DOI QR코드

DOI QR Code

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Jung, Hyen-Cheol (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Koo, WeonCheol (Department of Naval Architecture and Ocean Engineering, Inha University)
  • Received : 2022.04.19
  • Accepted : 2022.07.29
  • Published : 2022.08.31

Abstract

This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

Keywords

Acknowledgement

This research was funded and conducted under 「the Competency Development Program for Industry Specialists」 of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korean Institute for Advancement of Technology (KIAT) (No. P0012646, HRD program for Global Advanced Engineer Education Program for Future Ocean Structures).

References

  1. Allsop, W., Bruce, T., Alderson, J., Ferrante, V., Russo, V., Vicinanza, D., & Kudella, M. (2014). Large Scale Tests on a Generalised Oscillating Water Column Wave Energy Converter. Proceedings of the Hydralab IV Joint User Meeting, Lisbon.
  2. Arena, F., Fiamma, V., Laface, V., Malara, G., Romolo, A., Viviano, A., ... Carillo, A. (2013a). Installing U-OWC Devices Along the Italian Coasts. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, V008T09A061. https://doi.org/10.1115/OMAE2013-10928
  3. Arena, F., Malara, G., Romolo, A., & Ascanelli, A. (2013b). On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, V008T09A102. https://doi.org/10.1115/OMAE2013-11593
  4. Ashlin, S.J., Sannasiraj, S.A, Sundar, V., Malara, G., Arena, F., & Romolo, A. (2019). Numerical Validation of Hydrodynamic Characteristics of Open-sea U-type Oscillating Water Column Wave Energy Converter. Advances in Renewable Energies Offshore - Proceedings of the 3rd International Conference on Renewable Energies Offshore, London, 569-577.
  5. Belibassakis, K., Magkouris, A., & Rusu, E. (2020). A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry. Energies, 13(13), 3403. https://doi.org/10.3390/en13133403
  6. Boccotti, P. (2003). On a New Wave Energy Absorber. Ocean Engineering, 30, 1191-1200. https://doi.org/10.1016/S0029-8018(02)00102-6
  7. Boccotti, P. (2007a). Comparison Between a U-OWC and a Conventional OWC. Ocean Engineering, 34(5-6), 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  8. Boccotti, P. (2007b). Caisson Breakwaters Embodying an OWC with a Small Opening-Part I: Theory. Ocean Engineering, 34(5-6), 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  9. Boccotti, P., Filianoti, P., Fiamma, V., & Arena, F. (2007). Caisson Breakwaters Embodying an OWC with a Small Opening-Part II: A Small-scale Field Experiment. Ocean Engineering, 34, 820-841. https://doi.org/10.1016/j.oceaneng.2006.04.016
  10. Bouali, B., & Larbi, S. (2017). Sequential Optimization and Performance Prediction of an Oscillating Water Column Wave Energy Converter. Ocean Engineering, 131, 162-173. https://doi.org/10.1016/j.oceaneng.2017.01.004
  11. Choi, J.S., Lee, J., Lim, C.H., Ko, T.K., Park, J.Y., Kim, K., ... Cho, I.H. (2018). Status for Development of the Open Sea Test Site for Wave Energy Converters in Korea. Retrieved April 2022 from https://tethys-engineering.pnnl.gov/sites/default/files/publications/AWTEC2018-446.pdf
  12. Dai, S., Day, S., Yuan, Z., & Wang, H., 2019. Investigation on the Hydrodynamic Scaling Effect of an OWC Type Wave Energy Device Using Experiment and CFD Simulation. Renewable Energy, 142(2019), 184-194. https://doi.org/10.1016/j.renene.2019.04.066
  13. Delaure, Y.M.C., & Lewis, A. (2003). 3D hydrodynamic Modelling of Fixed Oscillating Water Column Wave Power Plant by a Boundary Element Methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  14. Dizadji, N., & Sajadian, S.E. (2011). Modeling and Optimization of the Chamber of OWC System. Energy, 36(5), 2260-2366. https://doi.org/10.1016/j.energy.2011.01.010
