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WEAKLY EQUIVARIANT CLASSIFICATION OF SMALL

COVERS OVER A PRODUCT OF SIMPLICIES

Aslı Güçlükan İlhan and Sabri̇ Kaan Gürbüzer

Abstract. Given a dimension function ω, we introduce the notion of an
ω-vector weighted digraph and an ω-equivalence between them. Then we

establish a bijection between the weakly (Z/2)n-equivariant homeomor-

phism classes of small covers over a product of simplices ∆ω(1) × · · · ×
∆ω(m) and the set of ω-equivalence classes of ω-vector weighted digraphs
with m-labeled vertices, where n is the sum of the dimensions of the

simplicies. Using this bijection, we obtain a formula for the number of
weakly (Z/2)n-equivariant homeomorphism classes of small covers over a

product of three simplices.

1. Introduction

Let P be a simple convex polytope of dimension n. A small cover over P
is an n-dimensional smooth closed manifold M with a locally standard Zn2 -
action whose orbit space is P . Two small covers over P are said to be Davis-
Januskiewicz equivalent if there is a weakly Zn2 -equivariant homeomorphism
between them covering the identity on P . For every small cover M over P ,
there is an associated function from the set of codimension one faces of P to Zn2
called a characteristic function. The general linear group over Z2 acts freely on
the set of characteristic functions over P by composition. It is well-known that
there is a one-to-one correspondence between the orbit space of this action and
the set of Davis-Januskiewicz equivalence classes of small covers over P [6].

The group of automorphisms of the face poset of P acts on the set of char-
acteristic functions by composition. The orbit space of this right action is in
a one-to-one correspondence with the set of Zn2 -equivariant homeomorphism
classes of small covers over P [10]. In particular, there is a bijection between
the double coset of this action and the left action of GL(n,Z2) and the set of
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weakly Zn2 -equivariant homeomorphism classes of small covers over P . Clas-
sifications of small covers over a specific polytope have been studied by many
authors [1–3,8].

In [3], Choi shows that there is a bijection between the set of Davis-Janusz-
kiewicz equivalence classes of small covers over an n-cube and the set of acyclic
digraphs with n-labeled vertices. The automorphism group of the face poset of
an n-cube is the wreath product Z2 oSn. The corresponding action of the group
Z2 oSn on acyclic digraphs with n labeled vertices is given by local complemen-
tation and reordering of vertices [9]. The notions of a local complementation
are generalized to digraphs by FonDerFlaass [7]. In [4], a one-to-one correspon-
dence between the diffeomorphism classes of small covers over an n-cube and
the acyclic digraphs with n-labeled vertices up to local complementation and
slide operations is established.

In this paper, we give a classification of small covers over a product of
simplices up to weakly Zn2 -equivariant homeomorphism in terms of digraphs.
For this, we introduce the notion of an ω-vector weighted digraph for a given
dimension function ω : {1, 2, . . . ,m} → N, where N denotes the set of posi-
tive integers. An ω-vector weighted digraph is a digraph with labeled vertices
{v1, . . . , vm}, where each edge directed from vi has an associated non-zero

vector in Zω(i)
2 . It turns out that there is a bijection between the set of Davis-

Januszkiewicz equivalence classes of small covers over a product of simplices,
namely ∆ω(1)× · · ·×∆ω(m), and the set of acyclic ω-vector weighted digraphs.
Hence the number of Davis-Januszkiewicz equivalence classes of small covers
over a product of simplices is given by the formula (3.1) in Proposition 3.2.
This formula was first obtained by Choi [3] by defining a surjection to the set
of underlying digraphs and counting the sizes of the preimages.

In Section 4, we show that the action of the automorphism group of the face
poset of a product of simplices corresponds to three operations on ω-vector
weighted digraphs. The first two are reordering vertices that have the same
image under the dimension function and permuting the weights of the edges
from a fixed vertex. The third one is a generalization of the local comple-
mentation at a vertex vi which we called (σ, k)-local complementation since a
permutation σ ∈ Sω(i) and an integer 1 ≤ k ≤ ω(i) are also involved. We say
that two ω-vector weighted digraphs are ω-equivalent if one can be obtained
from the other by applying a sequence of these operations. Hence there is a
bijection between the set of weakly Zn2 -equivariant homeomorphism classes of
small covers over a product of simplices and the set of ω-equivalence classes of
acyclic ω-vector weighted digraphs. Using this bijection, we give a formula for
the number of weakly Zn2 -equivariant homeomorphism classes of small covers
over a product of three simplices. These numbers are closely related with the
number of permutations whose cycle decompositions have certain types. For
this reason, we give some formulas involving the number of permutations of a
given type in Section 5.
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2. Preliminaries

Let P be a simple convex polytope of dimension n and F(P ) = {F1, . . . , Fm}
be the set of facets of P . A function λ : F(P ) → Zn2 satisfying the non-
singularity condition that

Fi1 ∩ · · · ∩ Fin 6= ∅ ⇒ 〈λ(Fi1), . . . , λ(Fin)〉 = Zn2
is called a characteristic function. For any p ∈ P , let Zn2 (p) be the subgroup

of Zn2 generated by λ(Fi1), . . . , λ(Fik), where the intersection
⋂k
j=1 Fij is the

minimal face containing p in its relative interior. Then the manifold M(λ) =
(P × Zn2 )/ ∼, where

(p, g) ∼ (q, h) if p = q and g−1h ∈ Zn2 (p),

is a small cover over P .

Theorem 2.1 ([6]). For every small cover M over P , there is a characteristic
function λ with a Zn2 -homeomorphism M(λ)→M covering the identity on P .

Let Λ(P ) be the set of all characteristic functions on P . It is well-known that
certain group actions on Λ(P ) can be used to classify small covers over P . The
group GL(n,Z2) acts freely on Λ(P ) by g ·λ = g ◦λ. For any λ, λ′ in Λ(P ), the
small covers M(λ) and M(λ′) are Davis-Januszkiewicz equivalent if and only
if there is an element g ∈ GL(n,Z2) such that g · λ = λ′. Therefore the set
of Davis-Januszkiewicz equivalence classes of small covers over P corresponds
bijectively to the coset GL(n,Z2)\Λ(P ) by the above theorem.

Another action on Λ(P ) that gives such a classification is the action of
the group of automorphisms of the poset set (F(P ),⊂), which is denoted by
Aut(F(P )). The group Aut(F(P )) acts Λ(P ) on right by λ · h = λ ◦ h. As
shown in [10], for any λ, λ′ in Λ(P ), there is a Zn2 -equivariant homeomorphism
between small covers M(λ) and M(λ′) if and only λ · h = λ′ for some h ∈
Aut(F(P )). Hence there is a bijection between the orbit space of this action
and the set of Zn2 -equivariant homeomorphism classes of small covers over P
[10]. By combining this with the above theorem, Lu and Masuda [10] obtain
the following result.

Theorem 2.2 ([10]). There is a one-to-one correspondence between the set of
weakly Zn2 -equivariant homeomorphism classes of small covers over P and the
double coset GL(n,Z2)\Λ(P )/Aut(F(P )).

3. ω-vector weighted digraphs

In [5], Choi, Masuda and Suh introduce the notion of a vector matrix to
associate a quasitoric manifold over a product of simplices. Given a dimension
function ω : {1, 2, . . . ,m} → N, a vector matrix of size m is a matrix A = [vij]

whose entries in the i-th row are vectors in Zω(m)
2 . We denote the k-th entry of

vij by (vij)k. Choi uses the vector matrices over Z2 to classify small covers over
a product of simplices up to Davis-Januszkiewicz equivalences. More precisely,
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given a function ω : {1, 2, . . . ,m} → N, let Mω(m) be the set of all vector
matrices A = [vij] of size m over Z2 whose entries in the i-th row are vectors

in Zω(i)
2 satisfying the following condition: Every principal minor of Ak1···kp is

1, where Ak1···km is the (m×m)-matrix whose (i, j)-th entry is (vij)ki for any
1 ≤ ki ≤ ω(i) and 1 ≤ i ≤ m. In [3], Choi shows that there is a bijection
between the set Mω(m) and the Davis-Januszkiewicz equivalence classes of
small covers over a product of simplices P = ∆ω(1) × · · · ×∆ω(m).

