11(a), we have

∞∑
n=0

A8`(8n+ 1)qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).

Thus (1.8) holds true when β = 0. We use induction on β to complete the
proof. We suppose that (1.8) holds true for some β ≥ 0. Note that (1.8) can
be written as follows.

∞∑
n=0

A8`

(
8

(
p2βn+ 3

p2β − 1

24

)
+ 1

)
qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).

Using Lemma 2.4, we get, modulo 4,

∞∑
n=0

A8`

(
8

(
p2βn+ 3

p2β − 1

24

)
+ 1

)
qn

(3.18)
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≡ 2


p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 f(−qp

2

)



×


p−1
2∑

m=− p−1
2

m 6=±p−1
6

(−1)mq2
3m2+m

2 f

(
−q2

3p2+(6m+1)p
2 ,−q2

3p2−(6m+1)p
2

)
+ (−1)

±p−1
6 q2

p2−1
24 f(−q2p

2

)

.

For a prime p ≥ 5 and −p−12 ≤ k,m ≤
p−1
2 , we note that

3k2 + k

2
+ 2

3m2 +m

2
≡ 3

p2 − 1

24
(mod p)(3.19)

is equivalent to

(6k + 1)2 + 2(6m+ 1)2 ≡ 0 (mod p).

Also
(
−2
p

)
= −1 implies that k = m = ±p−1

6 is the only solution of (3.19). So

extracting the terms containing qpn+3 p
2−1
24 from both sides of (3.18) and then

replacing qp by q, we obtain

(3.20)

∞∑
n=0

A8`

(
8

(
p2β+1n+ 3

p2β+2 − 1

24

)
+ 1

)
qn

≡ 2(qp; qp)∞(q2p; q2p)∞ (mod 4).

Now extracting the terms containing qpn from both sides and then replacing
qp by q, we get

∞∑
n=0

A8`

(
8p2(β+1)n+ p2(β+1)

)
qn ≡ 2(q; q)∞(q2; q2)∞ (mod 4).

Hence (1.8) holds for β + 1. This completes the proof of Theorem 2(a).
(b) From Lemma 2.11(b), we have

∞∑
n=0

A8`(8n+ 3)qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).

Thus (1.9) holds true when β = 0. We again use induction on β to complete
the proof. We suppose that (1.9) holds true for some β ≥ 0. We can write
(1.9) as follows.

∞∑
n=0

A8`

(
8

(
p2βn+ 9

p2β − 1

24

)
+ 3

)
qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).
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Using Lemma 2.4, we get, modulo 16

∞∑
n=0

A8`

(
8

(
p2βn+ 9

p2β − 1

24

)
+ 3

)
qn

(3.21)

≡ 8


p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 f(−qp

2

)



×


p−1
2∑

m=− p−1
2

m 6=±p−1
6

(−1)mq8
3m2+m

2 f

(
−q8

3p2+(6m+1)p
2 ,−q8

3p2−(6m+1)p
2

)
+ (−1)

±p−1
6 q8

p2−1
24 f(−q8p

2

)

.

For a prime p ≥ 5 and −p−12 ≤ k,m ≤
p−1
2 , we note that

3k2 + k

2
+ 8

3m2 +m

2
≡ 9

p2 − 1

24
(mod p)(3.22)

is equivalent to

(6k + 1)2 + 8(6m+ 1)2 ≡ 0 (mod p).

Since
(
−8
p

)
= −1, it follows that k = m = ±p−1

6 is the only solution of (3.22).

Now, extracting the terms containing qpn+9 p
2−1
24 from both sides of (3.21) and

then replacing qp by q, we get

(3.23)

∞∑
n=0

A8`

(
8

(
p2β+1n+ 9

p2β+2 − 1

24

)
+ 3

)
qn

≡ 8(qp; qp)∞(q8p; q8p)∞ (mod 16).

Now extracting the terms containing qpn from both sides and then replacing
qp by q, we obtain

∞∑
n=0

A8`

(
8p2(β+1)n+ 3p2(β+1)

)
qn ≡ 8(q; q)∞(q8; q8)∞ (mod 16).

Thus (1.9) holds true for β + 1 and the assertion follows by induction method.
(c) From Lemma 2.11(c), we have

∞∑
n=0

A8`(8n+ 5)qn ≡ 8f(−q4)3ψ(q) (mod 16).