  15. Elhanafi, A., Fleming, A., Macfarlane, G., & Leong, Z. (2016). Numerical Energy Balance Analysis for an Onshore Oscillating Water Column-wave Energy Converter. Energy, 116, 539-557. https://doi.org/10.1016/j.energy.2016.09.118
  16. Elhanafi, A., Gregor, M., Fleming, A., & Leong, Z. (2017). Scaling and Air Compressibility Effects on a Three-dimensional Offshore Stationary OWC Wave Energy Converter. Applied Energy, 189, 1-20. https://doi.org/10.1016/j.apenergy.2016.11.095
  17. Evans, D.V. (1978). The Oscillating Water Column Wave-energy Device. IMA Journal of Applied Mathematics, 22, 4, 423-433. https://doi.org/10.1093/imamat/22.4.423
  18. Falcao, A.F.O, & Henriques, J.C.C. (2016). Oscillating-water-column Wave Energy Converters and Air Turbines: A Review. Renewable Energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086
  19. Falcao, A.F.O. (2000). The Shoreline OWC Wave Power Plant at the Azores. Proceedings of the 4th European Wave Energy Conference, Aalborg Denmark, 42-47.
  20. Falnes, J. (1993). Research and Development in Ocean-Wave Energy in Norway. In Proceedings of the International Symposium on Ocean Energy Development, Hokkaido, Japan, 27-39.
  21. Gaspar, L.A., Teixeira, P.R.F., & Didier, E. (2020). Numerical Analysis of the Performance of Two Onshore Oscillating Water Column Wave Energy Converters at Different Chamber Wall Slopes. Ocean Engineering, 201, 107119. https://doi.org/10.1016/j.oceaneng.2020.107119
  22. Gouaud, F., Rey, V., Piazzola, J., & Van Hooff, R. (2010). Experimental Study of the Hydrodynamic Performance of an Onshore Wave Power Device in the Presence of an Underwater Mound. Coastal Engineering, 57(11-12), 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  23. Heath, T., Whittaker, T.J.T., & Boake, C.B. (2000). The Design, Construction and Operation of the LIMPET Wave Energy Converter (Islay, Scotland). Proceedings of the 4th European Wave Energy Conference, Aalborg Denmark, 49-55.
  24. Higuera, P., Lara, J.L., & Losada, I.J. (2013). Realistic Wave Generation and Active Wave Absorption for Navier-Stokes Models: Application to OpenFOAM®. Coastal Engineering, 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  25. Ikoma, T., Masuda, K., Eto, H., & Shibuya, S. (2019). Basic Characteristics of the Primary Conversion of an Oscillating Water Column Type Wave Energy Converter Installed on a Wave-Dissipating Double Caisson. Journal of Offshore Mechnics and Arctic Engineering, 141(6), 061902. https://doi.org/10.1115/1.4042943
  26. Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C., & Losada, I.J. (2015). Validation of OpenFOAM® for Oscillating Water Column Three-dimensional Modeling. Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051
  27. Josset, C., & Clement, A.H. (2007). A Time-Domain Numerical Simulator for Oscillating Water Column Wave Power Plants. Renewable Energy, 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  28. Kamath, A., Bihs, H., & Arntsen O, A. (2015). Numerical Modeling of Power Take-off Damping in an Oscillating Water Column Device. International Journal of Marine Energy, 10, 1-16. https://doi.org/10.1016/j.ijome.2015.01.001
  29. Kihara, K., Hosokawa, Y., Masuda, K., & Ikoma, T. (2019). A Practical Estimation Method of PTO and a Sea Test of a PW-OWC Type Wec Using a Wave Dissipating Double Caisson. Advances in Renewable Energies Offshore, London, 531-538.
