DOI QR코드

DOI QR Code

The Influence of Soil Characteristics and Sweet Potato (Ipomoea batatas L.) Varieties on Fiber Content

재배지역 토양특성과 고구마 품종의 섬유질 함량 차이

  • Park, Won (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Chung, Mi Nam (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Hyeong-Un (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Kim, Tae Hwa (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Kim, Su Jung (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Nam, Sang Sik (Bioenergy Crop Research Institute, National Institute of Crop Science)
  • 박원 (국립식량과학원 바이오에너지작물연구소) ;
  • 정미남 (국립식량과학원 바이오에너지작물연구소) ;
  • 이형운 (국립식량과학원 바이오에너지작물연구소) ;
  • 김태화 (국립식량과학원 바이오에너지작물연구소) ;
  • 김수정 (국립식량과학원 바이오에너지작물연구소) ;
  • 남상식 (국립식량과학원 바이오에너지작물연구소)
  • Received : 2022.06.06
  • Accepted : 2022.08.17
  • Published : 2022.09.01

Abstract

Sweet potato varieties with high fiber content in the storage root have poor texture when steamed or roasted. This study investigates the difference in fiber content among sweet potato varieties by soil and climate. The average fiber content of 'Hogammi', 'Sodammi', 'Pungwonmi', 'Danjami', and 'Jinyulmi' cultivars from the samples collected at farms in Haenam, Muan, and Unbong, Korea were 95.71, 66.73, 44.55, 40.55, and 38.53 mg/100g FW, respectively. There was no significant difference between site-specific conditions and varieties. Based on the degree of visual fibrousness, 'Hogammi' has an average of 3.6-4.0 with many thick stringy fibers. The fiber content of the 'Hogammi' cultivar was measured across 19 sites representing the main sweet potato growing regions of Korea. The fiber content was between 115.82 and 114.6 mg/100g in Haenam 2 and Boryeong 1, and 87.46 mg/100g in Hamyang. However, the fiber content at the remaining 16 sites was within the range of 94.63-108.52 mg/100g, although there were some site-level differences. The fiber content of the sweet potato storage roots were positively correlated with soil phosphorus (R2 = 0.58**), organic matter (R2 = 0.52*), and pH (R2 = 0.51*), which had a significance of 1% and 5%. The fiber content of sweet potato storage roots was found to have increased with increasing phosphorus content, organic matter and pH in the soil. However, there was no correlation with the amount of precipitation, days of precipitation and hours of sunshine with the fiber content of sweet potato at the selected sites.

고구마 품종 중에는 찌거나 구웠을 때 육질 부분에 질긴 섬유질이 많아 섭취 시 식감을 떨어뜨리는 요인이 되고 있다. 최근 육성된 고구마 품종의 재배지역 간 섬유질의 발생량 차이 및 재배지역의 재배환경과 괴근의 섬유질 발생량과의 관계를 조사하고자 수행하였다. 1. 해남, 무안, 그리고 운봉 농가 포장 등 3개 지역의 품종별 평균 섬유질 함량은 '호감미' 95.71, '소담미' 66.73 mg/100g FW으로 많았고, '풍원미' 44.55, '단자미' 40.55, 그리고 '진율미' 38.53 mg/100g FW와 품종 간에는 차이가 있었으며 재배지역과 품종 간에 상호 유의성은 없었다. 2. 해남 등 3개 지역에서 수확한 5품종에서 분리한 섬유질의 식감저해 정도는 재배지역에 관계없이 '호감미' 품종에서 실 모양의 섬유질이 굵고 길게 존재하여 3.6~4.0 정도로 평가되어 '진율미', '풍원미', '소담미', '단자미' 품종과 차이가 있었다. 3. 고구마 재배지역 13개 시·군 19지점의 농가 포장에서 수집한 '호감미' 품종의 섬유질 발생량은 해남2와 보령1포장에서 수집한 고구마가 115.82, 114.6 mg/100g으로 발생량이 많았으며 함양은 87.46 mg/100g으로 발생량이 적어 차이가 있었다. 그러나 3개 지역 이외 16지점의 섬유질 함량은 지역별 94.63~108.52 mg/100g 범위로 유의성은 없었다. 4. 고구마의 섬유질 함량과 토양 중의 인산 함량은 R2= 0.58**, 유기물은 0.52* 그리고 pH는 0.51*로 각각 1%와 5% 수준에서 정의 상관을 보여 토양 중에 인산과 유기물 함량이 많고 pH가 높을수록 섬유질이 많음을 알 수 있었다. 5. 재배지역의 강수량, 강수일수, 그리고 일조시간 등 기상 여건과 고구마 섬유질 함량과의 유의성은 없는 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 농촌진흥청(과제번호: PJ01513202) 과제 연구비 지원에 의해 수행된 결과이며 연구비 지원에 감사드립니다.

