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Abstract

Seeded marketing campaign (SMC) is a newly created type of marketing activities with the widespread use of social
media. Previous research has examined to find out the optimal seeding strategy that yields the best outcome from the
campaign. This research explores the relationships between the characteristics of the seeded influencer and user
engagement. The data consists of information from 1062 seeded Instagram posts posted in September 2020 in Korea and
778 seeded influencers who posted those contents. Analyzed by negative binomial regression, our quadratic model
suggests that the relationship between user engagement and the number of followers of the seeded influencer draws an
inverted U-shape, indicating influencers with greater number of followers may not always be the best choice for the
marketers. Moreover, this research shows that the negative marginal impact coming from the huge number of followers
can be attenuated when the influencer is an expert of the seeded product.
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1. Introduction

T he days we are now living are undoubtedly
called digital era, where most people can

readily access the Internet and use mobile devices.
Due to this easy accessibility of the Internet, there
has been a widespread use of social media recently;
over 3.6 billion people are using social media in
2020, and it is expected to be increased to 4.41 billion
in 2025 (Statista 2020a). Following this trend, social
media is being used as an important marketing tool,
especially as a branding channel (Ashley and Tuten
2015; eMarketer 2013). Marketers utilize social
media for branding by managing business-to-con-
sumer communication and providing engagement
experiences (Ashley and Tuten 2015).

These activities are called social media marketing.
Drury (2008), Cvijikj and Michahelles (2013) defined

social media marketing as a usage of the existing
social media platforms for increasing the brand
awareness among consumers through utilizing
word-of-mouth (WOM) principles, supporting two
types of promotion: (1) traditional marketing pro-
motion from firms to customers and (2) social pro-
motion communicated among consumers (Mangold
and Faulds 2009). The latter, which is a uniqueness
of social media platforms, is often conducted by the
publication of branded contents that can be gener-
ated not only by firms but also by ordinary users.
These branded contents generated by users (i.e.,
user-generated contents or UGCs) are critical in
marketing context since they are one of the main
sources of consumer-to-consumer WOM. For firms’
point of view, UGCs on social media platforms
allow firms to connect with new users, communicate
with their followers, and thus widen their opportu-
nities to increase sales (Park et al. 2020). This sheds
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light on the new type of marketing activity that so-
cial media has brought up: seeded marketing cam-
paigns (SMCs).
SMCs are conducted by firms deliberately seeding

a focal product or marketing-relevant information
with initially selected subset of consumers. These
initial target consumers respond to this marketing
activity by generating WOM about the seeded
products or information. This type of WOMwhich is
created from UGCs is called amplified WOM (Chae
et al. 2017; Libai et al. 2010). This new type of WOM
is different from the traditional organic WOM in
that it is intentionally triggered by firms at the initial
stage.
The evidence that SMCs are considered important

in the marketing field can be found in that they are
popular and are being conducted by various kinds
of firms regardless of the size. According to the
American Marketing Association and the Word of
Mouth Marketing Association, one-third of mar-
keters plan to run or already have run SMCs
sending samples to initially selected consumers, and
three-quarters are planning to use or already have
used consumers to generate amplified WOM (Chae
et al. 2017; WOMMA 2014). The boom of SMCs is
not so surprising considering their cost-efficiency
compared to traditional mass media marketing. For
instance, Hotmail's campaign which had generated
12 million subscribers in 18 months with $50,000
budget is considered as one of the first successful
viral marketing activities. Viral advertisements
conducted by Tipp-Ex had generated nearly 10
million clicks in four weeks (Hinz et al. 2011). Filip
Tysander, the owner of the Swedish watch company
Daniel Wellington, invested just $1500 for kick-
starting the company and sold one million watches
worldwide for a profit of $220 million in 2015 which
is just six years after (Haenlein et al. 2020).
As the number of social media users increases, the

number of social media platforms where users can
actively participate increases too. In other words,
marketers became to have a variety of options to
choose which platform to seed their marketing
contents. Despite the wide range of options, SMCs
are especially popular on Instagram (Oliveira and
Goussevskaia 2020). According to a global survey, 76
percent of responding social media marketers used
Instagram to promote their business as of January
2020 (Social Media Examiner 2020a). Furthermore,
almost 70 percent of respondents have answered
that they will increase the use of Instagram for their
marketing activities, which is the largest percentage
compared to all the other social media platforms
including Youtube, LinkedIn, Facebook, Twitter,
Pinterest, Messenger bots, TikTok and Snapchat

