DOI QR코드

DOI QR Code

A Case Study on the Establishment of an Excavation Impact Range for Evaluating the Ground Stability of Deep Tunnels and Vertical Shaft Sections in Urban Areas

도심지 대심도 터널 및 수직구 구간 지반안정성 평가를 위한 굴착영향범위 설정 사례

  • Lee, Seohyun (Dept. of Civil and Environmental Eng., Incheon National Univ.) ;
  • Woo, Sang Inn (Dept. of Civil and Environmental Eng., Incheon National Univ.)
  • 이서현 (인천대학교 건설환경공학과) ;
  • 우상인 (인천대학교 건설환경공학전공)
  • Received : 2022.07.01
  • Accepted : 2022.07.22
  • Published : 2022.08.31

Abstract

The setting of the target area for ground stability evaluation during ground excavation is categorized into theoretical and empirical estimation methods and numerical analysis methods. Generally, the applied theoretical and empirical estimation methods include those by Peck (1969), Caspe (1966), and Clough et al. (1990). The numerical analysis method comprehensively considered the current status of the task section (maximum excavation depth section, ground condition vulnerable section, etc.). It reflected the results of performing two and three-dimensional numerical analyses on the weakest section. Therefore, this study shows an example of setting the scope of influence when excavating the vertical and tunnel sections of a 000-line double-track private investment project through the above theoretical, empirical, and numerical analysis methods.

지반굴착시 지반안정성 검토를 위한 대상지역의 설정은 이론식 및 경험식 추정방법과 수치해석에 의한 방법으로 구분한다. 일반적으로 적용되는 이론식 및 경험적 추정 방법은 Peck(1969)의 곡선방법, Caspe(1966)의 방법 및 Clough 등(1990)의 방법이 있다. 수치해석에 의한 방법은 과업구간의 현황(지반조건이 가장 취약한 구간, 최대 굴착심도 구간, 주요 인접 구조물 위치 구간 등)을 종합적으로 고려하여 가장 취약한 단면에 대해 2차원 및 3차원 수치해석을 수행한 결과를 반영하였다. 본 논문에서는 위와 같은 이론식 및 경험식, 수치해석을 통해서 000선 복선전철 민간투자사업의 수직구 구간 및 터널 구간 굴착시 영향범위를 설정한 사례를 보여주고자 한다.

Keywords

References

  1. Attewell, P.B. and Farmer, I.W. (1974), Ground Deformation Resulting from Sheild Tunneling in London Clay, Canadian Geotechnical Journal, Vol.11, No.3, pp.380-395. https://doi.org/10.1139/t74-039
  2. Caspe, M.S. (1996), Surface Settlement Adjacent to Braced Open Cuts, J. of Soil Mechanics and Foundation Eng. ASCE, Vol.92, pp.51-59. https://doi.org/10.1061/JSFEAQ.0000889
  3. Clough, G.W. and O'Rourke, T.D. (1990), Construction Induced Movements of in Situ Walls, Proc., Specialty Conf. on Design and Performance of Earth Retaining Structures., New York, ASCE, pp. 439-470.
  4. Han, S.M., Lee, D.H., and Lee, S.H. (2021), Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling, J. of the Korean Geotechnical Society, Vol.37, No.9, pp.37-50. https://doi.org/10.7843/KGS.2021.37.9.37
  5. O'Reilly, M.P. and New, B.M. (1982), Settlements Above Tunnels in the United Kingdom their Magnitude and Prediction, Tunnelling'82. Ed.Jones, M.J., pp.173-181.
  6. Park, C.M., You, K.H., and Lee, H. (2018), A Development of the Ground Settlement Evaluation Chart on Tunnel Excavation, Korea Tunnel Underground Space Society, Vol.20, No.6, pp.1105-1123.
  7. Peck, R.B. (1969), Deep Excavation and Tunnelling in Soft Ground, Proc. of 7th Inter. Conf. on Soil Mech and Found. Eng., Mexico, Vol.4, pp.259-290.
  8. Seoul Metro (2001), Practical manual for Adjacent Construction in Urban Metro, pp.1-222.
  9. Underground Safety Assessment Report Standard Manual (2022), Ministry of Land, Infrastructure and Transport, pp.35-43.