DOI QR코드

DOI QR Code

석영유리 도가니용 합성 실리카 분말의 하소공정에 관한 연구

A study on the calcination process of synthetic silica powder for quartz glass crucibles

  • 양재교 (고등기술연구원 신소재공정센터) ;
  • 진연호 (고등기술연구원 신소재공정센터)
  • Yang, Jae-Kyo (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jin, Yun-Ho (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2022.08.01
  • 심사 : 2022.08.10
  • 발행 : 2022.08.31

초록

반도체 공정용 석영유리 도가니의 내측에 위치하는 투명층은 합성 실리카 분말을 원료로 사용하여 제조한다. 도가니의 투명층에는 다양한 원인에 기인하여 버블이 발생하는데, 버블은 도가니의 품질뿐만 아니라 실리콘 잉곳의 수율을 저하시키는 악영향을 미친다. 따라서 투명층의 원료인 합성 실리카 분말 역시 버블 생성 인자를 최소화하는 것이 주요 목표이다. 이에 따라 합성 실리카 분말의 경우, 실라놀 그룹, 탄소계 불순물, 그리고 기공이 충분히 제거되어야만 한다. 본 연구에서는 졸-겔법을 이용하여 합성 실리카 겔을 제조하고, 2단 하소공정에서 하소온도와 유지시간에 따른 탄소 함량과 비표면적의 변화를 살펴보았다. 1단계 하소온도는 500℃~600℃, 2단계 하소온도는 1000℃~1100℃에서 수행하였으며, 유지시간은 10분에서 최대 12시간까지 실시하였다. 1000℃에서 1시간 동안 하소한 분말의 탄소함량은 0.0031 wt.%를 나타내었으며, 1100℃에서 12시간 동안 하소한 분말의 비표면적은 16.6 m2/g을 나타내었다.

The inside of a quartz glass crucible for semiconductor processing, called a transparent layer, is manufactured using synthetic silica powder. Bubbles existing in the transparent layer of the crucible cause a problem of reducing the quality of the crucible as well as the yield of the silicon ingot. Therefore, the main goal of the synthetic silica powder, which is the raw material of the transparent layer, is to minimize the bubble generation factor. For this purpose, in the case of synthetic silica powder, it is necessary to minimize silanol groups, carbon and pores. In this study, synthetic silica gel was prepared using the sol-gel method, and changes in carbon content and specific surface area were investigated according to calcination temperature and dwelled time in a two-stage calcination process. The first-stage calcination process was performed between 500℃ and 600℃ and the second-stage calcination process was performed between 1000℃ and 1100℃. The dwelled time was carried out from 10 minutes to a maximum of 12 hours. The carbon content of the powder calcined at 1000℃ for 1 hour was 0.0031 wt.%, and the specific surface area of the powder calcined at 1100℃ for 12 hours was 16.6 m2/g.

키워드

과제정보

본 연구는 산업통상자원부의 재원으로 한국산업기술평가관리원(KEIT) 소재부품 기술개발사업의 지원을 받아 수행한 연구 과제입니다(세부과제번호 20012959).

참고문헌

  1. Y. Jung, J.H. Choi, K.W. Min, Y.M. Byun, W.B. Im, S.-H. Noh, N.-H. Kang and H.-J. Kim, "A study on the brownish ring of quartz glass crucible for silicon single crystal ingot", J. Korean Cryst. Growth Cryst. Technol. 32 (2022) 115.
  2. S. Noh, N. Kang, H. Yun and H.-J. Kim, "Status of quartz glass crucible", Ceramist 22 (2019) 452.
  3. R.L. Hansen, L.E. Drafall, R.M. McCutchan, J.D. Holder, L.A. Allen and R.D. Shelley, "Surface-treated crucibles for improved zero dislocation performance", U.S. Patent No 5,976 (1999) 247.
  4. H. Jebsen-Marwedel and R. Bruckner, "Glastechnische Fabrikationsfehler. "Pathologische" Ausnahmezustandetande des Werkstoffes Glas und ihre Behebung; eine Brucke zwischen Wissenschaft, Technologie und Praxis", Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 205.
  5. J. Friedrich, W. von Ammon and G. Muller, "Czochralski growth of silicon crystals", Handbook of Crystal Growth. Elsevier (2015) 45.
  6. B. Shim, Y. Jung and H. Lee, "Quartz crucible for single crystal growth apparatus and manufacturing method thereof", Korea Patent No 10-2007-0089581 (2007).
  7. Y. Choi and D. Song, "Quartz crucible for single crystal growth equipment", Korea Patent No 10-1089909 (2011).
  8. J.-S. Rho, H.-S. Yang, H.-Y. Cho and T.-W. Cho, "Preparation and application of silicon alkoxide", J. of Korean Ind. & Eng. Chemistry 4 (1993) 240.
  9. I.A. Rahman and V. Padavettan, "Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-A review", J. Nanomaterials 2012 (2012) 15.
  10. B.A. Morrow and A. J. McFarlan, "Surface vibrational modes of sllanol groups on silica", J. Phys. Chem. 96 (1992) 1395.
  11. M.A.M. Khraisheh, M.A. Al-Ghouti, S.J. Allen and M.N. Ahmad, "Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite", Water Research 39 (2005) 922.
  12. L.T. Zhuravlev and V.V. Potapov, "Density of silanol groups on the surface of silica precipitated from a hydrothermal solution", Russ. J. Phys. Ch. 80 (2006) 1119.
  13. B. Charmas, K. Kucio, V. Sydorchuk, S. Khalameida, M. Ziezio and A. Nowicka, "Characterization of multimodal silicas using TG/DTG/DTA, Q-TG, and DSC methods", Colloids Interfaces 3 (2019) 6.
  14. J.D. Sunseri, W.T. Cooper and J.G. Dorsey, "Reducing residual silanol interactions in reversed-phase liquid chromatography thermal treatment of silica before derivatization", J. Chromatogr. A 1011 (2003) 23.
  15. I. Szczygiel, A. Matraszek, J. Checmanowski and B. Szczygiel, "Thermal behaviour of mixed alumina-silica gels obtained from alkoxides: Phase formation and morphology of powders", J. Non-Cryst. Solies 356 (2010) 2824. https://doi.org/10.1016/j.jnoncrysol.2010.09.056
  16. S.J. Choi, S.H. Park and H.C. Park, "Influence of calcination temperature on the structure of freeze-dried silica gel", J. Korean Cryst. Growth Cryst. Technol. 13 (2003) 73.
  17. S. Tie and S. Zhang, "Removal of free carbon and crystal structure change of amorphous silica fume by calcination", Int. J. Mod. Phys. B 31 (2017) 6.