(Social Media Examiner 2020b). These statistics
indicate that Instagram is the first and foremost
social media marketing channel, especially in the
domain of SMCs. This is due to the increased
number of users on Instagram, indicating that large
audience of marketing activity will be guaranteed.
The number of global users of Instagram has been
about 855 million in 2019, and it is expected to sur-
pass 988 million in 2023 (eMarketer 2019). Moreover,
Instagram is preferred by both marketers and con-
sumers for its overall high engagement level coming
from its visual nature, user stickiness, and better
control over spam (Li and Xie 2020).
SMC is in line with social media influencer mar-

keting in that influencers create WOM in exchange
for paid contents. An influencer can essentially be
anyone with an existing social media following
(Esber and Wong 2020; Pittman and Abell 2021). As
influencer marketing is a new field for celebrity
endorsement, the source credibility model, which is
mainly used to evaluate the proper celebrity
endorser, should be also considered in the context
of SMC (Djafarova and Trofimenko 2019). That is,
marketers can select an optimal social media influ-
encer of the campaign using the source credibility
model.
There are three main dimensions for the source

credibility: attractiveness, trustworthiness, and
expertise. Among these dimensions, an expertise is
the most critical factor in that it enhances the effects
of endorsers (Verhellen, Dens and Pelsmacker
2013). A perceived trustworthiness increases with
higher expertise (Erdem and Swait 2004; Wang and
Scheinbaum 2018), and the consumers perceive
words from expert influencers stronger than those
from attractive influencers (Trivedi and Sama 2020).
This indicates that the expertise may have bigger
weight than other observable and perceivable
characteristics of influencers when measuring the
effectiveness of SMCs.
This research aims to explore a deeper relation-

ship between initial seeded targets and consumer
engagements on Instagram. In other words, this
research focuses on how the observable and
perceivable characteristics of a marketing cam-
paign's initial targets are related to the level of en-
gagements as marketing outcome.
There are two main research questions under this

research objective:

1. What is the relationship between the number of
followers of the seeded target and the user
engagement of the seeded content?

2. Does a perceived expertise of the seeded target
moderate the above relationship?
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2. Related research and hypotheses
development

2.1. Seeded marketing campaigns and user
engagement

Chae et al. (2017) have categorized extant research
on SMCs into four main topics: brand characteris-
tics, incentives, marketing outcomes, and target
characteristics. Connecting some brand character-
istics to social, emotional, and functional WOM
drivers, social and functional drivers are more
prominent in online WOM while emotional ones
are important in offline WOM (Lovett, Peres and
Schachar 2013). Positive externality-based mecha-
nisms are efficient for encouraging or nudging
regular consumers’ WOM transmissions such that
they were more likely to prefer and select higher-
connectivity friends as receivers (Stephen and Leh-
mann 2016). In terms of the sales outcome, firm-
created WOM through SMCs interacts negatively
with traditional advertising but positively with
promotional activities (Dost et al. 2019). Lastly,
seeding to well-connected people is the most suc-
cessful approach for viral marketing (Hinz et al.
2011).
The matter of whom firms should initially seed

their product to is of particular importance for firms
in that it is possible for them to select initial subset
of consumers that are most likely to maximize user
responses to their campaigns (Oliveira and Gous-
sevskaia 2020). The effects of SMCs depend on the
characteristics of the seeded targets of the cam-
paigns. Firms can readily exploit some observable
network metrics such as the number of followers of
the seeded target, thanks to its information avail-
ability and accessibility (Hinz et al. 2011). Consid-
ering the characteristics of initial target, firms
carefully select social media influencers for SMCs.
These influencers are commonly acting as endorsers
of SMCs, like celebrity endorsers in traditional mass
media advertisements.
To capture the total set of behavioral activities

and perspectives from consumers toward any
marketing action, consumer engagement is criti-
cally concerned by firms. User engagement is
frequently used to measure the effects of online
WOM in social media since the amplified WOM is
created directly by the engagement of users. The
main goal of social marketing for marketers is
customer engagement followed by revenue gen-
eration (Oviedo-García et al. 2014). Therefore, the
monetary value of a seeded post is normally esti-
mated based on the user engagement (Oliveira and
Goussevskaia 2020).

Li and Xie (2020) categorized the user engagement
on social media into two types: (1) direct responses
such as likes, comments and favorites, and (2)
sharing or propagation of the original post. Different
types of engagement metrics are used in respective
social media. For example, the primary metrics for
Facebook and LinkedIn are comments, likes, and
shares, while those for Instagram and YouTube are
only comments and likes; the primary metrics for
engagement on Twitter are favoriting, likes, quoting
and sharing (Coelho et al. 2016).

