DOI QR코드

DOI QR Code

구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin

  • Bawkar, Shilpa K. (Metal Extraction and Recycling Division, CSIR-National Metallurgical Laboratory) ;
  • Jha, Manis K. (Metal Extraction and Recycling Division, CSIR-National Metallurgical Laboratory) ;
  • Choubey, Pankaj K. (Metal Extraction and Recycling Division, CSIR-National Metallurgical Laboratory) ;
  • Parween, Rukshana (Metal Extraction and Recycling Division, CSIR-National Metallurgical Laboratory) ;
  • Panda, Rekha (Metal Extraction and Recycling Division, CSIR-National Metallurgical Laboratory) ;
  • Singh, Pramod K. (Netaji Subhas University) ;
  • Lee, Jae-chun (Resources Recycling Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2022.08.04
  • 심사 : 2022.08.10
  • 발행 : 2022.08.31

초록

구리는 우수한 특성, 특히 높은 전도성과 낮은 저항으로 인해 전기/전자 제조 산업에 널리 사용되는 비철금속 중 하나이다. 이러한 산업의 표면 처리 공정에서는 구리 함량이 높은 폐수가 발생하며, 직간접적으로 수계로 배출된다. 이는 심각한 환경 오염을 일으키고 또한 귀중한 유용금속의 손실을 초래한다. 이러한 문제를 극복하기 위하여, 효율적이고 저렴하며 친환경적인 흡착제를 찾기 위한 목적으로 흡착 분야에서 전 세계적으로 지속적인 연구개발이 진행되고 있다. 이러한 점을 고려하여, 본 연구에서는 위와 같은 폐수로부터 구리 흡착을 위한 바이오 흡착제로서 식물뿌리(Datura 뿌리 분말)의 성능을 합성 흡착제(Tulsion T-42)와 비교하였다. 실험은 흡착제 투여량, 접촉시간, pH, 주입액 농도 등의 변수들을 최적화하기 위하여 회분식으로 수행되었다. 초기구리농도가 100 ppm이고 pH가 4인 주입액에서, 0.2 g Datura 뿌리 분말을 15분간 접촉하였을 때 구리 흡착율은 95%이었으며, 0.1 g Tulsion T-42은 30분간 접촉에서 95%의 흡착율을 나타내었다. 두 흡착제의 흡착 데이터는 Freundlich 등온선과 잘 일치하였으며, 유사 2차 속도식을 따르는 것을 나타내었다. 전체 결과는 본 연구의 바이오 흡착제가 표면처리 공정의 폐액 또는 폐수로부터 금속 회수에 적용될 가능성을 보여주고 있다.

Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

키워드

참고문헌

  1. Jha, M. K., Nguyen, N. V., Lee, J.-c., et al., 2008 : Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120, J. of Haz. Materials, 164(2-3), pp.948-953.
  2. Panda, R., Dinkar, O. S., Jha, M. K., et al., 2020 : Novel approach for selective recovery of gold, copper, and iron as marketable product from industrial effluent, Gold Bulletin, 53, pp.11-18. https://doi.org/10.1007/s13404-020-00269-y
  3. Roh, H. G., Kim, S. G., and Jung, J., 2014 : Adsorption of heavy-metal ions (Pb2+, Cu2+) on perm-lotion-treated human hair, Korean J. of Chem. Eng., 31(2), pp.310-314. https://doi.org/10.1007/s11814-013-0222-5
  4. Gautam, R. K., Mudhoo, A., Lofrano, G., et al., 2014 : Biomass-derived biosorbents for metal ions sequestration: Adsorbent 3 modification and activation methods and adsorbent regeneration, J. of Env. Chem. Eng., 244, pp.1-21.
  5. Hussein B. I., 2010 : Removal of copper ion from waste water by adsorption with modified and unmodified sunflower stalk, J. of Eng, 16, pp.5411-5421.
  6. Pavithra, S., Thandapani, G., Sugashini S., et al., 2021 : Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater, Chemosphere, 271, 129415.
  7. Hossain, M. A., Ngo, H. S., Guo W. S., et al., 2012 : Biosorption of Cu(II) From Water by Banana Peel Based Biosorbent: Experiments and Models of Adsorption and Desorption, J. of Wat. Sustain., 2(1), pp.87-104.
  8. Ngueagni P. T., Woumfo, E. D., Kumar, P. S., et al., 2019 : Adsorption of Cu(II) ions by modified horn core: effect of temperature on adsorbent preparation and extended application in river water, J. of Mol. Liq., 298, 112023.
  9. Ghrab, S., Benzina, M., Lambert, S. D., 2017 : Copper adsorption from waste water using bone charcoal, Adv. in Mat. Phy. and Chem., 7, 139-147. https://doi.org/10.4236/ampc.2017.75012
  10. Patel, H., 2020 : Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachtaindica) leaf powder, Sci. Reports, 10, 16895.
  11. Begum, S. A., Yadamari, T., Yakkala, K., et al., 2015 : Adsorption and equilibrium studies of cadmium(II), chromium(VI) and lead(II) ions using ecofriendly biosorbent, Inter. J. of Eng. Res. & Tech., 4(5), pp.696-702.
  12. Kumar, S., Shahnaz, T., Selvaraju, N., et al., 2020 : Kinetic and thermodynamic studies on biosorption of Cr(VI) on raw and chemically modified Datura stramonium fruit, Env. Monitor. Assess., 192, 248.
  13. Wolowicz, A., Hubicki, Z., 2020 : Enhanced removal of copper(II) from acidic streams using functional resins: batch and column studies, J. of Materials Sci., 55, 13687-13715. https://doi.org/10.1007/s10853-020-04982-z
  14. Sazali, N., Harun, Z., Sazali, Nz., 2020 : A review on batch and column adsorption of various adsorbent towards the removal of heavy metal, J. of adv. Res. in Fluid Mech. and Ther. Sciences, 67(2), pp.66-88.
  15. Vinodhini, V., Das, N., 2009 : Biowaste materials as sorbents to remove chromium from aqueous environment-comparative study, J. of Agri. and Bio. Science, 4(6), pp.19-23.
  16. Dubey, R., Bajpai, J., Bajpai, A. K., 2016 : Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg(II) ions. Env. Nanotech., Monit. and Management, 6, pp.32-44.
  17. Gupta, A., Sharma, V., Sharma, K., et al., 2021 : A review of adsorbents for heavy metal decontamination: growing approach to wastewater treatment, Materials, 14(16), 4702.
  18. Swarnalatha, K., Ayoob, S., 2016 : Adsorption studies on coir pith for heavy metal removal, Inter. J. of Sustainable Eng., 9(4), 259-265. https://doi.org/10.1080/19397038.2016.1152323