It is well-known that there is a one-to-one correspondence between acyclic
digraphs with m labeled vertices and the set of Z2-matrices of size m all of
whose principal minors are 1 [3, Theorem 2.2]. Here we introduce the notion
of ω-vector weighted digraphs to generalize this bijection to Mω(m).

Definition 3.1. Let ω : {1, 2, . . . ,m} → N be a function. A digraph with
labeled vertices {v1, . . . , vm} is called ω-vector weighted if every edge (vi, vj) is

assigned with a non-zero vector ω(vi, vj) in Zω(i)
2 .

For convenience, we say that the weight of (vi, vj) is the zero vector if there is
no edge from vi to vj . For the abuse of notation, we also denote the dimension
of the weight vector of any edge directed from a vertex v by ω(v). Note that an
ω-vector weighted digraph is indeed a vector weighted digraph when the weight
vectors are equidimensional. An ω-vector weighted digraph is called acyclic if
it does not contain any directed cycle.

Let G = (V,E) be an ω-vector weighted digraph with labeled vertices
{v1, . . . , vm}. We define the adjacency matrix of G as an (m × m) ω-vector
matrix whose (i, j)-the entry is ω(vi, vj). We denote it by Aω(G). For any
1 ≤ ki ≤ ω(i) and 1 ≤ i ≤ m,

(
Aω(G)

)
k1···kp

is an adjacency matrix of some

subgraph of the underlying acyclic digraph and hence we have the following.

Proposition 3.2. There is a one-to-one correspondence between the set of
acyclic ω-vector weighted digraphs with labeled vertices v1, . . . , vm and Mω(m).
In particular,

(3.1) |Mω(m)| =
∑
G∈Gm

∏
vi∈V (G)

(2ω(i) − 1)outdeg(vi),

where outdeg(vi) is the number of edges directed from vi.

This formula was first obtained by Choi [3] by defining a surjection to the
set of underlying digraphs whose preimages are the set of possible weights.

The local complementation of a digraph G = (V (G), E(G)) at vertex v is the
digraph G∗v, where V (G∗v) = V (G) and E(G∗v) is the symmetric difference
of the sets E(G) and {(u,w) : (u,w) ∈ N−G (v)×N+

G (v)}. Here, N+
G (v) denotes

the set of all out-neighbors of v and N−G (v) is the set of all in-neighbors of v.
This notion can be easily generalized to ω-vector weighted digraphs by letting
E(G ∗ v) = E(G) ∪ N−G (v) × N+

G (v), where the weight of the edge (u,w) is

ω(u,w) + ω(u, v) if (u,w) ∈ N−G (v) × N+
G (v) and is ω(u,w), otherwise. Note
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that if the sum ω(u,w) +ω(u, v) is the zero vector, this means that there is no
edge from u to w in G∗v. If we assume that weights of the edges of the digraphs
(without weight) are 1 ∈ Z2, this definition agrees with the definition of the
local complementation of a digraph. A permutation σ ∈ Sω(v) acts on ω-vector
weighted digraphs that contain v as a vertex by permuting the coordinates of
the weights of the edges from v. Now we introduce two more generalizations of
a local complementation which also permutes the coordinates of the associated
weights.

Definition 3.3. Let v be a vertex of a ω-vector weighted digraph G and σ
be a permutation in Sω(v). The σ-local complementation of G at vertex v is
obtained by permuting the weights of edges from v in G ∗ v by σ. We denote
the obtained ω-vector weighted digraph by G ∗σ v.

Definition 3.4. Let v be a vertex of a ω-vector weighted digraph G and
σ ∈ Sω(v). For any 1 ≤ k ≤ ω(v), the (σ, k)-local complementation of G at
vertex v is the ω-vector weighted digraph G ∗

(σ,k)
v, where V (G ∗

(σ,k)
v) = V (G)

and the edge set of G ∗
(σ,k)

v is the union of the sets E(G) and {(u,w) ∈

N−G (v)×N+
G (v) : (ω(v, w))k = 1}. The weight of the edge (u,w) is given by

i) ω(u,w) + ω(u, v) if (u,w) ∈ N−G (v)×N+
G (v) and (ω(v, w))k = 1,

ii) σ · ω(v, w) if u = v and (ω(v, w))k = 0,
iii) σ · ω(v, w) + eσ−1(k) if u = v and (ω(v, w))k = 1, where ei is the vector

all of whose coordinates are 1 except the i-th one,
iv) ω(u,w), otherwise.

Example 3.5. Let ω : {1, 2, 3, 4} → N be the dimension function defined by
ω(1) = 2, ω(2) = ω(3) = ω(4) = 3. Let G be the ω-vector weighted digraph
given in Figure 1.

Figure 1. The ω-weighted acyclic digraph.

For σ = (123) ∈ S3, the σ-local complementation of G and the (σ, 2)-local
complementation of G at vertex v4 are given in Figure 2.
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Figure 2. A σ-local complementation and a (σ, 2)-local complementation.

4. Small covers over a product of simplices

A. Güçlükan İlhan [9] shows that there is a bijection between the weakly
Zn2 -equivariant homeomorphism classes of small covers over an n-cube and non-
isomorphic acyclic digraphs with n-labeled vertices up to local complementa-
tion. In this section, we generalize this result to a product of simplices using
Theorem 2.2. The automorphism group of a product of simplices depends not
only on the dimension of the simplices but also the number of equidimensional
simplices appearing in the product (see [1]). For this reason, we let

P =

l∏
i=1

Pi, where Pi = ∆ni × · · · ×∆ni︸ ︷︷ ︸
mi

,

with 1 ≤ n1 < n2 < · · · < nl and
∑l
i=1 nimi = n. Here the set of facets of Pi

is

{f ij,k = ∆ni ×· · ·×∆ni × f̃ ik︸︷︷︸
j-th

×∆ni ×· · ·×∆ni : 1 ≤ k ≤ ni + 1, 1 ≤ j ≤ mi},

where {f̃ i0, . . . , f̃ ini} is the set of facets of the simplex ∆ni . Therefore the set of
faces of P is given by

F(P ) = {F ij,k : 1 ≤ k ≤ ni + 1, 1 ≤ j ≤ mi, 1 ≤ i ≤ l},

where F ij,k = P1 × · · · × Pi−1 × f ij,k × Pi+1 × · · · × Pl. Note that, there

are (n + m)-facets, where m =
∑l
i=1mi. The automorphism group of P is∏l

i=1 (Sni+1 o Smi), where Sni+1 oSmi is the wreath product of Sni+1
with Smi .

Here, σ ∈ Sni+1 sends F ij,k to F ij,σ(k) and fixes other facets. The permutation

µ ∈ Smi sends F ij,k to F iµ(j),k and fixes the others (see Lemma 3.2 in [1]).