Thus (1.10) is true when β = 0. We once again use induction method for the
proof. We suppose that (1.10) holds true for some β ≥ 0. We can write (1.10)
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as follows.
∞∑
n=0

A8`

(
8

(
p2βn+ 5

p2β − 1

8

)
+ 5

)
qn ≡ 8f(−q4)3ψ(q) (mod 16).

Using Lemma 2.5 and Lemma 2.6, we obtain

∞∑
n=0

A8`

(
8

(
p2βn+ 5

p2β − 1

8

)
+ 5

)
qn

(3.24)

≡ 8

 p−1∑
k=0

k 6= p−1
2

(−1)kq4
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)q4pn
pn+2k+1

2 + p(−1)
p−1
2 q4

p2−1
8 f(−q4p

2

)3


×

 p−3
2∑

m=0

q
m2+m

2 f

(
p2 + (2m+ 1)p

2
,
p2 − (2m+ 1)p

2

)
+ q

p2−1
8 ψ(qp

2

)

 (mod 16).

For a prime p ≥ 5, 0 ≤ k ≤ p− 1, k 6= p−1
2 and 0 ≤ m ≤ p−1

2 , we note that

2(k2 + k) +
m2 +m

2
≡ 5

p2 − 1

8
(mod p)

is equivalent to

22(2k + 1)2 + (2m+ 1)2 ≡ 0 (mod p).

Thus these congruences have the only solution k = m = p−1
2 when p ≡ 3

(mod 4). Now, extracting the terms containing qpn+5 p
2−1
8 , from both side of

(3.24) and then replacing qp by q, we obtain

(3.25)

∞∑
n=0

A8`

(
8

(
p2β+1n+ 5

p2β+2 − 1

8

)
+ 5

)
qn

≡ 8f(−q4p)3ψ(qp) (mod 16).

Further extracting the terms containing qpn from both sides of (3.25) and then
replacing qp by q, we get

∞∑
n=0

A8`

(
8p2(β+1)n+ 5p2(β+1)

)
qn ≡ 8f(−q4)3ψ(q) (mod 16).

Hence (1.10) holds true for β + 1 and this completes the proof.

3.4. Proof of Corollary 1.1

(a) From (3.20), we get

A8`(8p
2βn+ (8j + p)p2β−1) ≡ 0 (mod 4),

where j = 1, 2, . . . , p− 1.



NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS 959

(b) From (3.23), we obtain

A8`(8p
2βn+ (8j + 3p)p2β−1) ≡ 0 (mod 16),

where j = 1, 2, . . . , p− 1.
(c) From (3.25), we deduce

A8`(8p
2βn+ (8j + 5p)p2β−1) ≡ 0 (mod 16),

where j = 1, 2, . . . , p− 1. This completes the proof.

3.5. Proof of Theorem 3

We have
∞∑
n=0

A13(n)qn =
(q; q)24∞

(q2; q2)12∞
(mod 13).

Let us consider (m,M,N, r) = (54, 2, 12, (r1 = 24, r2 = −12)) and t ∈ {18, 36}.
For each t ∈ {18, 36}, we verify that (m,M,N, r, t) ∈ ∆∗ and Pm,r(t) = {t}. For

each δ | 12, we set γδ = [ 1 0
δ 1 ]. Since N

2 = 6 is a square-free integer, Lemma 2.10
implies that {γδ : δ | 12} forms a complete set of double coset representatives
of Γ0(N)\Γ/Γ∞. For a = (0, 0, 0, 0, 0, 0) ∈ R(12), using SAGE [17] we verified
that pm,r(γδ) + p∗a(γδ) ≥ 0 for each δ | 12. For each t ∈ {18, 36}, we compute
that the upper bound in Lemma 2.9 is bνc = 11 and using Mathematica, we
verify that Ā13(54n + t) ≡ 0 (mod 13) for n ≤ 11. Now (1.11) and (1.12)
follows from Lemma 2.9.

To prove (1.13), we consider (m,M,N, r, t) = (256, 2, 4, (r1 = 24, r2 =
−12), 128). We verify that (m,M,N, r, t) ∈ ∆∗ and Pm,r(t) = {128}. We
proceed in the same manner as above. In this case, the upper bound in Lemma
2.9 is bνc = 2 and using Mathematica, we verify that Ā13(54n+t) ≡ 0 (mod 13)
for n ≤ 2. Hence (1.13) follows from Lemma 2.9.

