DOI QR코드

DOI QR Code

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias (Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile)
  • Received : 2022.03.04
  • Accepted : 2022.05.06
  • Published : 2022.08.28

Abstract

The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Keywords

Acknowledgement

This work was supported by the Chilean National Research and Development Agency (known as ANID for its acronym in Spanish) through a Ph.D. studentship for MGG.

References

  1. M. Roser and E. Ortiz-Ospina, World population growth, Our World in Data, 2017.
  2. R. Lindsey, Climate change: Atmospheric carbon dioxide, 2020.
  3. P. Jena, J. Phys. Chem. Lett, 2011, 2(3), 206-211. https://doi.org/10.1021/jz1015372
  4. H.J. Neef, Energy, 2009, 34(3), 327-333. https://doi.org/10.1016/j.energy.2008.08.014
  5. M. Tayebi and B.K. Lee, Renew. Sustain. Energy Rev., 2019, 111, 332-343.
  6. T. Bak, J. Nowotny, M. Rekas and C. Sorrell, Int. J. Hydrog. Energy, 2002, 27(10), 991-1022.
  7. R.J. Abe, Photochem. Photobiol. C. Photochem. Rev., 2010, 11(4), 179-209. https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  8. J. Miao, H.B. Yang, S.Y. Khoo and B. Liu, Nanoscale, 2013, 5(22), 11118-11124. https://doi.org/10.1039/c3nr03425a
  9. Z. Dong, D. Ding, T. Li and C. Ning, Appl. Surf. Sci., 2018, 443, 321-328. https://doi.org/10.1016/j.apsusc.2018.03.031
  10. G.J. Conibeer and B.S. Richards, Int. J. Hydrog. Energy, 2007, 32(14), 2703-2711. https://doi.org/10.1016/j.ijhydene.2006.09.012
  11. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee and J.H. Park, Nat. commun., 2014, 5, 4775. https://doi.org/10.1038/ncomms5775
  12. M. Ahmed and I. Dincer, Int. J. Hydrog. Energy, 2019, 44(5), 2474-2507. https://doi.org/10.1016/j.ijhydene.2018.12.037
  13. N. Dukstiene, D. Sinkeviciute and A. Guobiene, Cent. Eur. J. Chem., 2012, 10(4), 1106-1118.
  14. N. Dukstiene and Sinkeviciute, J. Solid State Electrochem., 2013, 17, 1175-1184. https://doi.org/10.1007/s10008-012-1985-z
  15. R.S. Patil, M.D. Uplane and P.S. Patil, Appl. Surf. Sci., 2006, 252(23), 8050-8056. https://doi.org/10.1016/j.apsusc.2005.10.016
  16. O. Adedokun, Int. J. Eng. Sci. Appl., 2018, 2(3), 88-97.
  17. C.G. Granqvist, Sol. Energy Mater. Sol. Cells, 2007, 91(17), 1529-1598. https://doi.org/10.1016/j.solmat.2007.04.031
  18. M.K.M. Ali, K. Ibrahim, O.S. Hamad, M.H. Eisa, M.G. Faraj and F. Azhari, Rom. J. Phys, 2011, 56(5-6), 730-741.
  19. C.S. Moon and J.G. Han, Thin Solid Films, 2008, 516(19), 6560-6564.
  20. M. Hjiri, F. Ghribi and L. El Mir, Sens. Transducers, 2014, 27(5), 198-201.
  21. Y.Z. Dawood, M.H. Hassoni and M.S. Mohamad, Int. J. Pure Appl. Phy., 2014, 2(1), 1-7.
  22. E.J. Podlaha and D. Landolt, J. Electrochem. Soc., 1996, 143(3), 885. https://doi.org/10.1149/1.1836553
  23. A. Marlot, P. Kern and D. Landolt, Electrochim. Acta, 2002, 48(1), 29-36. https://doi.org/10.1016/S0013-4686(02)00544-3
  24. V.P. Ananikov, ACS Catal., 2015, 5(3), 1964-1971. https://doi.org/10.1021/acscatal.5b00072
  25. A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany and F. Nuesch, Sci. Rep., 2017, 7(1), 1-9. https://doi.org/10.1038/s41598-016-0028-x
  26. E. Shembel, R. Apostolova, V. Nagirny, I. Kirsanova, P. Grebenkin and P. Lytvyn, J. Solid State Electrochem., 2005, 9(2), 96-105. https://doi.org/10.1007/s10008-004-0565-2
  27. V.V. Kuznetsov, M.R. Pavlov, K.V. Kuznetsov and V.N. Kudryavtsev, Rus. J. Electrochem., 2003, 39(12), 1338-1341. https://doi.org/10.1023/B:RUEL.0000009101.41871.1d
  28. V.V. Kuznetsov, M.R. Pavlov, S.A. Chepeleva and V.N. Kudryavtsev, Rus. J. Electrochem., 2005, 41(1), 75-81. https://doi.org/10.1007/s11175-005-0008-0
  29. V.V. Kuznetsov, N.V. Morozova and V.N. Kudryavtsev, Rus. J. Electrochem., 2006, 42(6), 665-669. https://doi.org/10.1134/S1023193506060115
  30. M. Antonietti and K. Mullen (Eds.), Chemical synthesis and applications of graphene and carbon materials, John Wiley & Sons, 2016.
  31. E. Chassaing, K. Vu Quang and R. Wiart, J. Appl. Electrochem., 1989, 19(6), 839-844. https://doi.org/10.1007/BF01007931
  32. M. Popczyk and B. Losiewicz, In Solid State Phenomena, Trans Tech Publications Ltd., 2015, 228, 277-282.
  33. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell and D.S.L. Law, J. Phys. Chem. C, 2010, 114(10), 4636-4645. https://doi.org/10.1021/jp9093172
  34. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts and N. Fairley, Appl. Surf. Sci., 2015, 326, 151-161. https://doi.org/10.1016/j.apsusc.2014.11.077
  35. J. Yan, G. Wu, N. Guan, L. Li, Z. Li and X. Cao, Phys. Chem. Chem. Phys., 2013, 15(26), 10978-10988.
  36. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F. Levy, J. Appl. Phys., 1994, 75(6), 2945-2951. https://doi.org/10.1063/1.356190
  37. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart and N.S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779. https://doi.org/10.1016/j.susc.2006.01.041
  38. M.C. Oliveira and A.B. do Rego, J. Alloys Compd., 2006, 425(1-2), 64-68. https://doi.org/10.1016/j.jallcom.2005.11.092
  39. L. Meda and L. Abbondanza, Rev. Adv. Sci. Eng., 2013, 2(3), 200-207. https://doi.org/10.1166/rase.2013.1034