Let M i
j,k =

(∑i−1
α=1mαnα

)
+(j−1)ni+k and N i

j =
(∑i−1

α=1mα

)
+ j, where

1 ≤ i ≤ l, 1 ≤ j ≤ mi and 1 ≤ k ≤ ni. To every characteristic function λ over
P , one can associate an (n×(n+m)) matrix Λ whose M i

j,k-th column is λ(F ij,k)

and (n+N i
j)-th column is λ(F ij,ni+1) . By reordering the facets and choosing

a basis, we can choose a representative of the orbit of Λ of the form (In|Λ∗),
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where Λ∗ is an (n × m)-matrix. Following Choi [3], we call Λ∗ the reduced
submatrix of λ. As shown in [3], Λ∗ can be seen as an element of Mω(m),
where ω(t) = ni if t = N i

j for some 1 ≤ j ≤ ni. We call the function ω defined
in this way the dimension function of P . Since there is a bijection between the
Davis-Januszkiewicz equivalence classes of small covers over P and the reduced
submatrices, we have the following result by Proposition 3.2.

Corollary 4.1. The Davis-Januszkiewicz equivalence classes of small covers
over P are in a one-to-one correspondence with the acyclic ω-vector weighted
digraphs with labeled m vertices.

An arbitrary element g ∈ Aut(F(P )) can be written as a product of elements
of the form

(11, . . . , 1i−1, (id
i
1, . . . , id

i
j−1, σ

i
j , id

i
j+1, . . . , id

i
mi ; idi), 1i+1, . . . , 1l)

and
(11, . . . , 1i−1, (id

i
1, . . . , id

i
mi ;µ

i), 1i+1, . . . , 1l),

where σij ∈ Sni+1 and µi ∈ Smi , that we also denote by σij and µi. Here

1i, idij , and idi denote the identity elements in Sni+1 o Smi , Sni+1, and Smi ,
respectively. Let G = (V,E) be an acyclic ω-vector weighted digraph with
labeled vertices v1, . . . , vm. Clearly, the corresponding action of µi sends G
to an acyclic ω-vector weighted digraph obtained by reordering the vertices
{vp : N i

1 ≤ p ≤ N i
mi} by (µi)−1, where the weight of the edge (vp, vq) in the

resulting graph is ω(vµ(p), vµ(q)).

When all the simplices are 1-dimensional, σij is an element of the cyclic group
of order 2 and when it is non-trivial, the corresponding action on the acyclic
digraphs is the local complementation at vertex vNij [9]. Let : Sni+1 → Sni

be defined by σij(t) = σij(t) if σij(t) 6= n+ 1, and σij(t) = σij(n+ 1), otherwise.

Lemma 4.2. If σij fixes ni + 1, then σij acts by permuting the weights of the

edges from vNij . If σij(ni + 1) 6= ni + 1, then σij act as (σij , σ
i
j(ni + 1))-local

complementation at the vertex vNij .

Proof. For simplicity, we denote σij by σ. Let [0] and [1] denote the vectors
whose coordinates are all 0 and 1, respectively and I = [δij ] be an ω-weighted
vector matrix, where δij = [1] if i = j and [0], otherwise. For a given an
acyclic ω-vector weighted digraph G, the reduced submatrix of the associated
characteristic function is given by Λ∗ = Aω(G)+I. Assume that σ · [In×n|Λ∗] =
[Pσ|Qσ]. Then Aω(G·σ) is equal to P−1

σ Qσ+I since ([Pσ|Qσ]) = ([In|P−1
σ ·Qσ]).

Here P−1
σ is the Z2-inverse of Pσ.

If σ(ni + 1) = σ(ni + 1), then Qσ = Λ∗ and Pσ is the block diagonal matrix
in which all the blocks are identity matrices of the corresponding dimensions
except the N i

j -th block that is the permutation matrix of σ. In this case,

the inverse of Pσ is the block diagonal matrix of the same form whose N i
j -th

block is the permutation matrix of σ−1. Therefore P−1
σ Qσ is the vector matrix
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obtained by permuting the M i
j,1, . . . ,M

i
j,ni

-th rows of Λ∗ by σ. Hence it acts
on the corresponding digraph by permuting the weights of the edges from vNij
by σ.

Now suppose that σ(ni + 1) 6= ni + 1. Let Aω(G) = [vαβ ]. Then, we have

(Pσ)pq =


1 if p = q = Ma

b,c with (a, b) 6= (i, j),

1 if p = M i
j,σ(k) and q = M i

j,k, σ(k) 6= ni + 1,

(vNa
b,N

i
j
)c if p = Ma

b,c, q = M i
j,k, and σ(k) = ni + 1,

0 otherwise,

and

(Qσ)rs =


1 if s = N i

j , r = M i
j,σ(ni+1),

0 if s = N i
j , r 6= M i

j,σ(ni+1),

(vNa
b,s

)c if r = Ma
b,c, (a, b) 6= (i, j),

for 1 ≤ p, q, r ≤ n and 1 ≤ s ≤ m. Since (vpp)k = 1 for all p, the Z2-inverse of
Pσ is given by

(P−1
σ )pq =


1 if p = q = Ma

b,c with (a, b) 6= (i, j),

1 if p = M i
j,σ−1(k) and q = M i

j,k, k 6= σ(ni + 1),

(vNa
b,N

i
j
)c if p = Ma

b,c, q = M i
j,k, and σ(ni + 1) = k,

0 otherwise.

Since Aω ∈Mω(m), P−1
σ Qα is the matrix [v′pq], where

(v′αβ)k =



1 if α = β,

(vNi
j,β

)σ(ni+1) if α = N i
j , k = σ−1(ni + 1),

(vNi
j,β

)σ(ni+1) + (vNi
j,β

)σ(k) if α = N i
j , k 6= σ−1(ni + 1),

(vα,Ni
j
)k if α 6= N i

j , β = N i
j ,

(vα,β)k + (α,vNi
j
)k(vNi

j,β
)σ(ni+1) otherwise.

(4.1)

Therefore, by subtracting I, we obtain the adjacency matrix of the (σij , σ
i
j(ni+

1))-local complementation of G at the vertex vNij . �

Remark 4.3. Note that if we define (vαβ)ni+1 to be zero, then the formula (4.1)
also gives the adjacency matrix of G · σ when σ(ni + 1) = ni + 1. With this
assumption, one can also express the entries of the adjacency matrix of G · σ
explicitly when σ =

∏
i,jσ

i
j . Indeed, the k-th coordinate of the (α, β)-th entry
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of Aω(G · σ) is given by

0, if α = β;

(vαβ)σ +
∑

(a1,...,ap)∈Sα,β (vα,a1)σ · (va1,a2)σ · · · (vap−1,ap)σ · (vap,β)σ,

if α = Na
b and σab (k) = n′a + 1;

(vαβ)σ + (vαβ)σk
+
∑

(a1,...,ap)∈Sα,β

(
(vα,a1)σ + (vα,a1)σk

)
· (va1,a2)σ · · · (vap−1,ap)σ · (vap,β)σ,

otherwise.

Here Sα,β = {(a1, . . . , ap) : ak 6= al, ak ∈ {1, . . . , N l
m} \ {α, β}} and the entry

(vi,j)σab (k) is denoted by (vi,j)
σ
k and the entry (vi,j)σab (na+1) is denoted by (vi,j)

σ
,

where i = Na
b .

Definition 4.4. We say two ω-vector weighted digraphs are ω-equivalent if
one is obtained (up to graph isomorphisms) from the other one by applying a
sequence of the following operations:

(1) Reordering vertices whose images under the dimension function are the
same,

(2) Permutation of the weights of the edges from vertex v by an element
of Sω(v),

(3) (σ, k)-local complementation.

Then the following theorem directly follows from the above lemma.

Theorem 4.5. There is a bijection between the weakly Zn2 -equivariant home-
omorphism classes of small covers over ∆n1 × · · · × ∆nm and the set of ω-
equivalence classes of ω-vector weighted digraphs with m-labeled vertices, where
ω is defined by ω(i) = ni and n = n1 + · · ·+ nm.

In the following example, we count this number for the product of two
simplices and in the last section we consider the case where digraphs have
3-vertices.