3.6. Proof of Theorem 4

From (1.1), we get
∞∑
n=0

A9`(n)qn =
ϕ(−q9`)
ϕ(−q)

.

Using (2.3), we obtain

∞∑
n=0

A9`(n)qn =
ϕ(−q9`)ϕ(−q9)

ϕ(−q3)4
(
ϕ(−q9)2 + 2qϕ(−q9)Ω(−q3) + 4q2Ω(−q3)2

)
.

Extracting the coefficients of q3n from both sides and then replacing q3 by q,
we get

∞∑
n=0

A9`(3n)qn =
ϕ(−q3`)ϕ(−q3)3

ϕ(−q)4
.
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Using (2.3), we get

∞∑
n=0

A9`(3n)qn

(3.26)

=
ϕ(−q3`)ϕ(−q9)4

ϕ(−q3)13
(
ϕ(−q9)2 + 2qϕ(−q9)Ω(−q3) + 4q2Ω(−q3)2

)4
=
ϕ(−q3`)ϕ(−q9)4

ϕ(−q3)13

(
ϕ(−q9)8 + 8qϕ(−q9)7Ω(−q3) + 40q2ϕ(−q9)6Ω(−q3)2

+ 128q3ϕ(−q9)5Ω(−q3)3 + 304q4ϕ(−q9)4Ω(−q3)4 + 512q5ϕ(−q9)3Ω(−q3)5

+ 640q6ϕ(−q9)2Ω(−q3)6 + 512q7ϕ(−q9)Ω(−q3)7 + 256q8Ω(−q3)8

)
.

Extracting the terms containing q3n+1 from both sides of (3.26) and then re-
placing q3 by q, we get

∞∑
n=0

A9`(9n+ 3)qn

(3.27)

= 8
ϕ(−q`)ϕ(−q3)4

ϕ(−q)13

(
ϕ(−q3)7Ω(−q) + 38qϕ(−q3)4Ω(−q)4 + 64q2ϕ(−q3)Ω(−q)7

)
.

Extracting the terms containing q3n+2 from both sides of (3.26) and then re-
placing q3 by q, we obtain

∞∑
n=0

A9`(9n+ 6)qn

(3.28)

= 8
ϕ(−q`)ϕ(−q3)4

ϕ(−q)13

(
5ϕ(−q3)6Ω(−q)2 + 64qϕ(−q3)3Ω(−q)5 + 32q2Ω(−q)8

)
.

Now (1.14) and (1.15) follows immediately from (3.27) and (3.28), respectively.
From (2.5), (3.12) and (3.27), we get

∞∑
n=0

A9`(9n+ 3)qn ≡ 8
ϕ(−q`)ϕ(−q3)11Ω(−q)

ϕ(−q)13

≡ 8
(q; q)∞(q6; q6)2∞

(q2; q2)∞(q3; q3)∞

≡ 8
(q6; q6)2∞

(q; q)∞(q3; q3)∞
(mod 16)

(3.29)
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since (q; q)
2
∞ ≡

(
q2; q2

)
∞ (mod 2). Next using (2.6) in (3.29), we obtain

∞∑
n=0

A9`(9n+ 3)qn

≡ (q8; q8)2∞(q12; q12)5∞
(q2; q2)2∞(q4; q4)∞(q6; q6)2∞(q24; q24)2∞

+ q
(q4; q4)5∞(q24; q24)2∞

(q2; q2)4∞(q8; q8)2∞(q12; q12)∞
(mod 16).

By proceeding in the same manner as in Theorem 1.7 in [4], we obtain (1.17)
and (1.18).

Next from (2.5), (2.6), (3.12) and (3.28), we get
∞∑
n=0

A9`(9n+ 6)qn

≡ 8
ϕ(−q`)ϕ(−q3)10Ω(−q)2

ϕ(−q)13

≡ 8

(
(q8; q8)2∞(q12; q12)5∞

(q2; q2)2∞(q4; q4)∞(q6; q6)2∞(q24; q24)2∞

+ q
(q4; q4)5∞(q24; q24)2∞

(q2; q2)4∞(q8; q8)2∞(q12; q12)∞

)2

(mod 16).

Now extracting the terms containing q2n+1 from both sides, we obtain (1.16).
This completes the proof.
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