2.2. The number of followers

Influencers on social media are normally identi-
fied by their follower's actions of recognizing,
admiring, associating, and aspiring them (Djafarova
and Trofimenko 2019; Kutthakaphan and Choke-
samritpol 2013). That is, social media influencers are
usually identified by the number of followers they
have. In terms of the number of followers, which is
the observable characteristic of social media influ-
encers, people tend to perceive greater social influ-
ence as it increases (Jin and Phua 2014). However, it
does not mean that the influencers with larger
number of followers is always the better endorsers.
Even though larger number of followers guarantees
the larger reach of the content, the other criterion
than the reach of the message must be considered to
measure the success in persuasive communication
(Veirman, Cauberghe and Hudders 2017).
Not as an indicator for the reach but for the source

credibility, the number of followers is important.
The number of followers on social networking sites
is a measure of the predictor of social media user
credibility (Weismueller et al. 2020; De Veirman
et al. 2017). Source credibility model is commonly
used to evaluate the appropriate celebrity endorser
for its comprehensiveness and applicableness to the
online context (Djafarova and Trofimenko 2019).
Moreover, the impact of electronic WOM(eWOM)
depends upon the source credibility; since eWOM
may appear less credible than verbal or face-to-face
communication due to its anonymity, firms should
establish and maintain eWOM credibility in order to
encourage recipients to read and accept eWOM
(Buttle 1998; Reichelt, Sievert and Jacob 2014). As
mentioned in the introduction, attractiveness,
trustworthiness, and expertise are three main di-
mensions in the source credibility model.
Consumers associate brands with their celebrity

endorser to build brand credibility, adding the di-
mensions of attractiveness and trustworthiness to
the brand (Elberse and Verleun 2012). These newly
added dimensions may mediate between the
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number of followers and the user engagement.
People with great number of followers are consid-
ered popular and likable (Veirman, Cauberghe and
Hudders 2017). Indegree, which is the number of
people who follow a user, is frequently used as a
proxy for popularity of the user (Cha et al. 2010;
Djafarova and Trofimenko 2019). This sociometric
popularity, which is the number of followers in so-
cial network, is positively related to the perceived
social attractiveness (Jin and Phua 2014). Attrac-
tiveness also increases the user awareness perceived
by the audience (Miciak and Shanklin 1994). This
two-way causality between the number of followers
and the perceived attractiveness will cause celeb-
rity's attractiveness to increase with increasing
returns to scale as the number of followers in-
creases. Unfortunately, the convexity of increase in
the attractiveness does not last permanently. Extant
research conducted by Tong et al. (2008) has shown
that an increase in the number of friends in social
network was evaluated positively at first, but too
many friends resulted in less favorable evaluations
on the social attractiveness. Thus, when the number
of followers exceeds the certain point, the perceived
attractiveness will start to get decreasing.
Trustworthiness also grows as the number of fol-

lowers increases to the certain point. Engaging with
an audience, which is the element to evaluate
trustworthiness (Djafarova and Trofimenko 2019),
cannot be seen from the user with no follower. This
engagement will rise as the number of followers,
who are the main audience, increases. Unfortu-
nately, the interaction between social media influ-
encer and other users is not so active when the
influencer has a lot of number of followers, since it is
not easy to respond to every audience when there
are too many. Furthermore, while considering peo-
ple with great number of followers as famous, users
do not always trust how those people achieved that
followership (Djafarova and Trofimenko 2019).
Similarly, when the number of followers reaches too
high, the followership might be perceived as only
superficial, with its quality called into doubt (Utz
2010). Therefore, perceived trustworthiness also
declines when the number of followers exceeds the
certain point.
We conducted an experiment with 3 (number of

followers: low vs. middle vs. high) x 2 (expert: yes vs.
no) between-subjects design to check how perceived
attractiveness and trustworthiness change with an
increase in the number of followers. A total of 216
female respondents from age 18 to 34 were collected
on CloudResearch. The study showed participants
an image of Instagram user profile with the
following description (Fig. 1):

Please, take a moment to look at the Instagram
profile of the poster. For large numbers, Instagram
uses k as an abbreviation for thousand and m as an
abbreviation for million.
Imagine that while you are exploring random

Instagram feeds, you come to reach the post that is
endorsing lipsticks of a particular cosmetics brand.
This post, which is posted by an individual Insta-
gram user, states that its content is sponsored by the
cosmetics brand.
Then we asked them how attractive and trust-

worthy they perceive the user on a 7-point Likert-
scale. One-way ANOVA was conducted with
perceived attractiveness and trustworthiness as
respective dependent variables and the number of
followers as an independent variable. The result
showed that perceived attractiveness and trustwor-
thiness not always grow as the number of followers
increases; they decline when the user's number of
followers gets too high. See Appendix A for specific
procedure and results.
To sum up, the larger number of followers leads to

the larger reach, but it may also give the negative
impressions to the other users. Based on these in-
teractions between the number of followers and the
perceived attractiveness and trustworthiness, the
first hypothesis comes as follows:

H1. There exists an inverted U-shape relationship
between the number of followers of the seeded
influencer and the user engagement.