  30. Kim, D.M., Min, E.H., & Koo, W. (2021a). Numerical Study on the Optimal Shape and Performance of an Oscillating Water Column Using Analytic Air Damping Coefficients and Numerical Wave Tank. Journal of The Korean Society for Marine Environment & Energy, 24(1), 1-8. https://doi.org/110.7846/JKOSMEE.2021.24.1.1
  31. Kim, J.-S. Nam, B.W. Kim, K.-H. Park, S., Shin, S.H., & Hong, K. (2020). A Numerical Study on Hydrodynamic Performance of an Inclined OWC Wave Energy Converter with Nonlinear Turbine-Chamber Interaction Based on 3D Potential Flow. Journal of Marine Science and Engineering, 8, 176. https://doi.org/10.3390/jmse8030176
  32. Kim, J.-S., Kim, K.-H., Park, J., Park, S., & Shin, S.H. (2021b). A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves. Energies, 14(6), 1522. https://doi.org/10.3390/en14061522
  33. Koirala, P., Nagata, S., Imai, Y., Murakami, T., & Setoguchi, T. (2015). Numerical Analysis of Primary Conversion Efficiency of Oscillating Water Columns with Multiple Chambers, Procedia Engineering, 105, 568-600. https://doi.org/10.1016/j.proeng.2015.05.036
  34. Koo, W., & Kim, M.H. (2010). Nonlinear Time-Domain Simulation of a Land-Based Oscillating Water Column. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(5), 276-285. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000051
  35. Koo, W., Kwon, J.S., Kim, J.D., Kim, S.J., Kim, M.W., & Choi, M.K. (2012). Experimental Study of Shape Parameter of Land-Based OWC Wave Energy Converter. Journal of Ocean Engineering and Technology, 26(3), 33-38. https://doi.org/10.5574/KSOE.2012.26.3.033
  36. Lim, C.H., Shin, S., Park, S., Kim, K.H., Oh, J.H., Kim, G.Y., & Nam, J.S. (2021). A Study on the Estimation of the Wave Load on the Structure of wave Energy Converter connected to Rubble-Mound Breakwater. Journal of the Korean Society for Marine Environment & Energy, 24(4), 179-190. https://doi.org/10.7846/JKOSMEE.2021.24.4.179
  37. Lim, C.H., Shin, S., Park, S., Kim, K.H., Oh, J.H., Kim, G.Y., & Nam, J.S. (2021). A study on the Estimation of the Wave Load on the Structure of wave Energy Converter connected to Rubble-Mound Breakwater. Journal of the Korean Society for Marine Environment & Energy, 24(4), 179-190. https://doi.org/10.7846/JKOSMEE.2021.24.4.179
  38. Liu, C., Huang, Z., Keung, A.L.W., & Geng, N. (2010). A Numerical Study of Wave Energy Converter in the Form of an Oscillating Water Column Based on a Mixed Eulerian-Lagrangian Formulation. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 589-596. https://doi.org/10.1115/OMAE2010-21056
  39. Liu, Z., Hyun, B.S., Hong, K.Y., & Lee, Y. (2009a). Investigation on Integrated System of Chamber and Turbine for OWC Wave Energy Convertor. Proceedings of 19th International Offshore and Polar Engineering Conference, Osaka, Japan, ISOPE-I-09-050.
  40. Liu, Z., Shi, H., & Hyun, B. (2009b). Practical Design and Investigation of the Breakwater OWC Facility in China. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden. 304-308.
  41. Lopez, I., Castro, A., & Iglesias, G. (2015). Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter by Means of Particle Imaging Velocimetry. Energy, 83, 89-103. https://doi.org/10.1016/j.energy.2015.01.119
  42. Lopez, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimization of Turbine-Induced Damping for an OWC Wave Energy Converter Using a RANS-VOF Numerical Model. Applied Energy, 127, 105-114. https://doi.org/10.1016/j.apenergy.2014.04.020
  43. Lopez, I., Pereiras, B., Castro, F., & Iglesias, G. (2016). Holistic Performance Analysis and Turbine-Induced Damping for an OWC Wave Energy Converter. Renewable Energy, 85, 1155-1163. https://doi.org/10.1016/j.renene.2015.07.075
