DOI QR코드

DOI QR Code

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions

정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식

  • Chang, Ho Nam (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Kyung-Rok (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Kwonsu (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Gwon Woo (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yeu-Chun (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Suh, Charles (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Nakjong (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Do Hyun (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Beom Su (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Han Min (Department of Chemical Engineering, Chungbuk National University) ;
  • Chang, Yoon-Seok (Lab to Market) ;
  • Kim, Nam Uk (Lab to Market) ;
  • Kim, In Ho (Seebio) ;
  • Kim, Kunwoo (Seebio) ;
  • Lee, Habit (Seebio) ;
  • Qiang, Fei (Deparment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • 장호남 (한국과학기술원 생명화학공학과) ;
  • 최경록 (한국과학기술원 생명화학공학과) ;
  • 정권수 (한국과학기술원 생명화학공학과) ;
  • 박권우 (한국과학기술원 생명화학공학과) ;
  • 김유천 (한국과학기술원 생명화학공학과) ;
  • 서찰스 (한국과학기술원 생명화학공학과) ;
  • 김낙종 (한국과학기술원 생명화학공학과) ;
  • 김도현 (한국과학기술원 생명화학공학과) ;
  • 김범수 (충북대학교 화학공학과) ;
  • 김한민 (충북대학교 화학공학과) ;
  • 장윤석 (랩투마켓) ;
  • 김남욱 (랩투마켓) ;
  • 김인호 (시바이오) ;
  • 김건우 (시바이오) ;
  • 이햇빛 (시바이오) ;
  • 치앙페이 (한국과학기술원 생명화학공학과)
  • Received : 2022.06.28
  • Accepted : 2022.08.05
  • Published : 2022.08.31

Abstract

Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

무삼투압차 역삼투압(Δ𝜋= 0)은 KAIST H. N. Chang 명예교수가 2013년 발명, 2014년 미국 특허 출원, 2018년 특허 취득(US 9,950,297) 해수담수화기술. Chang 등의 RO 기술은 삼투압 조정조와 저압 역삼투압의 2 챔버로 구성. Chang 등은 소금물을 비롯한 모든 수용액은 물과 용질(소금)로 완전 분리 가능 주장. 삼투압차 조정조, 저압 역삼투압조 2 챔버로 구성됨. 고농도 용액의 삼투압은 1908년 미국화학회지 출간된 MIT G. N. Lewis식 이용. 두 번째 특허(US 10,953,3367)에서 RO가 10~12 bar 저 삼투압차 수행 가능 증명. 세 번째 특허(Korea 10-2322755, 해외 출원 중) Singularity ZERO 활용하면 기존 RO에 비해 물은 50% 추가, 막 면적은 1/3, 이론에너지는 1/5, 동일 용량의 S-ZERO 기술은 기존 RO 건설비의 50~60%로 예측됨.

Keywords

Acknowledgement

This work was supported by the Ministry of Science and ICT through the National Research. Foundation (NRF) of Korea (NRF-2017R1A2B2008625 and NRF-2019R1H1A2079989). This work is supported by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Ministry of SMEs and Startups (Grant S2948109, TIPS project.)