2.3. The expertise of social media influencers

Nevertheless, there is still a way for the influ-
encers with many followers to supplement their
negative marginal impact. Influencers who do not
possess any specialty have user engagement with
diminishing returns to scale while some who are
more specialized in their knowledge base have not
(Esber and Wong 2020; Pittman and Abell 2021). An
influencer's expertise, which is the other important
dimension for social media influencer's source
credibility, may mitigate the negative marginal
impact on trustworthiness caused by too many fol-
lowers. Among the dimensions of source credibility,
expertise is considered the most critical factor that
enhances the match-up effects between the
endorser and the endorsed product or brand (Ver-
hellen, Dens and Pelsmacker 2013). According to
previous studies, the higher the endorser's exper-
tise, the stronger the endorser's trustworthiness
perceived by consumers (Erdem and Swait 2004;
Wang and Scheinbaum 2018). Therefore, perceived
trustworthiness of expert endorsers will less
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decrease than that of non-expert endorsers due to
the high number of followers.
It is also noteworthy that consumers give more

weight to the words of the expert influencers than
those from the attractive ones (Trivedi and Sama
2020). Therefore, despite the negative or decreasing
returns of perceived attractiveness with respect to
the number of followers, expert influencers will
have stronger power compared to non-expert
influencers. Given the positive effects of expertise
on trustworthiness and the stronger weight to the
expertise than attractiveness given by consumers,
the second hypothesis comes as follows:

H2. The perceived expertise of social media influ-
encers moderates the relationship between the
number of followers and user engagement. That is,
when the seeded influencer is perceived as an
expert of the seeded product, the inverted U-shaped
relationship becomes flatter.

3. Data and measurements

3.1. Seeded marketing campaigns

We collected Instagram posts that contain some
keywords that are frequently used in Korea when
informing the post as a seeded marketing campaign
from September 1st, 2020 to September 30th, 2020.1

We selected lipstick as a focal seeded product since

cosmetics industry heavily rely on influencer mar-
keting (Li and Xie 2020) and consumers are more
likely to search for reviews for cosmetics products
due to high levels of product diversity and the fact
that these products are experience goods (Chae
et al. 2017). We obtained this data from Sometrend
Biz, a Korean website that collects and analyzes
massive data from documents of online platforms
including various social media, providing social in-
sights such as the trend of mentioned keywords of
interest, related keywords, and analysis of
emotional texts. Sometrend Biz shows the posts that
meet the conditions set by users, as well as the
direct links to the posts. First, we added some search
keywords that are frequently used in Korea when
informing the post is seeded, to be included in the
posts, such as “ad” or “sponsored”. Also, the search
keyword “lipstick” was added to be included in the
post, which mentions the product category of the
seeded product. Then we excluded posts that are
just copied and reposted from the original post by
excluding posts that contain the search keywords
such as “regram” or “repost”. After setting the pos-
ted period from September 1st, 2020 to September
30th, 2020, total of 2332 posts were collected. Fig. 3
shows the example of the seeded post we have
collected.
By following the links of these collected posts, we

crawled the data of the seeded influencer's profile
including the account ID, the number of followers,

Fig. 1. Profile Images. Next, we showed them the image of the seeded Instagram post with the following description (Fig. 2).

1 Since September 2020, Korea Fair Trade Commission has legislated a new law that seeded influencer of the brand campaigns must directly mention in
the post that the content is seeded, obviously enough for the audience to recognize. As sponsorship presence might affect viewers' responses to the seeded
posts compared to consumer-voluntary posts (Park, Yi and Kang 2019), we only collected posts that mandatorily revealed their sponsorship.