  44. Luo, Y., Nader, J.R., Cooper, P., & Zhu, S.P. (2014). Nonlinear 2D Analysis of the Efficiency of Fixed Oscillating Water Column Wave Energy Converters. Renewable Energy, 64, 255-265. https://doi.org/10.1016/j.renene.2013.11.007
  45. Mahnamfar, F., & Altunkaynak, A. (2017). Comparison of Numerical and Experimental Analyses for Optimizing the Geometry of OWC Systems. Ocean Engineering, 130, 10-24. https://doi.org/10.1016/j.oceaneng.2016.11.054
  46. Malara, G., & Arena, F. (2013). Analytical Modelling of an U-Oscillating Water Column and Performance in Random Waves. Renewable Energy, 60, 116-126. https://doi.org/10.1016/j.renene.2013.04.016
  47. Malara, G., Romolo, A., Fiamma, V., & Arena, F. (2017). On the Modelling of Water Column Oscillations in U-OWC Energy Harvesters. Renewable Energy, 101, 964-972. https://doi.org/10.1016/j.renene.2016.09.051
  48. Marjani, A.E., Ruiz, R.C., Rodriguez, M.A., & Santos, M.T.P. (2008). Numerical Modelling in Wave Energy Conversion Systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  49. Masuda, Y., & Miyazaki, T. (1978). Wave Power Electric Generation Study in Japan. Proceedings of International Symposium on Wave and Tidal Energy, Canterbury, England, B6-85-B6-92.
  50. Mohapatra, P., & Sahoo, T. (2020). Hydrodynamic Performance Analysis of a Shore Fixed Oscillating Water Column Wave Energy Converter in the Presence of Bottom Variations. Journal of Engineering for the Maritime Environment, 234(1), 37-47. https://doi.org/10.1177/1475090219864833
  51. Ning, D.Z., Guo, B.M., Wang, R.Q., Vyzikas, T., & Greaves, D. (2020). Geometrical Investigation of a U-Shaped Oscillating Water Column Wave Energy Device. Applied Ocean Research, 97, 102-105. https://doi.org/10.1016/j.apor.2020.102105
  52. Ning, D.Z., shi, J., Zou, Q.P., & Teng, B. (2015). Investigation of Hydrodynamic Performance of an OWC (Oscillating Water Column) Wave Energy Device Using a Fully Nonlinear HOBEM (Higher-Order Boundary Element Method). Energy, 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012
  53. Ning, D.Z., Wang, R.Q., Zou, Q.P., & Teng, B. (2016). An Experimental Investigation of Hydrodynamics of a Fixed OWC Wave Energy Converter. Applied Energy, 168, 636-648. https://doi.org/10.1016/j.apenergy.2016.01.107
  54. Park, J. Y., Baek, H., Shim, H., & Choi, J. S. (2020). Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-Site for Marine Equipment.Journal of Ocean Engineering and Technology,34(5), 351-360. https://doi.org/10.26748/KSOE.2020.011
  55. Park, S., Kim, K.H., Nam, B. W., Kim, J. S., & Hong, K. (2018a). A Study on the Performance Evaluation of the OWC WEC Applicable to Breakwaters using CFD. The Korean Society for Marine Environment & Energy, 21(4), 317-327. https://doi.org/10.7846/JKOSMEE.2018.21.4.317
  56. Park, S., Nam, B.W., Kim, K.H., & Hong, K. (2018b). Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater. Journal of Advanced Research in Ocean Engineering, 4(2), 66-77. http://dx.doi.org/10.5574/JAROE.2018.4.2.066
  57. Rajan, S.N., Karmakar, D., & Guedes Soares, C. (2019). Influence of Damping on an Oscillating Water Column WEC Integrated with a Breakwater. Advances in Renewable Energies Offshore -Proceedings of the 3rd International Conference on Renewable Energies Offshore, London, 579-587.
  58. Rezanejad, K., & Guedes Soares, C. (2018). Enhancing the Primary Efficiency of an Oscillating Water Column Wave Energy Converter Based on a Dual-mass System Analogy. Renewable Energy, 123, 730-747. https://doi.org/10.1016/j.renene.2018.02.084
  59. Rezanejad, K., Bhattacharjee, J., & Guedes Soares, C. (2013). Stepped Sea Bottom Effects on the Efficiency of Nearshore Oscillating Water Column Device. Ocean Engineering, 701, 25-38. https://doi.org/10.1016/j.oceaneng.2013.05.029
