데이터 증강 기반 효율적인 무선 신호 분류 연구

An Efficient Wireless Signal Classification Based on Data Augmentation

  • 임상순 (성결대학교 컴퓨터공학과)
  • 투고 : 2022.12.05
  • 심사 : 2022.12.17
  • 발행 : 2022.12.30

초록

사물인터넷 환경에서는 다양한 무선 통신 기술을 사용하는 기기들이 점점 증가하고 있다. 특히, 다양한 무선 신호 변조 유형을 정확하게 식별하기 위해 효율적인 특성 추출 기법을 설계하고 무선 신호의 종류를 분류하는 것이 필수적이다. 하지만, 실제 환경에서 레이블이 지정된 무선 신호 데이터를 수집하는 것은 쉬운 문제가 아니다. 최근 무선 신호 분류를 위해 딥러닝 기반의 다양한 학습 기법들이 제안되어졌다. 딥러닝의 경우 훈련 데이터셋이 적을 경우 과대적합에 빠질 가능성이 높으며, 이는 딥러닝 모델을 활용한 무선 신호 분류 기법의 성능 저하를 유발한다. 본 연구에서는 다양한 무선 신호들이 존재할 때 분류 성능을 높이기 위해 생성적 적대 신경망 기반 데이터 증대 기법을 제안한다. 분류해야 하는 무선 신호의 종류가 다양할 때 특정 무선 신호를 나타내는 데이터의 양이 적거나 균형이 맞지 않는 경우 제안한 기법을 활용하여 필요한 무선 신호와 관련된 데이터의 양을 증가시킨다. 제안한 데이터 증강 알고리즘의 유효성을 검증하기 위해 무선 신호의 데이터양을 증가시키고 균형을 맞춘 결과를 바탕으로 CNN 및 LSTM 기반 무선 신호 분류기를 구현하여 실험해본 결과 데이터 균형을 맞추지 않았을 때보다 분류 정확도가 높아지는 것을 확인하였다.

Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

키워드

참고문헌

  1. S. H. Shah and I. Yaqoob, "A survey: Internet of Things (IOT) technologies, applications and challenges," 2016 IEEE Smart Energy Grid Engineering (SEGE), 2016, pp. 381-385
  2. S. Rajendran, W. Meert, D. Giustiniano, V. Lenders and S. Pollin, "Deep Learning Models for Wireless Signal Classification With Distributed Low-Cost Spectrum Sensors," in IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433-445, Sept. 2018 https://doi.org/10.1109/TCCN.2018.2835460
  3. S. Lim, S. Lee, J. Yoo and C. Kim, "NBP: light-weight Narrow Band Protection for ZigBee and WiFi coexistence", EURASIP Journal on Wireless Communications and Networking 2013, 76 (2013)
  4. Xiaolong Zheng, Zhichao Cao, Jiliang Wang, Yuan He, and Yunhao Liu, "ZiSense: towards interference resilient duty cycling in wireless sensor networks", In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems (SenSys '14). Association for Computing Machinery, New York, NY, USA, 119-133.
  5. Shravan Rayanchu, Ashish Patro, and Suman Banerjee, "Catching whales and minnows using WiFiNet: deconstructing non-WiFi interference using WiFi hardware.", In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation (NSDI'12). USENIX Association, USA, 5.
  6. S. Tridgell, D. Boland, P. H. W. Leong and P. H. W. Siddhartha, "Real-time automatic modulation classification," in Int. Conf. on Field-Programmable Technology, ICFPT 2019, Tianjin, China, pp. 299-302, 2019.
  7. H. Roh, S. Oh, H. Song, J. Han and S. Lim, "Deep learning-based wireless signal classification in the iot environment," Computers, Materials & Continua, vol. 71, no.3, pp. 5717-5732, 2022. https://doi.org/10.32604/cmc.2022.024135
  8. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative adversarial networks.", Commun. ACM 63, 11 (November 2020)
  9. Alzubaidi, L., Zhang, J., Humaidi, A.J. et al, "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.", J Big Data 8, 53 (2021).
  10. X.Wu, P.C.Y. Chen and J. Liu, "LSTMnetwork:Adeep learning approach for short-termtraffic forecast,"Iet Intelligent Transport Systems, vol. 11, no. 2, pp. 68-75, 2017. https://doi.org/10.1049/iet-its.2016.0208
  11. W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu et al., "Short-term residential load forecasting based on LSTM recurrent neural network," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, 2019. https://doi.org/10.1109/TSG.2017.2753802
  12. C. Weber, M. Peter and T. Felhauer, "Automatic modulation classification technique for radio monitoring,", Electronics Letters, vol. 51, no. 10, pp. 794-796, 2015. https://doi.org/10.1049/el.2015.0610
  13. S. Zhou, Z. Yin, Z. Wu, Y. Chen, N. Zhao et al., "A robust modulation classification method using convolutional neural networks," EURASIP Journal on Advances in Signal Processing, vol. 2019, no. 1, pp. 55, 2019.
  14. X. Zhang, J. Sun and X. Zhang, "Automatic modulation classification based on novel feature extraction algorithms," IEEE Access, vol. 8, pp. 16362-16371, 2020. https://doi.org/10.1109/ACCESS.2020.2966019
  15. D. Hong, Z. Zhang and X. Xu, "Automatic modulation classification using recurrent neural networks," in 2017 3rd IEEE Int. Conf. on Computer and Communications (ICCC), Chengdu, China, pp. 695-700, 2017.
  16. RadioML2016.10a Dataset, https://www.deepsig.ai/datasets