DOI QR코드

DOI QR Code

BaTiO3에서 Dy2O3 첨가가 결정구조, 입자성장 및 유전특성에 미치는 영향

The effect of Dy2O3 addition on crystal structure, grain growth, and dielectric properties in BaTiO3

  • 안원기 (경상국립대학교 나노신소재융합공학과) ;
  • 최문희 (한국세라믹기술원 전자융합본부 나노소재∙공정센터) ;
  • 김민기 ((주)삼화콘덴서공업 MLCC선행개발팀) ;
  • 문경석 (경상국립대학교 나노신소재융합공학과)
  • Ahn, Won-Gi (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Choi, Moonhee (Nanomaterials and Nanotechnology Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Minkee (MLCC Advanced Development Team, Samwha Capacitor Group) ;
  • Moon, Kyoung-Seok (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 투고 : 2022.07.14
  • 심사 : 2022.07.26
  • 발행 : 2022.08.31

초록

Dy2O3 첨가량에 따른 BaTiO3의 결정구조, 입자성장 거동 및 유전특성에 대해 연구하였다. 고상합성법으로 (100-x) BaTiO3-xDy2O3(mol%, x = 0, 0.5, 1.0, 2.0) 비율로 합성하고, 공기 중 1250℃에서 2시간 동안 소결하였다. Dy2O3가 첨가되면서 소결체의 결정구조는 정방정계 구조에서 입방정계 구조로 전이되어 tetragonality(c/a)가 감소하였다. 또한, Dy2O3가 첨가 시 Ba12Dy4.67Ti8O35은 이차상이 확인되었다. Dy2O3의 첨가량이 증가할수록 소결 후 평균입자의 크기가 감소하고 비정상 입자성장 거동을 보였다. 이를 통해 Dy2O3가 첨가된 BaTiO3의 입자성장은 이차원 핵생성 및 성장에 의해 입자성장이 일어나고 계면 반응이 지배적인 것으로 판단할 수 있다. 또한, 결정구조 및 미세구조와 유전특성과의 상관관계에 대해서 고찰하였다.

The crystal structure, grain growth behavior, and dielectric properties of BaTiO3 have been studied with the addition of Dy2O3. The powders were synthesized at ratios of (100-x)BaTiO3-xDy2O3 (mol%, x = 0, 0.5, 1.0, 2.0) by a conventional solid-state synthesis, and the powder compacts were sintered at 1250℃ for 2 hours in air. As the amount of added Dy2O3 was increased, the crystal structure of the sintered samples changed from a tetragonal to a pseudo-cubic structure, and the tetragonality decreased. In addition, a secondary phase of Ba12Dy4.67Ti8O35 appeared when Dy2O3 was added. The average grain size after sintering decreased and abnormal grains appeared as the amount of Dy2O3 increased. It can be explained that the grain growth behavior of the Dy2O3 added-BaTiO3 occurs due to the two-dimensional nucleation and growth, and is governed by the interface reaction. Further, the correlation between crystal structure, microstructure, and dielectric properties was discussed.

키워드

과제정보

본 연구는 산업통상자원부의 소재부품패키지형기술개발사업의 지원(Grant No. 20010938)을 받아 수행된 연구 결과로 이에 감사드립니다.

참고문헌

  1. K. Hong, T.H. Lee, J.M. Suh, S.-H. Yoon and H.W. Jang, "Perspectives and challenges in multilayer ceramic capacitors for next generation electronics", J. Mater. Chem. C 7(32) (2019) 9782.
  2. B. Luo, X. Wang, E. Tian, G. Li and L. Li, "Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations", J. Mater. Chem. C 3(33) (2015) 8625.
  3. Y.-X. Li, X. Yao, X.-S. Wang and Y.-B. Hao, "Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen", Ceram. Int. 38 (2012) S29.
  4. F.D. Morrison, D.C. Sinclair and A.R. West, "Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics", Int. J. Inorg. Mater. 3(8) (2001) 1205.
  5. Y.-S. Jung, E.-S. Na, U. Paik, J. Lee and J. Kim, "A study on the phase transition and characteristics of rare earth elements doped BaTiO3", Mater. Res. Bull. 37(9) (2002) 1633.
  6. Q. Sun, Q. Gu, K. Zhu, J. Wang and J. Qiu, "Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders", Ceram. Int. 42(2, Part B) (2016) 3170.
  7. R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallogr. A. 32(5) (1976) 751.
  8. V.M. Goldschmidt, "Geochemische verteilungsgesetze der elemente", In Kommission bei J. Dybwad (1923).
  9. W. Zhu, S.A. Akbar, R. Asiaie and P.K. Dutta, "Sintering and dielectric properties of hydrothermally synthesized cubic and tetragonal BaTiO3 powders", Jpn. J. Appl. Phys. 36(Part 1, No. 1A) (1997) 214.
  10. T. Hoshina, "Size effect of barium titanate: fine particles and ceramics", J. Ceram. Soc. Japan 121(1410) (2013) 156.
  11. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto and T. Tsurumi, "Domain size effect on dielectric properties of barium titanate ceramics", Jpn. J. Appl. Phys. 47(9S) (2008) 7607.
  12. K.-J. Park, C.-H. Kim, Y.-J. Yoon, S.-M. Song, Y.-T. Kim and K.-H. Hur, "Doping behaviors of dysprosium, yttrium and holmium in BaTiO3 ceramics", J. Eur. Ceram. Soc. 29(9) (2009) 1735.
  13. S.-C. Jeon and S.-J.L. Kang, "Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO3", Appl. Phys. Lett. 102(11) (2013) 112915.
  14. V. Paunovic, V. Mitic, Z. Prijic and L. Zivkovic, "Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics", Ceram. Int. 40(3) (2014) 4277.
  15. S.-J.L. Kang, "Sintering: densification, grain growth and microstructure", Elsevier2004.
  16. K.S. Moon and S.-J.L. Kang, "Coarsening behavior of round-edged cubic grains in the Na1/2Bi1/2TiO3-BaTiO3 system", J. Am. Ceram. Soc. 91(10) (2008) 3191.
  17. Y.-I. Jung, D.Y. Yoon and S.-J.L. Kang, "Coarsening of polyhedral grains in a liquid matrix", J. Mater. Res. 24(9) (2009) 2949.
  18. W.-J. Choi and K.-S. Moon, "Microstructure and dielectric properties in the La2O3-doped BaTiO3 system", J. Korean Cryst. Growth Cryst. Technol. 30(3) (2020) 103.
  19. W.-J. Choi, D. Yang, S.-C. Jeon and K.-S. Moon, "Effect of charge compensation change on the crystal structure, grain growth behavior, and dielectric properties in the La2O3-doped BaTiO3 system with MnCO3 addition", J. Alloys Compd. (2022) 165388.