Example 4.6. Let P = ∆n1 × ∆n2 and ω : {1, 2} → N be the dimension
function of P. Then an acyclic ω-vector weighted digraph is of the one of the
types given in Figure 3,

Figure 3. Types of the acyclic ω-vector weighted digraphs
on two vertices.
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where (v1, . . . , vn1
) ∈ Zn1

2 \ {0} and (w1, . . . , wn2
) ∈ Zn2

2 \ {0}. Note that if
two acyclic ω-vector weighted digraphs on two vertices are ω-equivalent, then
they have the same type. Moreover the operation (3) can be reduced the one
that replaces the zeros and ones in the weights of vertices from the fixed vertex
except the one in the fixed coordinate. Let us first consider the case n1 6= n2. In
this case, two ω-weighted digraphs G1 and G2 of Type 2 are ω-equivalent if and
only if u1 = u2 or u1+u2 = n1−1, where ui is the number of zero coordinates of
the weight vector of the edge (v1, v2) in Gi for i = 1, 2. Therefore the number of

equivalence classes of Type 2 is
⌊
n1+1

2

⌋
. This is also true for the acyclic ω-vector

weighted digraphs of Type 3. So there are 1 +
⌊
n1+1

2

⌋
+
⌊
n2+1

2

⌋
ω-equivalence

classes of acyclic ω-vector weighted digraphs with labeled vertices v1, v2. Hence

there are 1 +
⌊
n1+1

2

⌋
+
⌊
n2+1

2

⌋
weakly Zn2 -equivariant homeomorphism classes

of small covers over P = ∆n1 ×∆n2 when n1 6= n2.
When n1 = n2, the reordering of the vertices v1 and v2 is also allowed.

Therefore the number of weakly Z2n1
2 -equivariant homeomorphism classes of

small covers over P is 1 +
⌊
n1+1

2

⌋
in this case.

5. Some results on the number of permutations of certain types

In this section, we give some results on the number of permutations of certain
types that are used in the next section to find a formula for the number of
acyclic ω-vector weighted digraphs on labeled 3 vertices up to ω-equivalence.
It is well-known that the number of permutations of n elements with m cycle
is given by the unsigned Stirling number of the first kind denoted by c(n,m).
The Stirling number of the first kind is originally defined as the coefficient of
the expansion of the rising factorial xn̄ into powers of x, that is,

xn̄ =

n∑
m=0

c(n,m)xm.(5.1)

They also satisfy the following recurrence relations

c(n,m) =

n∑
k=1

(n− 1)!

(n− k)!
c(n− k,m− 1),

c(n,m) = c(n− 1,m− 1) + (n− 1)c(n− 1,m).

Let us denote by cd(n,m) the permutations of n elements with m cycles all of
which has length divisible by d. Clearly, when n is not divisible by d, cd(n,m)
is zero. Now let n = dt. If the cycle containing dt has length dk, then there

are
(
dt−1
dk−1

)
(dk− 1)! = (dt−1)!

(dt−dk)! ways to choose this cycle, and cd(dt− dk,m− 1)

ways to choose permutations consists of the dt−dk elements outside that cycle.
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Therefore, we have the following relation

cd(dt,m) =

t∑
k=1

(dt− 1)!

(dt− dk)!
cd(dt− dk,m− 1).

Another way to calculate the number cd(dt,m) is to use the following recur-
rence relation

(5.2) cd(dt+ d,m) = (dt+ 1)d−1cd(dt,m− 1) + (dt)dcd(dt,m).

Indeed we can divide the permutations of dt+ d elements whose cycles are all
divisible by d into two types: the one in which the cycle containing dt + d

has length d and the others. Note that there are (dt + 1)d−1cd(dt,m − 1)
permutations of the first type since there are (dt+d−1)(dt+d−2) · · · (dt+1) =

(dt + 1)d−1 ways to choose the other elements of the cycle containing dt + d.
On the other hand, when the cycle containing dt+ d has length greater than d
by deleting the element dt+d and the first d−1 elements coming next to it, we
obtain a permutation of dt elements that consists of exactly m cycles of length
divisible by d and vice a versa. Here we can choose the elements that go next
to dt + d in the cycle containing dt + d in (dt + d − 1)(dt + d − 2) · · · (dt + 1)
ways. This leaves dt remaining elements. For any permutation of the remaining
elements of the same type, we can choose one of these elements, say x and place
the d elements in order to the left of x. Therefore the number of permutations
of the second type is (dt+ d− 1)(dt+ d− 2) · · · (dt)cd(dt,m).

Lemma 5.1. For every t ∈ N, we have the following relation

(x)t̄ =
t!

(dt)!

t∑
m=0

cd(dt,m)(xd)m.(5.3)

Proof. We prove by induction on t. The case t = 1 is trivial. Let At denote
the right hand side of the equation (5.3). Since cd(dt,−1) = cd(dt, t + 1) = 0,
by (5.2) we have

At+1 =
t!

d(dt)!

t+1∑
m=0

cd(dt,m− 1)(xd)m +
t(t!)

(dt)!

t+1∑
m=0

cd(dt,m)(xd)m

=
x · t!
(dt)!

t∑
m=0

cd(dt,m)(xd)m +
t(t!)

(dt)!

t∑
m=0

cd(dt,m)(xd)m

= (x+ t)
t!

(dt)!

t∑
m=0

cd(dt,m)(xd)m.

Since (x+ t)xt = xt+1, the result follows by induction. �

Let c(n,m, e) denote the number of permutation of n-elements with m-cycles
exactly e of them have even lengths. Considering the cases where the cycle
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containing n is even or odd, one can easily obtain the following formula

c(n,m, e) =

bn−1
2 c∑

k=1

(n− 1)!

(n− 2t− 1)!
c(n− 2t− 1,m− 1, e)

+

bn2 c∑
k=1

(n− 1)!

(n− 2t)!
c(n− 2t,m, e− 1).

Another recurrence relation including these numbers is

c(n,m, e) = c(n− 1,m− 1, e) + (n− 1)c(n− 2,m− 1, e− 1)(5.4)

+ (n− 1)(n− 2)c(n− 2,m, e).

The above relation can be proved as above by considering the cases where the
length of the cycle containing n is 1, 2 or ≥ 2. The following result easily
follows by induction substituting e = 0 in the above formula.

Lemma 5.2. For every n ∈ N,
∑n
m=12mc(n,m, 0) = 2(n!).

We also need the following results to count the number of weakly Zn2 -
equivariant homeomorphism classes of small covers over a product of three
simplices.

Lemma 5.3. For every n ∈ N,

n∑
m=1

2m
m∑
e=1

c(n,m, e) = (n− 1)(n!).

Proof. The result follows from the relation
∑m
e=1c(n,m, e) = c(n,m)−c(n,m, 0)

and the corresponding relations for c(n,m) and c(n,m, 0). �

Proposition 5.4. For every n ∈ N, we have the following formula

n∑
m=1

2m
m∑
e=1

2ec(n,m, e) =

{
(2k)!(k2 + 2k − 1) when n = 2k,

(2k + 1)!k(k + 3) when n = 2k + 1.

Proof. We prove by induction. The case n = 1 is trivial. Suppose that the
above equations holds for all integers less than n. Using the equation (5.4) and
Lemma 5.2, we have

n∑
m=1

m∑
e=1

2m+ec(n,m, e)

=

n−1∑
m=1

m∑
e=1

2m+ec(n− 1,m, e) + 4(n− 1)

n−2∑
m=1

2mc(n− 2,m, 0)

+
(

4(n− 1) + (n− 1)(n− 2)
)( n−2∑

m=1

m∑
e=1

2m+ec(n− 2,m, e)
)
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= 2

n−1∑
m=1

2m
m∑
e=1

2ec(n− 1,m, e) + 8(n− 1)!