  60. Rezanejad, K., Bhattacharjee, J., & Guedes Soares, C. (2015). Analytical and Numerical Study of Dual-Chamber Oscillating Water Columns on Stepped Bottom. Renewable Energy, 75, 272-282. https://doi.org/10.1016/j.renene.2014.09.050
  61. Rezanejad, K., Gadelho, J.F.M., & Soares, C.G. (2019). Hydrodynamic Analysis of an Oscillating Water Column Wave Energy Converter in the Stepped Bottom Condition Using CFD. Renewable Energy, 135, 1241-1259. https://doi.org/10.1016/j.renene.2018.09.034
  62. Rezanejad, K., Guedes Soares, C., Lopez, I., & Carballo, R. (2017). Experimental and Numerical Investigation of the Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter. Renewable Energy, 106, 1-16. https://doi.org/10.1016/j.renene.2017.01.003
  63. Shalby, M., Elhanafi, A., Walker, P., & Dorrell, D.G. (2019). CFD Modelling of a Small-Scale Fixed Multi-chamber OWC Device. Applied Ocean Research, 88, 37-47. https://doi.org/10.1016/j.apor.2019.04.003
  64. Strati, F.M., Malara, G., & Arena, F. (2016). Performance Optimization of a U-Oscillating-Water-Column Wave Energy Harvester. Renewable Energy, 99, 1019-1028. https://doi.org/10.1016/j.renene.2016.07.080
  65. Teixeira, P.R.F., Davyt, D.P, Didier, E., & Ramalhais, R. (2013). Numerical Simulation of an Oscillating Water Column Device Using a Code Based on Navier-Stokes Equations. Energy, 61(2013), 513-530. https://doi.org/10.1016/j.energy.2013.08.062
  66. Torre-Enciso, Y., Ortubia, I., Lopez de Aguileta, L.I., & Marques, J. (2009). Mutriku Wave Power Plant: from the Thinking out to the Reality. Proceedings of 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 319-329.
  67. Tsai, C.P., Ko, D.H., & Chen, Y.C. (2018). Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter. Sustainability, 10(3), 643. https://doi.org/10.3390/su10030643
  68. Viviano, A., Naty, S., & Foti, E., (2018). Scale Effects in Physical Modelling of a Generalized OWC. Ocean Engineering, 162, 248-258. https://doi.org/10.1016/j.oceaneng.2018.05.019
  69. Vyzikas, T., Deshoulieres, S., Barton, M., Giroux, O., Greaves, D., & Simmonds, D. (2017a). Experimental Investigation of Different Geometries of Fixed Oscillating Water Column Devices for Wave Energy Generation. Renewable Energy, 104. 248-258. https://doi.org/10.1016/j.renene.2016.11.061
  70. Vyzikas, T., Deshoulieres, S., Giroux, O., Barton, M., & Greaves, D. (2017b). Numerical study of Fixed Oscillating Water Column with RANS-type Two-phase CFD Model. Renewable Energy, 102, 294-305. https://doi.org/10.1016/j.renene.2016.10.044
  71. Wang, D.J., Katory, M., & Li, Y.S. (2002). Analytical and Experimental Investigation on the Hydrodynamic Performance of Onshore Wave-power Devices. Ocean Engineering, 29(8), 871-885. https://doi.org/10.1016/S0029-8018(01)00058-0
  72. Wang, R.Q., Ning, D.Z., Zhang, C.W., Zou, Q.P., & Liu, Z. (2018). Nonlinear and Viscous Effects on the Hydrodynamic Performance of a Fixed OWC Wave Energy Converter. Coastal Engineering, 131, 42-50. https://doi.org/10.1016/j.coastaleng.2017.10.012
  73. Yang, H.J., Min, E.H., & Koo, W. (2021). Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC. Journal of Ocean Engineering and Technology, 35(4), 296-304. https://doi.org/10.26748/KSOE.2021.020
  74. Zhang, D., Li, W., & Lin, Y. (2009). Wave Energy in China: Current Status and Perspectives. Renewable Energy, 34(10), 2089-2092. https://doi.org/10.1016/j.renene.2009.03.014
  75. Zhang, Y., Zou, Q.P., & Greaves, D. (2012). Air-Water Two-Phase Flow Modeling of Hydrodynamic Performance of an Oscillating Water Column Device. Renewable Energy, 41, 159-170. https://doi.org/10.1016/j.renene.2011.10.011