References

  1. https://en.wikipedia.org/wiki/Water_scarcity (April 19, 2022) accessed.
  2. https://en.wikipedia.org/wiki/Water_scarcity (accessed August 31, 2022).
  3. https://en.wikipedia.org/wiki/World_Water_Council (accessed August 31, 2022).
  4. https://en.wikipedia.org/wiki/Water_resources (accessed August 31, 2022).
  5. M. M. Mekkonen and A. Y. Hoestra, "Four billion people facing severe water Science Advances. Four billion people facing severe water scarcity", Sci. Adv., 2, e1500323-e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
  6. S. U. Lee, K. Jung, G. W. Park, C. Seo, Y. K. Hong, W. H. Hong, and H. N. Chang, "Bioprocessing aspects of fuels and chemicals from biomass", Korean J. Chem Eng, 29, 831-850 (2012) https://doi.org/10.1007/s11814-012-0080-6
  7. https://en.wikipedia.org/wiki/Big_Bang
  8. https://en.wikipedia.org/wiki/Global_warming_controversy
  9. https://en.wikipedia.org/wiki/Water_distribution_on_Earth
  10. https://en.wikipedia.org/wiki/Saline_water
  11. F. H. Martini, J. L. Nath, and E. F, Bartholomew, "Ch. blood", Fundamentals of Anatomy and Physiology, 9thed, pp. 638-665, Pearson (2012).
  12. S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Adv. Chem. Ser., 38, 117-132 (1962).
  13. https://en.wikipedia.org/wiki/Multi-stage_flash_distillation
  14. I. Ullah and M. G. Rasul, "Recent developments in solar thermal desalination technologies: A review", Energies, 12, 119 (2019).
  15. https://en.wikipedia.org/wiki/Desalination (accessed on May 31, 2022).
  16. https://en.wikipedia.org/wiki/ReverseOsmosis (accessed on May 31, 2022).
  17. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr Sci., 281, 70-87 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  18. https://en.wikipedia.org/wiki/Forward_osmosis (accessed on May 22, 2022).
  19. K. Jung, JDR Choi, C Seo, J. Lee, S. Y. Lee, H. N. Chang, and Y. C. Kim, "Permeation characteristics of volatile fatty acids solution by forward osmosis", Process Biochem., 50 669-677 (2015). https://doi.org/10.1016/j.procbio.2015.01.016
  20. H. N. Chang, K. Jung, G. W. Park, Y-C. Kim, and C. Seo, "Method for concentrating aqueous containing solute into high concentration by hydraulic-membrane process under no difference in osmotic pressure", US 9,950,297 B2 (Apr.24.2018), Korea Patent 10-2047939 (2019/11/18).
  21. H. N. Chang, "Method for concentrating solute containing aqueous solution a high concentration by reverse osmosis in non-osmotic pressure difference state", Korea Patent 10-1865342 (2018.05.31), US-Patent (10,953,3367: 03.23,2021), Saudi Arabia (9180, 2021.12.28), UAE (accepted) 2022.06.25. (registration-deadline).
  22. H. N. Chang, Y. S. Chang, and N. U. Kim, "Method for concentrating aqueous solutions with low energy by using reverse osmosis and forward osmosis in state in which multiple-no osmotic pressure difference is induced. Korean Patent (10-2322755, 2021 1101), WIPO 2020/189999 A1. (24.09.2020), USA (pending), Singapore, EU (pending).
  23. https://en.wikipedia.org/wiki/Osmotic_pressure (accessed on May 22, 2022).
  24. OLI System Inc. OLI Stream. Analyzer 2.0, Morris Plains (2011).
  25. H. N. Chang, "Numerical calculation of effectiveness factors for the Michaelis-Menten type kinetics with high thiele moduli", AIChE J., 28 1030-1032 (1982). https://doi.org/10.1002/aic.690280621
  26. https://en.wikipedia.org/wiki/Sodium_chloride (accessed on Aug 29, 2022).
  27. G. N. Lewis, "The osmotic pressure of concentrated solutions, and the law of the perfect solution", J. Am. Chem. Soc., 30, 668-683 (1908). https://doi.org/10.1021/ja01947a002
  28. H. N. Chang, K. R. Choi, S. Y. Lee, M-H. Seon, and Y-S Chang, "Chang approximation for the osmotic pressure of dilute to concentrated solutions", Korean J. Chem Eng., 37, 583-587 (2020). https://doi.org/10.1007/s11814-019-0460-2
  29. D. Y. Koh, B. A. McCool, H. W. Deckman, and R. P. Liverly, "Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes", Science, 353, 804-807 (2016). https://doi.org/10.1126/science.aaf1343
  30. A. Apelblet, and E. Korin, "Partial molar volumes at infinite dilution in aqueous solutions of NaCl, LiCl, NaBr, and CsBr at temperatures from 550 K to 725 K", J. Chem. Thermodyn., 30, 59-71 (1998). https://doi.org/10.1006/jcht.1997.0275
  31. Yip, M. Elimelech, "Thermodynamic Energy and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis", Environ. Sci. Technol., 46, 5230-5239 (2012). https://doi.org/10.1021/es300060m
  32. https://en.wikipedia.org/wiki/Fatty_acid
  33. https://koasas.kaist.ac.kr/handle/10203/196367
  34. S-J. Lim, B. J. Kim, C-M. Jeong, Y. H. Ahn, and H. N. Chang, "Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor", Bioresour. Tech., 99, 7866-7874 (2008). https://doi.org/10.1016/j.biortech.2007.06.028
  35. S-J. Lim, D. W. Choi, W. G. Lee, S. Kwon, and H. N. Chang, "Operation and modeling of bench-scale SBR for simultaneous removal of nitrogen and phosphorus using real wastewater", Bioprocess Eng., 22, 543-545 (2000). https://doi.org/10.1007/s004499900109
  36. H. N. Chang, N-J. Kim, J. W. Kang, and C. M. Jeong, "Biomass-derived volatile fatty acid platform for fuels and chemicals", Biotechnol Bioprocess Eng., 15, 1-10 (2010). https://doi.org/10.1007/s12257-009-3070-8
  37. G. W. Park, Q. Fei1, K. Jung, H. N. Chang, Y-C Kim, N.-J. Kim, J. Choi, S. Y. and Kim, J. Cho, "Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production:, Biotechnol. J., 9, 1536-1546 (2014). https://doi.org/10.1002/biot.201400266
  38. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluver Academic Publication (1996).
  39. https://onlinelibrary.wiley.com/doi/10.1002/9783527803293.ch10
  40. S. A. Aktij, A. Zirehpour, A. Mollahorseinj, M. J. Thaherzadeh, S. Tiraferri, and A. Rhhimpour, "Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review", J. Ind. Eng. Chem., 81, 24-40 (2020). https://doi.org/10.1016/j.jiec.2019.09.009
  41. K. F. Lam, C. C. J. Leung, H. M. Lei, and C. S. K. Kin, "Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes", Food Bioprocess Technol., 92 282-250 (2014).
  42. Q. Fei, H. N. Chang, L. Shang, N. J. Kim, and J. W. Kang, "The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production", Bioresour. Biotechnol., 102, 2695-2701 (2011). https://doi.org/10.1016/j.biortech.2010.10.141
  43. M. Qasim, M. Badrelzaman, N. N. Darwish, N. A. Darwish, and N. Hilal, "Reverse osmosis desalination: A state-of-the-art review", Desalination, 459, 59-104 (2019). https://doi.org/10.1016/j.desal.2019.02.008
  44. K. Park, J. B. Kim, D. Y. Yang, and S. K, Hong, "Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions", J. Membr. Sci., 595, 117607 (2020).
  45. M. Qasim, M. Badreizaman-Noora, N, Darwish Naif, A. Darwish, and N. IHilal, "Reverse osmosis desalination: A state of the art review", Desalination, 459, 59-104 (2019). https://doi.org/10.1016/j.desal.2019.02.008
  46. https://www.lenntech.com/Data-sheets/CSM-RE2521-SHN-L.pdf