+ (n− 1)(n+ 2)
( n−2∑
m=1

2m
m∑
e=1

2ec(n− 2,m, e)
)
.

When n = 2k, one has

n∑
m=1

2m
m∑
e=1

2ec(n,m, e)

= 2(2k − 1)!(k − 1)(k + 2) + 8(2k − 1)!

+ (2k − 1)(2k + 2)(2k − 2)!((k − 1)2 + 2(k − 1)− 1)

= (2k)!(k2 + 2k − 1)

by induction. The case n = 2k + 1 can be shown similarly. �

As an immediate consequences of above results, we have the following.

Corollary 5.5. For every n ∈ N, we have

n∑
m=1

2m
m∑
e=1

(2e − 1)c(n,m, e) = (n!)
⌈n

2

⌉⌊n
2

⌋
.

6. Products of three simplices

In this section, we give a formula for the number of weakly Zn2 -equivariant
homeomorphism classes of small covers over P = ∆n1 × ∆n2 × ∆n3 , where
n1 ≤ n2 ≤ n3 and n1 + n2 + n3 = n. By Theorem 4.5, the number of such
classes is equivalent to the number of ω-equivalence classes of acyclic ω-vector
weighted digraphs on 3-labeled vertices {v1, v2, v3}, where ω(i) = ni, 1 ≤ i ≤ 3.
Since this number also depends on the number of vertices whose images under
the dimension function are the same, we need to consider the cases where
n1 < n2 < n3, n1 = n2 < n3 and n1 = n2 = n3, separately.

We first consider the case where n1 < n2 < n3. The other cases follow easily
from this one. Note that there are 25 different acyclic digraph with labeled
vertices {v1, v2, v3} and hence we can classify the acylic ω-vector weighted
digraphs as shown in Figure 4. By duality, it suffices to understand the number
of the ω-equivalence classes of Type 1, Type 2, Type 8, Type 11, Type 17 and
Type 23. As a set, the equivalence class of the ω-vector weighted digraphs of the
type 1, 2, 8 or 17 consists of digraphs of the same type, respectively. However,
an ω-vector weighted digraph of Type 11 can be ω-equivalent to that of Type
23. There is only one ω-vector weighted digraph of Type 1. As discussed
in Example 4.6, there are bn1+1

2 c different ω-equivalence classes of Type 2.
Clearly, two ω-vector weighted digraphs of Type 17 are ω-equivalent if and
only if the numbers of zero coordinates of the weight vectors v and w in each of
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the graphs are either the same or their sum is n2 − 1 and n3 − 1, respectively.
Therefore the number of ω-equivalence classes of Type 17 is bn2+1

2 c · b
n3+1

2 c.

Figure 4. Types of ω-vector weighted digraphs with 3 labeled vertices.

Lemma 6.1. The number of ω-equivalence classes of Type 8 is equal to f(n1),
where

f(n) =

{
2k3+9k2+k

6 when n = 2k,
(k+1)(k2+5k+3)

3 when n = 2k + 1.

Proof. We use Burnside’s lemma. Let X =
(
Zn1

2 \{0}
)
×
(
Zn1

2 \{0}
)
. Then the

set of ω-equivalence classes of Type 8 is in a one-to-one correspondence with
the orbit space of the action of Sn1+1 on X defined by

σ · (v, w) =


(σ(v), σ(w)) if v ∈ Vσ and w ∈ Vσ,
(σ(v) + e, σ(w)) if v /∈ Vσ and w ∈ Vσ,
(σ(v), σ(w) + e) if v ∈ Vσ and w /∈ Vσ,
(σ(v) + e, σ(w) + e) otherwise,

where e = eσ−1(n1+1) and Vσ = {v ∈ Zn1
2 \ {0} : (v)σ(n1+1) = 0 if σ(n1 + 1) 6=

n1 + 1}. Let λm1
1 · · ·λmkk denote the cycle type of σ with λ1 < λ2 < · · · < λk
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and m =
∑
imi. If σ fixes n1 + 1, then (v, w) is fixed by σ if and only if

the values of the coordinates of v and w corresponding to the same cycle are
the same. Therefore the number of fixed points of σ is (2m−1 − 1)2 when
σ(n1 + 1) = n1 + 1 since the cycle decomposition of σ is λm1−1

1 · · ·λmkk and at
least one of the coordinates of v and w are non-zero.

Suppose that σ(n1 + 1) 6= n1 + 1. In this case the number of disjoint
cycles of σ and σ are the same. Note that if σ(v) + e = v for some non-zero
vector v in Zn1

2 , then λi is even for 1 ≤ i ≤ k. Therefore if there is a cycle
of odd length in the cycle decomposition of σ and (v, w) is fixed by σ, then
(v)σ(n1+1) = (w)σ(n1+1) = 0. In this case, we have (v, w) = (σ(v), σ(w)). Since
all the coordinates of v and w corresponding to cycle containing σ(n1 +1) are 0,
the number of fixed points of σ is (2m−1−1)2 when λi is odd for some i. On the
other hand the number of elements v ∈ Vσ satisfying the condition σ(v)+e = v
is 2m−1. Therefore if all the λi’s are even, then σ fixes (2m−1 − 1)2 elements
in Vσ × Vσ, (2m−1)2 elements in V ′σ × V ′σ and 2(2m−1)(2m−1 − 1) elements in
Vσ × V ′σ ∪ V ′σ × Vσ. Therefore there are (2m − 1)2 elements of X fixed by σ
when σ consists of cycles of even lengths only.

Therefore the number of ω-equivalence classes of Type 8 is given by the
following formula

1

(n1 + 1)!

(
n1+1∑
m=1

(2m−1 − 1)2c(n1 + 1,m) +

n1+1∑
m=1

(3 · 4m−1 − 2m)c2(n1 + 1,m)

)

by Burnside lemma. Since (2m−1−1)2 = 4m

4 −2m+ 1, the first sum is equal to
n3
1+9n2

1+2n1

24 by formula (5.1). Since c2(n1+1,m) = 0 for even n1, the number of

ω-equivalence classes of Type 8 is 2k3+9k2+k
6 when n1 = 2k. When n1 = 2k+1,

the second sum is equal to 1
(2k+2)!

(
3·2k+1

4 − 1k+1
)

= 3k+2
4 by Lemma 5.1 and

hence the number of ω-equivalence classes of Type 8 is (k+1)(k2+5k+3)
3 . �

Since an ω-vector weighted digraph of Type 11 can only be ω-equivalent to
that of Type 11 or Type 23 and vice a versa, we need to consider their union
that is obtained by allowing w′ to be zero in Type 23. Using the same idea of
the above proof, we obtain the following result.

Lemma 6.2. The number of w-equivalence classes of Type 11 and Type 23 is
equal to h(n1, n3), where the function h(n,m) is defined by

nm(m2+9m+14)
48 if n,m ≡ 0 (mod 2),

n(m3+9m2+23m+15)
48 if n ≡ 0, m ≡ 1 (mod 2),

nm(m2+9m+14)+3m(m+2)
48 if n ≡ 1, m ≡ 0 (mod 2),

n(m3+9m2+23m+15)+3(m2+2m−3)
48 if n ≡ 1, 3, m ≡ 1 (mod 4),

n(m3+9m2+23m+15)+3(m2+2m+1)
48 if n ≡ 1, 3,m ≡ 3 (mod 4).
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Proof. Let X =
(
Zn1

