A Study on Non-Destructive Safety Evaluation Platform of Internal Defects of the Composite Hydrogen Tank using Finite Element Analysis

유한요소해석을 이용한 수소압력용기 비파괴 시험 평가 플랫폼의 안전성 기준 개발 연구

  • 이용우 (신한대학교 기계자동차융합공학과)
  • Received : 2022.11.22
  • Accepted : 2022.12.05
  • Published : 2022.12.30

Abstract

In this study, damage resulting from internal flaws was investigated by finite element analysis for the safety evaluation of a non-destructive testing platform for hydrogen pressure vessels. A specimen was modeled and calculated using finite element analysis to determine material properties in accordance with the parameters of the composite material in order to assess the safety of the Type 4 hydrogen pressure vessel. Through this, flaws in the hydrogen pressure vessel were modeled, and test conditions were provided in accordance with rules to look into whether there was safety. Delamination, foreign object, and vertical cracks were modeled for internal flaws, and damage was examined in accordance with failure criteria. As the delamination defect approached the interior of the hydrogen pressure tank, it became more likely to cause damage. Additionally, as the crack depth grew in the case of vertical cracks, the likelihood of crack propagation rose. On the other hand, it was anticipated that the foreign item defect would suffer more damage from the outside in. A non-destructive testing platform will be used to assess the safety of fuel cell vehicles that are already in operation in future research.

본 연구에서는 수소차에 사용되는 수소압력용기 비파괴 안전성 평가 플랫폼 개발을 위해 유한요소해석을 사용하여 안전성 평가 기준 개발에 대한 연구를 수행하였다. Type 4 수소 압력 용기의 안전성을 평가하기 위해 복합 재료의 특성에 따른 매개변수를 바탕으로 재료의 물성을 유한요소 해석을 통해 도출하였다. 이를 통해 수소압력용기에 사용되는 CFRP 복합소재의 기계적 특성을 바탕으로, 내부 결함을 모델링하고 수소압력용기에 대한 평가기준을 사용하여 내부결함에 대한 파손가능성 여부를 도출하는 프로세스를 연구하였다. 결함은 박리, 이물질, 표면 수직균열을 모델링하고 파손 기준에 따른 손상을 분석하여 비파괴검사를 통해 검출된 결함의 안전성 여부를 판단할 수 있는 방법을 연구하였다. 연구 결과 박리 결함은 수소 압력용기의 내부에 근접할수록 파손가능성이 높아졌으며, 수직 균열을 경우 균열의 깊이가 깊어질수록 손상가능성이 높게 나타났다. 또한, 이물질 결함의 경우 압력용기의 외부 방향에 비해 내부 방향에 위치한 경우 손상가능성이 높게 나타났다. 본 연구를 통해 결함의 종류, 형상 및 크기에 따른 수소압력용기의 안전성을 평가할 수 있는 방법을 제시하였으며, 향후 본 연구결과를 바탕으로 수소차량 압력용기의 비파괴시험 안전검사 플랫폼 개발 연구를 수행하고자 한다.

Keywords

Acknowledgement

본 연구는 국토교통부 수소버스 안전성 평가기술 및 장비개발 사업의 연구비지원 (과제번호 #22HBST-C160329-03)에 의해 수행되었습니다.

References

  1. J. B. Kim, K.W. Jung, D.C. Choi, C. H. Kim, Y. Kim, "Study on Phased Array Ultrasonic Testing Technique During Repair of Carbon Steel Plate using CFRP Materials", Journal of the Korean Society for Nondestructive Testing, Vol. 41, No. 2, pp.126-132, Apr. 2021. https://doi.org/10.7779/JKSNT.2021.41.2.126
  2. J. R. Lee, H. Jeong, T. T. Chung, H. Shin, J. Park, "Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager", Composites Research, Vol. 28, No. 4, pp.143-147, Apr. 2015. https://doi.org/10.7234/composres.2015.28.4.143
  3. D. Wang, B. Liao, C. Hao, A. Wen, J. Zheng, P. Jiang, C. Gu, P. Xu, Q. Huang, "Acoustic emission characteristics of used 70 MPa type IV hydrogen storage tanks during hydrostatic burst tests", International Journal of Hydrogen Energy, Vol. 46, No. 23, pp. 12605-12614, Mar. 2021. https://doi.org/10.1016/j.ijhydene.2020.12.177
  4. R. Gutkin, C. J. Green, S.Vangrattanachai, S. T. Pinho, P. Robinson, P. T. Curtis, ,"On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses", Mechanical Systems and Signal Processing, Vol. 25, No. 4, pp. 1393-1407, May.
  5. H.S. Roh, T.Q. Hua, R.K. Ahluwalia, "Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles", International journal of Hydrogen Energy , Vol.38, No. 29, pp.12795-12802 , Sep. 2013. https://doi.org/10.1016/j.ijhydene.2013.07.016
  6. D. Leh, P. Saffre, P. Francescato, R. Arrieux and S. Villalonga, "A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel", International Journal of Hydrogen energy, Vol. 40, No. 38, pp 13206-13214, Oct. 2015. https://doi.org/10.1016/j.ijhydene.2015.05.061
  7. S. Y. Kim, H. S. Park, M. S. Kang, W. H. Lee, J. H. Choi, J. M. Koo, C. S. Seok, "Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion", Transactions of the KSME A, Vol. 33, No. 4, pp.360-365, Apr. 2009. https://doi.org/10.3795/KSME-A.2009.33.4.360
  8. J. Hu, F. Liu, Q. Duan, G. Cheng, Z. Zhang, "Failure analysis based on J-integral values: A case study of hydrogen blistering defect", Engineering Failure Analysis, Vol. 18, pp.924-932, Apr.
  9. Ming Zhang, Hong Lv, Huairong Kang, Wei Zhou, Cunman Zhang, "A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks", International Journal of Hydrogen Energy, Vol. 44, No. 47, pp. 25777-25799, Oct. 2019. https://doi.org/10.1016/j.ijhydene.2019.08.001
  10. American National Standards Institute and CSA Group, "ANSI HGV 2-2014 Compressed Hydrogen Gas Vehicle Fuel Containers", American National Standards Institute and CSA Group, Washington, DC, USA, 2014.
  11. The European Union, "Commission Regulation (EU) No 406/2010 of 26 April 2010 Implementing Regulation (EC) No 79/2009 of the European Parliament and of the Council on Type-Approval of Hydrogen Powered Motor Vehicles", The European Union, Brussels, Belgium, 2010.
  12. United Nations, "ECE/TRANS/180/Add.13 Global Technical Regulation on Hydrogen and Fuel Cell Vehicles", United Nations, New York, NY, USA, 2013.
  13. ASTM International, "ASTM D3039/D3039M-14 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials", West Conshohocken, PA, 2014.
  14. Altair Inc., "HyperWorks Manual", Version 2017, 2017.
  15. Dassault System Inc., "ABAQUS Manual", Version 2018, 2018.
  16. Kim J. H., C. J. Kim, C. S. Cha, Kim J. H., "Recalculation Research of Material properties for CFRP FEM Non-linear Analysis", Journal of the Korean Society of Manufacturing Technology Engineers, Vol. 21, No. 4, pp.608-612, Aug. 2012. https://doi.org/10.7735/ksmte.2012.21.4.608
  17. Son B., "Failure Criteria of Composite Materials", Journal of Korean Society for Advanced Composite Structures, Vol. 2, No. 3, pp. 17-52, May. 2011.