References

  1. Agriculture, Food and Rural Affairs Statistics Yearbook. 2022.
  2. Azevedo, A. M., V. C. Andrade Junior, D. J. Viana, A. Y. Elsayed, C. E. Pedrosa, I. P. Neiva, and J. A. Figueiredo. 2014. Influence of harvest time and cultivation sites on the productivity and quality of sweet potato. Horticultura Brasileira. 32 : 21-27. https://doi.org/10.1590/S0102-05362014000100004
  3. Brunt, K. and P. Sanders. 2013. Improvement of the AOAC 2009. 01 total dietary fibre method for bread and other high starch containing matrices. Food Chem. 140 : 574-580. https://doi.org/10.1016/j.foodchem.2012.10.109
  4. Buri, BJ. 1997. Beta carotene and human health; A review of current research. Nutr.
  5. Constantin, R. J., L. G. Jones, and T. P. Hernandez. 1975. Sweet potato quality as affected by soil reaction (pH) and fertilizer. Journal of the American Society for Horticultural Science. 100(6) : 604-607. https://doi.org/10.21273/JASHS.100.6.604
  6. Constantin, R. J., L. G. Jones, H. L. Hammett, T. P. Hernandez, and C. G. Kahlich. 1984. The response of three sweet potato cultivars to varying levels of nitrogen. Journal of the American Society for Horticultural Science, 109(5) : 610-614. https://doi.org/10.21273/JASHS.109.5.610
  7. Gorshkova, T., N. Brutch, B. Chabbert, M. Deyholos, T. Hayashi, L-Y. Simcha, Ewa J. Mellerowicz, C. Morvan, G. Neutelings, and G. Pilate. 2012. Plant fiber formation: State of the Art, Recent and Expected Progress, and Open Questions. Critical Reviews in Plant Sciences, 31 : 201-228. https://doi.org/10.1080/07352689.2011.616096
  8. Jones, A., P. D. Dukes, M. G. hamilton, and R. A. Baumgardner. 1980. Selection for low fiber content in sweet potato. Hortscience. 15(6) : 797-798. https://doi.org/10.21273/HORTSCI.15.6.797
  9. Kareem, I., E. A. Akinrinde, O. F. Adekola, T. B. Salami, and Oladosu, Y. 2018. Phosphorus Release Dynamics in Sweet Potato Production. Journal of Agriculture and Ecology Research International. 16(3) : 1-12.
  10. Lee, H. U., M. N. Chung, S. K. Han, S. H. Ahn, J. S. Lee, J. W. Yang, ... and I. H. Choi. 2015. Effect of subsoiling on growth and yield of sweet potato in continuous sweet potato cropping field. Korean Journal of Crop Science. 60(1) : 47-53. https://doi.org/10.7740/KJCS.2014.60.1.047
  11. Lee, I. M. 2022. Evaluation of the effect of varieties and growing condition on the degree of fiber formation in storage root of sweet potato (Ipomoea batatas L.). Master's thesis, Chonnam National University. pp. 2-3.
  12. Leighton, C. S., H. C. Schonfeldt, and R. Kruger. 2010. Quantitative descriptive sensory analysis of five different cultivars of sweet potato to determine sensory and textural profiles. J. of Sensory Studies. 25 : 2-18. https://doi.org/10.1111/j.1745-459X.2008.00188.x
  13. Leksrisompong, P. P., M. E. Whitson, V. D. Truong, and M. A. Drake. 2012. Sensory attributes and consumer acceptance of sweet potato cultivars with flesh colors. J. of Sensory Studies. 27 : 59-69. https://doi.org/10.1111/j.1745-459X.2011.00367.x
  14. Maniyam, N. and R. C. Ray. 2010. Sweet potato growth, development, production and utilization: Overview. pp. 7-8.
  15. Mei, X., T. H. Mu, and J. J. Han. 2010. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J. Agric, Food Chem. 58 : 7305-7310. https://doi.org/10.1021/jf101021s
  16. Ndah, L. S. and P. C. Ojimelukwe. 2019. Effect of planting distance and harvesting period on the composition, and quality parameters of Orange Fleshed sweet potato varieties (Umuspo-1 and Ex-Onyunga). Sustainable Food Production. 6 : 33-40. https://doi.org/10.18052/www.scipress.com/SFP.6.33
  17. Panda, S. H., S. K. Naskar, and R. C. Ray. 2006. Production proximate and nutritional evaluation of sweet potato crud. J. Food, Agric & Environ. World Food Ltd Helsinki, Finland 4(1) : 124-127.
  18. Rao, V. N. M., D. D. Hamann, and E. G. Badanga. 1974. Mechanical testing as a measure of kinesthetic quality of raw and baked sweet potatoes. Trans. ASAE. 17(6) : 1187-1190. https://doi.org/10.13031/2013.37058
  19. R Core Team. 2019. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
  20. Singh, V., H. Zemach, S. Shabtai, R. Aloni, J. yang, P. Zang, L. Sergeeva, W. Literink, and N. Firon. 2021. Proximal and distal parts of sweet potato adventitious roots display differences in root architecture, lignin, and starch metabolism and their developmental fates. Plant Physiology, a section of the journal Frontiers in Plant Science. 11 : 1-15.
  21. Suda, I., T. Oki, M. Masuda, M. Kobayashi, and S. Furuta. 2003. Physiological functionally of purple-fleshed sweet potato containing anthocyanins and their utilization in foods. Hapan Agricultural Research Quarterly. 37(3) : 167-173. https://doi.org/10.6090/jarq.37.167
  22. Teow, C. C., V. -D. Truong, and R. F. Mcfeeters. 2007. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varing flesh colours. Food Chemistry. 103 : 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  23. Truong, V. D., W. M. Walter, JR, and D. D. Hamann. 1997. Relationship between instrumental and sensory parameters of cooked sweet potato texture. J. Texture Studies. 28 : 163-185. https://doi.org/10.1111/j.1745-4603.1997.tb00109.x
  24. Ukom, A. N., P. C. Ojimelukwe, and D. A. Okpara. 2009. Nutrient composition of selected sweet potato varieties as influence by different levels of nitrogen fertilizer application. pakistan Journal of Nutrition 8(11) : 1791-1795. https://doi.org/10.3923/pjn.2009.1791.1795
  25. Woolfe, J. A. 1992. Sweet potato: An untapped food resource, Cambridge University Press, Cambridge. pp. 57, 142-143.