2 \ {0}
)
×
(
Zn3

2 \ {0}
)
× Zn3

2 . The group Sn1+1 × Sn3+1

acts on the set X, where (σ, β) ∈ Sn1+1 × Sn3+1 acts by sending (u,w,w′) to

(σ(u), β(w), β(w′)) if u ∈ Vσ and w,w′ ∈ Vβ ,
(σ(u), β(w), β(w′) + e2) if u ∈ Vσ, w ∈ Vβ and w′ /∈ Vβ ,
(σ(u), β(w) + e2, β(w′)) if u ∈ Vσ w /∈ Vβ and w′ ∈ Vβ ,
(σ(u), β(w) + e2, β(w′) + e2) if u ∈ Vσ and w,w′ /∈ Vβ ,
(σ(u) + e1, β(w), β(w + w′)) if u /∈ Vσ and w,w′ ∈ Vβ ,
(σ(u) + e1, β(w), β(w + w′) + e2) if u /∈ Vσ w ∈ Vβ and w′ /∈ Vβ ,
(σ(u) + e1, β(w) + e2, β(w + w′) + e2) if u /∈ Vσ w /∈ Vβ and w′ ∈ Vβ ,
(σ(u) + e1, β(w) + e2, β(w + w′)) otherwise,

where e1 = eσ−1(n1+1), e2 = eβ−1(n3+1) and Vσ is defined as in the above proof.
Then the number of ω-equivalence classes of the union is equal to the size of
the orbit space of the Sn1+1 × Sn3+1-action on the set X. We find the size of
the orbit space of this action by calculating the number of fixed points of (α, β)
as above. For this, we consider four cases depending on whether α and β fix
n1 + 1 and n3 + 1, respectively. Let the number of disjoint cycles of α and β be
m1 and m2, respectively and the number of cycles of even lengths in the cycle
decompositions of α and β be e1 and e2, respectively.
Case 1: Suppose that α(n1 + 1) = n1 + 1 and β(n3 + 1) = n3 + 1. We need
to find the pairs (u,w,w′) satisfying σ(u) = u, β(w) = w and β(w′) = w′.
There are (2m1−1−1)(2m2−1−1)2m2−1 elements fixed by (σ, β). Therefore the
number of points fixed by a pair of this type is

n1+1∑
m1=1

n3+1∑
m2=1

(2m1−1 − 1)(2m2−1 − 1)2m2−1c(n1,m1 − 1)c(n3,m2 − 1)

=
(n1!)n1(n3 + 1)!n3(n3 + 5)

6

by the formula (5.1).
Case 2: Now, suppose that α(n1 + 1) = n1 + 1 and β(n3 + 1) 6= n3 + 1. The
fixed points of a pair of this type can be counted as in the above lemma by
taking the cases where w = 0 into an account. Hence the number of fixed
points is equal to{

(2m1−1 − 1)(4m2 − 2m2), when all the cycles of β have even lengths,

(2m1−1 − 1)(4m2−1 − 2m2−1), otherwise.

Note that the number of permutations that do not fix n3+1 and have m disjoint
cycles is equal to n3c(n3,m). There are c2(n3 +1,m) permutations that do not
fix n3 + 1 and have m disjoint cycles all of which have even lengths. Therefore
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the sum of the number of fixed points of pairs of this type is

n1+1∑
m1=1

n3+1∑
m2=1

(2m1−1 − 1)c(n1,m1 − 1)
(

(4m2−1 − 2m2−1)(n3c(n3,m2)

− c2(n3 + 1,m2)) + (4m2 − 2m2)c2(n3 + 1,m2)
)

= (n1!)n1

(
n3

n3+1∑
m2=1

(
4m2−1 − 2m2−1)c(n3,m2)

+

n3+1∑
m2=1

(
3 · 4m2−1 − 2m2−1

)
c2(n3 + 1,m2)

)

= (n1!)n1

(
(n3 + 1)!n3(n3 + 6)(n3 − 1)

24

+

n3+1∑
m2=1

(3

4
4m2 − 1

2
2m2

)
c2(n3 + 1,m2)

)
.

When n3 is even, c2(n3 + 1,m2) = 0. Otherwise, the last sum is equal to

(n3 + 1)! ·
(3

4

n3 + 3

2
− 1

2

)
= (n3 + 1)! · 3n3 + 5

8
.

Therefore the above sum is equal to (n1!)n1
(n3+1)!n3(n3+6)(n3−1)

24 when n3 is

even and to (n1!)n1
(n3+1)!(n3

3+5n2
3+3n3+15)

24 when n3 is odd.
Case 3: Let α(n1 + 1) 6= n1 + 1 and β(n3 + 1) = n3 + 1. Then the element
(α, β) fixes (2m1−1−1)(2m2−1−1)2m2−1 many (u,w,w′) for which α(n1 +1)-th
coordinate of u is zero, that is, (u)α(n1+1) = 0. Let us now consider (u,w,w′)’s
with (u)α(n1+1) 6= 0, that is, u /∈ Sα. In this case α(u)+e1 = u has a solution if

and only if all the cycles of α have even lengths and there are 2m1−1 − 1 many
u’s satisfying this relation. We also need to find (w,w′) satisfying the equations
β(w) = w, β(w + w′) = w′ and w 6= 0. Let (i1, i2, . . . , ik) be a cycle of β. By
the first equation, wi1 = · · · = wij , say wi1 = a. By the second equation, we
have

w′ij = a+ wij+1 for 1 ≤ j ≤ k − 1 and w′ik = a+ wi1 .

Adding up these equations gives ka ≡ 0 (mod 2). If k is even, the matrix

(w|w′) is a block matrix

(
A
...
A

)
, where A is the one of the following matrices

( 1 0
1 1 ) , ( 1 1

1 0 ) , ( 0 0
0 0 ) , or ( 0 1

0 1 ). If k is odd, then a = 0 and hence the values of
the coordinates of w′ corresponding to this cycle are either all 0 or all 1. Since
w 6= 0, the number of (w,w′)’s satisfying the above equations is 4e22(m2−e2)−1−
2e22(m2−e2)−1 = 2m2−1(2e2 − 1). Therefore the number of the points fixed by
(σ, β) is

(2m1−1 − 1)(4m2−1 − 2m2−1) + 2m1−12m2−1(2e2 − 1),
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when all the cycles of α have even lengths and otherwise it is equal to

(2m1−1 − 1)(4m2−1 − 2m2−1).

Hence the number of all the elements of X fixed by an element of this type is
given by the following formula:

n1

n1+1∑
m1=1

n3+1∑
m2=1

(2m1−1 − 1)(4m2−1 − 2m2−1)c(n1,m1)c(n3,m2 − 1)

+

n1+1∑
m1=1

n3+1∑
m2=1

m2∑
e2=1

2m1−12m2−1(2e2 − 1)c2(n1 + 1,m1)c(n3,m2 − 1, e2).

The first term of this sum is (n1!)(n3 +1)!n1(n1−1)
2

n3(n3+5)
6 . The second term is

zero when n1 is an even number. When n1 is an odd number, the second term

depends on the parity of n3. Indeed it is equal to (n1+1)!·n3!·(n3)2

8 when n3 is

even and to (n1+1)!·(n3+1)!·(n3−1)
8 when n3 is odd. So the above sum is equal to

n1!(n1)(n1−1)(n3+1)!n3(n3+5)
12 if n1 ≡ 0 (mod 2),

n1!(n1)(n1−1)(n3+1)!n3(n3+5)
12 + (n1+1)!·n3!·(n3)2

8 if n1 ≡ 1, n3 ≡ 0 (mod 2),
n1!(n1)(n1−1)(n3+1)!n3(n3+5)

12 + (n1+1)!·(n3+1)!·(n3−1)
8 if n1 ≡ n3 ≡ 1 (mod 2).

Case 4: Let α(n1 + 1) 6= n1 + 1 and β(n3 + 1) 6= n3 + 1. It follows similarly
as in the above lemma that the number of (u,w,w′) satisfying (u)α(n3+1) = 0
and fixed by an element of this type is equal to{

(2m1−1 − 1)(4m2 − 2m2), when all the cycles of β have even lengths,

(2m1−1 − 1)(4m2−1 − 2m2−1), otherwise.

As above σ(u)+e1 = u has a solution if and only if all the cycles of σ have even
lengths. From now on we assume that σ consists of cycles of even lengths only
and we solve the corresponding equations for w and w′ depending on whether
they are elements of Vβ or not.

Let (i1, . . . , ik) be a cycle of β. If both w and w′ are in Vβ , we need to solve
the equations

β(w) = w, β(w + w′) = w′, and (w)β(n3+1) = (w)′β(n3+1) = 0.

By the first equation, we have wi1 = · · · = wik = a for some a ∈ {0, 1}. If
β(n3 + 1) ∈ {i1, . . . , ik}, then wij = w′ij = 0 for 1 ≤ j ≤ k by the last equation.

Otherwise w′ must satisfy the equations

w′ij = a+ w′ij+1 for 1 ≤ j ≤ k − 1 and w′ik = a+ w′i1 .

There are 4 solutions when k is even and 2 solutions when k is odd. Since w
can not be 0, the number of (u,w,w′)’s with u /∈ Vσ and w,w′ ∈ Vβ fixed by
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(α, β) is{
2m1−12m2−1(2e2−1 − 1), when the cycle containing n3 + 1 has even length,

2m1−12m2−1(2e2 − 1), otherwise.

If w ∈ Vβ and w′ /∈ Vβ , we need to solve the equations

β(w) = w, β(w + w′) + e2 = w′, (w)β(n3+1) = 0 and (w)′β(n3+1) = 1.

Then wi1 = · · · = wik = a for some a ∈ {0, 1}. If β(n3 + 1) ∈ {i1, . . . , ik}, say
β(n3 + 1) = i1, then a = 0 and w′ satisfies the equations

w′ij = 1 + w′ij+1 for 1 ≤ j ≤ k − 1, and w′ik = w′i1 = 1.

Hence k − 1 ≡ 0 (mod 2), i.e., k must be odd. When k is odd, the above
system has a unique solution. Now suppose that β(n3 + 1) /∈ {i1, . . . , ik}. By
the second equation, we have

w′ij = wij + a+ 1 for 1 ≤ j ≤ k − 1 and w′ik = wi1 + a+ 1.

Adding up these equations, we obtain k(a + 1) ≡ 0 (mod 2). If k is even, the
matrix (w|w′) must consist of the blocks of one of the forms ( 1 0

1 1 ) , ( 1 1
1 0 ) , ( 0 0

0 0 ) ,
or ( 0 1

0 1 ). If k is odd, then a = 1 and hence the values of the coordinates of w′

corresponding to this cycle are either all 0 or all 1. Therefore the number of
(u,w,w′)’s with u /∈ Vσ, w ∈ Vβ , and w′ /∈ Vβ fixed by (α, β) is

0, when the cycle containing n3 + 1 has odd length,

2m1−1(4m2−1 − 2m2−1), when all the cycles of β have even lengths,

2m1−12m2+e2−2, otherwise.

Now suppose that w /∈ Sβ and w′ ∈ Sβ . Then (u,w,w′) is a fixed points of
(α, β) if

β(w) + e2 = w, β(w + w′) + e2 = w′, (w)β(n3+1) = 1 and (w)′β(n3+1) = 0.

If β(n3 + 1) ∈ {i1, . . . , ik}, say β(n3 + 1) = i1, then w satisfies the equations
wij = 1 + wij for 1 ≤ j ≤ k − 1 and wik = wi1 = 1. Hence k − 1 ≡ 0 (mod 2),
i.e., k is odd. Let k = 2k′ + 1. Then wij is equal to 1 if j is odd and 0,
otherwise. Therefore w′ satisfies the equations w′i2j+1

= wi2j+2
+ w′i2j+2

+ 1,

w′i2j+2
= wi2j+3

+ w′i2j+3
for 1 ≤ j ≤ k′ − 1 and w′i1 = 0, wi2k′+1

= 1. This

forces k′ to be odd. Hence the cycle containing n3 + 1 must be divisible by 4.
In this case, we have a unique solution. If β(n3 + 1) /∈ {i1, . . . , ik}, we need to
solve the simultaneous equations wij = wij+1 + 1, w′ij = w′ij+1 + wij+1 + 1,

1 ≤ j ≤ k − 1 and wik = wi1 + 1, w′ik = w′i1 + 1.
Algebraically manipulating as above, one can show that this system has a

solution if and only if k is divisible by 4. In this case the matrix (w|w′) is a block

matrix

(
A
...
A

)
, where A is one of the following matrices

(
1 0
0 1
1 1
0 0

)
,

(
1 1
0 0
1 0
0 1

)
,

(
0 0
1 0
0 1
1 1

)
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or

(
0 1
1 1
0 0
1 0

)
. Therefore the number of (u,w,w′)’s with u /∈ Vσ, w ∈ Vβ , and

w′ /∈ Vβ that are fixed by (α, β) is{
2m1−14m2−1, when all the cycles of β have lengths divisible by 4,

0, otherwise.

The last case we need to consider is the one where neither w nor w′ are in
Vβ . In this case, to be a fixed point, w and w′ must satisfy the equations

β(w) + e2 = w, β(w + w′) = w′, and (w)β(n3+1) = (w)′β(n3+1) = 1.

If β(n3 + 1) ∈ {i1, . . . , ik}, say β(n3 + 1) = i1, then w satisfies the equations
wij = 1 +wij for 1 ≤ j ≤ k− 1 and wik = wi1 = 1. This system has a solution
only if k is odd, say k = 2k′ + 1. Since the solution is wij = 1 if j is odd, and
wij+1

= 0, otherwise, w′ must satisfy the equations w′ij = w′ij+1
+ 1 if j is odd,

and w′(ij) = w′ij+1
, otherwise. This system has a solution if and only if k′ is

odd, i.e., the cycle containing n3+1 is divisible by 4. Otherwise, w and w′ must
satisfy the equations wij = wij+1, and w′ij = w′ij+1

+w′ij+1
, simultaneously. As

before such a system has a solution if and only if k is divisible by 4. In this case

the matrix (w|w′) is a block matrix

(
A
...
A

)
, where A is the one of the following

matrices

(
1 0
0 0
1 1
0 1

)
,

(
1 1
0 1
1 0
0 0

)
,

(
0 0
1 1
0 1
1 0

)
or

(
0 1
1 0
0 0
1 1

)
. Therefore the number of (u,w,w′)’s

with u /∈ Vσ, w ∈ Vβ , and w′ /∈ Vβ fixed by an element of this type is{
2m1−14m2−1, when all the cycles of β have lengths divisible by 4,

0, otherwise.

To sum up, the number of elements fixed by (α, β) when α(n1 + 1) 6= n1 + 1
and β(n3 + 1) 6= n3 + 1 is equal to

(2m1−1−1)(4m2−1−2m2−1), if α /∈ E2
n1+1, β /∈ E1

n3+1,

(2m1−1−1)(4m2−2m2), if α /∈ E2
n1+1, β ∈ E1

n3+1,

(2m1−1−1)(4m2−1−2m2−1)+2m1−12m2−1(2e2−1), if α ∈ E2
n1+1, β /∈ E2

n3+1,

(2m1−1−1)(4m2−2m2)+2m1(2 · 4m2−1−2m2−1), if α ∈ E2
n1+1, β ∈ E4

n3+1,

(2m1−1−1)(4m2−2m2)+2m1(4m2−1−2m2−1), otherwise,

where Edn is the set of all permutations of n elements which consists of cycles
whose lengths are divisible by d. Therefore the number of elements of X fixed
by such (α, β)’s is equal to I = I1 + I2 + I3 + I4 + I5 + I6, where

I1 =

n1+1∑
m1=1

n3+1∑
m2=1

((
2m1−1 − 1

)(
4m2−1 − 2m2−1

)(
n1c(n1,m1)− c2(n1 + 1,m1)

)
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·
(
n3c(n3,m2)− c2(n3 + 1,m2)

))

I2 =

n1+1∑
m1=1

n3+1∑
m2=1

((
2m1−1 − 1

)(
4m2 − 2m2

)(
n1c(n1,m1)− c2(n1 + 1,m1)

)
· c2(n3 + 1,m2)

)

I3 =

n1+1∑
m1=1

n3+1∑
m2=1

((
2m1−1 − 1

)(
4m2−1 − 2m2−1

)(
n3c(n3,m2)− c2(n3 + 1,m2)

)
· c2(n1 + 1,m1)

)

I4 =

n1+1∑
m1=1

n3+1∑
m2=1

(
2m1−12m2−1c2(n1 + 1,m1)

(
−
(
2m2 − 1

)
c2(n3 + 1,m2)

+

m2∑
e2=1

(2e2 − 1)(c(n3 + 1,m2, e2)− c(n3,m2 − 1, e2)
))

I5 =

n1+1∑
m1=1

n3+1∑
m2=1

(((
2m1−1 − 1

)(
4m2 − 2m2

)
+ 2m1

(
4m2−1 − 2m2−1

))
· c2(n1 + 1,m1)c2(n3 + 1,m2)

)
and

I6 =

n1+1∑
m1=1

n3+1∑
m2=1

2m14m2−1c2(n1 + 1,m1)c4(n3 + 1,m2).

Let f : Z3
+ → R be the function defined by f(x, n, d) = 1(

n+1
d

)
!

(
1
x

)n+1
d

.

Then the above sums are given by the following formulas

I1 =



n1!(n3+1)!(n2
1−n1)(n3

3+5n2
3−6n3)

48 if n1 ≡ n3 ≡ 0 (mod 2),
n1!(n3+1)!(n2

1−n1)(n3
3+5n2

3−9n3+3)
48 if n1 ≡ 0, n3 ≡ 1 (mod 2),

n1!(n3+1)!
(
n2
1−2n1−1+2(n1+1)f(2,n1,2)

)
(n3

3+5n2
3−6n3)

48

if n1 ≡ 1, n3 ≡ 0 (mod 2),

n1!(n3+1)!
(
n2
1−2n1−1+2(n1+1)f(2,n1,2)

)
(n3

3+5n2
3−9n3+3)

48

if n1 ≡ n3 ≡ 1 (mod 2).
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I2 =


0 if n3 ≡ 0 (mod 2).
n1!(n3+1)!(n2

1−n1)(n3+1)
4 if n1 ≡ 0, n3 ≡ 1 (mod 2),

n1!(n3+1)!
(
n2
1−2n1−1+2(n1+1)f(2,n1,2)

)
(n3+1)

4 if n1 ≡ n3 ≡ 1 (mod 2).

I3 =


0 if n1 ≡ 0 (mod 2)
(n1+1)!(n3+1)!(1−2f(2,n1,2))(n3

3+5n2
3−6n3)

48 if n1 ≡ 1, n3 ≡ 0 (mod 2),
(n1+1)!(n3+1)!(1−2f(2,n1,2))(n3

3+5n2
3−9n3+3)

48 if n1 ≡ n3 ≡ 1 (mod 2).

I4 =


0 if n1 ≡ 0 (mod 2).
(n1+1)!n3!(n3

3+n2
3+2n3)

16 if n1 ≡ 1, n3 ≡ 0 (mod 2),
(n1+1)!(n3+1)!(n2

3−2n3+1)
16 if n1 ≡ n3 ≡ 1 (mod 2).

I5 =

(n1 + 1)!(n3 + 1)!

(
3n3+1−4(n3+1)f(2,n1,2)

8

)
if n1 ≡ n3 ≡ 1 (mod 2),

0 otherwise.

I6 =

{
(n1+1)!(n3+1)!

4 if n1 ≡ 1 (mod 2), n3 ≡ 3 (mod 4),

0 otherwise.

Hence when n1 and n3 are even,

I =
n1!(n3 + 1)!(n2

1 − n1)(n3
3 + 5n2

3 − 6n3)

48

when n1 is even and n3 is odd,

I =
n1!(n3 + 1)!(n2

1 − n1)(n3
3 + 5n2

3 + 3n3 + 15)

48

when n1 is odd and n3 is even,

I =
(n1 + 1)!n3!(n3

3 + n2
3 + 2n3)

16
+
n1!(n3 + 1)!(n2

1 − n1)(n3
3 + 5n2

3 − 6n3)

48

when n1 is odd and n3 ≡ 1 (mod 4),

I =
(n1 + 1)!(n3 + 1)!(n3

3 + 8n2
3 + 3n3 + 12)

48

+
n1!(n3 + 1)!(n2

1 − 2n1 − 1)(n3
3 + 5n2

3 + 3n3 + 15)

48

and when n1 is odd and n3 ≡ 3 (mod 4),

I =
(n1 + 1)!(n3 + 1)!(n3

3 + 8n2
3 + 3n3 + 24)

48

+
n1!(n3 + 1)!(n2

1 − 2n1 − 1)(n3
3 + 5n2

3 + 3n3 + 15)

48
.
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Therefore, the number of orbits of the action of Sn1+1 × Sn3+1 on X is given
by the formula

=



n1n3(n2
3+9n3+14)
48 if n1 ≡ n3 ≡ 0 (mod 2),

n1(n3
3+9n2

3+23n3+15)
48 if n1 ≡ 0, n3 ≡ 1 (mod 2) ,

n1n3(n2
3+9n3+14)+3n3(n3+2)

48 if n1 ≡ 1, n3 ≡ 0 (mod 2),
n1(n3

3+9n2
3+23n3+15)+3(n2

3+2n3−3)
48 if n1 ≡ 1 (mod 2), n3 ≡ 1 (mod 4),

n1(n3
3+9n2

3+23n3+15)+3(n2
3+2n3+1)

48 if n1 ≡ 1 (mod 2), n3 ≡ 3 (mod 4),

by Burnside’s lemma. �

As an immediate result of the above calculations, we have the following
theorem.

Theorem 6.3. Let P = ∆n1×∆n2×∆n3 with n1 ≤ n2 ≤ n3, n = n1 +n2 +n3

and f and h be functions given in Lemma 6.1 and Lemma 6.2, respectively.
The number of weakly Zn2 -equivariant homeomorphism classes of small covers
over P is equal to

1 +

3∑
i=1

(⌊ni + 1

2

⌋
+ f(ni)

)
+

∑
1≤i<j≤3

⌊ni + 1

2

⌋⌊nj + 1

2

⌋
+

∑
1≤i 6=j≤3

h(ni, nj)

when n1 < n2 < n3,

1 +
⌊n1 + 1

2

⌋
+
⌊n3 + 1

2

⌋
+ f(n1) + f(n3) +

⌊n1 + 1

2

⌋⌊n3 + 1

2

⌋
+
⌊n1 + 1

2

⌋2

+ h(n1, n1) + h(n1, n3) + h(n3, n1)

when n1 = n2 < n3, and

1 +
⌊n1 + 1

2

⌋
+ f(n1) +

⌊n1 + 1

2

⌋2

+ h(n1, n1)

when n1 = n2 = n3.

Figure 5. The weakly Z6
2-equivariant homeomorphism class-

es of small covers over ∆2 ×∆2 ×∆2.
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Example 6.4. By the above theorem, there are 8 different weakly Z6
2-equi-

variant homeomorphism classes of small covers over P = ∆2 ×∆2 ×∆2. The
corresponding ω-equivalence classes of acyclic ω-weighted digraphs are listed
in Figure 5.
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