66 ASIA MARKETING JOURNAL 2022;24:62e77



the number of followings and the introduction bio
texts, the content texts and the number of likes and
comments of the post. During this process, some
data were unable to be collected if the user has
deleted one's account or the post at the moment of
crawling. Also, there was only one post of which
poster's number of followers was over 1,000,000, so it
was excluded in the final dataset concerning the
outlier issue. This collection process resulted in 778
users and their 1062 posts.
The brand-related keywords provided by Some-

trend Biz were manually filtered to check the list of
specific brands that have participated in SMCs. For
example, those that are not the brands selling lip-
sticks, such as “Dazed” (magazine), “Olive Young”

(drugstore), “Insta” (Instagram), were filtered as
brand-unrelated keywords. Distinct words that
represent the same brand were also checked
manually. For example, “Clio” and “Club Clio”
representing the same brand were counted as one
brand. Next, we checked which brand-related
keyword is mentioned in each post, resulting in the
final dataset that consists of 65 brands.

3.2. User engagement

The number of likes and the number of com-
ments, which are the primary metrics for engage-
ment on Instagram (Coelho et al. 2016), are used to
measure the level of user engagement. Li and Xie

Fig. 2. Post images.

Fig. 3. Example of seeded post.
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(2020) measured the number of likes as an engage-
ment on Instagram since sharing is not readily
available on Instagram, and liking is a commonly
adopted metric that helps audience to show enjoy-
ment, appreciation, or endorsement of the content.
Oliveira and Goussevskaia (2020) mentioned a
function of the number of likes and comments of the
post and the number of followers of the poster as an
engagement. Coelho et al. (2016) also built two
models with respective dependent variables, which
are the number of likes and comments, to evaluate
social network relationships on Facebook and
Instagram. We collected the number of likes and
comments on November 19th, 2020, which is about
two months after all the posts are uploaded. The
minimum number of likes is 2 and the maximum
11,517; the minimum number of comments is 0 and
the maximum 32.

3.3. The number of followers

We also collected the number of followers of the
influencers on November 19th, 2020. The minimum
number of followers is 7 and the maximum 207,000.
The number of followers follows a right-skewed
distribution with the median number 10,000 and the
average 24,520.11.

3.4. Perceived expertise

The level of interests in a topic is frequently used
as the proxy for expertise measurement since there
are high correlations between them. Guy et al.
(2013) suggested that people are usually interested
in topics where they have expertise and vice versa,
providing a positive correlation of 0.7 between the
expertise and the interest. Adamopoulos, Ghose,
and Todri (2018) also measured expertise by
capturing the intensity of the specific topics of in-
terest in each user's discussions on the specific
platform. Therefore, in this research, experts will be
considered ones who show their intense interest of
cosmetics by mentioning related words. We mea-
sure the expertise of seeded influencers by counting
the number of cosmetics-related keywords.
First, texts from Instagram bios of all 778 seeded

influencers were collected. Then we parsed the
texts, made word corpus of each bio and manually
extracted cosmetics-related words from the corpus
and account IDs of respective seeded influencers.2

Lastly, the number of extracted words was counted.

The maximum number of cosmetics-related words
was 12, while the minimum was 0. The proportion of
the seeded influencers with no cosmetics-related
word contained in their IDs and bios was nearly half
(51.8%), with median value of 0. Therefore, we
defined the seeded influencer as an expert
(Expert ¼ 1, N ¼ 375) if the influencer contains at
least one cosmetics-related word in one's ID or bio,
otherwise non-expert (Expert ¼ 0, N ¼ 403).
The experiment we have conducted on Clou-

dResearch also tested whether the bio including
cosmetics-related words is perceived as more expert
than that including none of the words. We manip-
ulated whether the influencer is perceived as an
expert (yes vs. no) by giving influencer's Instagram
bio including cosmetics-related keywords: “Beauty j
Lifestyle j Fashion, Beauty Content Creator, Make-
Up Artist, (smiling emoji) Beauty doesn't have a
weight limit” and the bio including none of them:
“Enjoying my daily life (smiling emoji)”. We asked
how they perceive the seeded influencer as an
expert with the following question: “I think this
Instagram user would be expert/experienced/
knowledgeable in the cosmetics field.” (1 ¼ Strongly
Disagree, 7 ¼ Strongly Agree). The manipulation
succeeded as we expected. See Appendix A for
specific procedure and results.
In sum, variable operationalization and selected

descriptive statistics can be found in Table 1.

4. Analysis

Since dependent variables (i.e., the number of
likes or the number of comments) in this research
are count data, Poisson regression may be applied to
analyze the current dataset. However, Poisson
regression with count data assumes an equi-
dispersion, which means that the mean and the
variance is the same. We conducted an over-
dispersion test for dependent variables by calcu-
lating the dispersion parameter q using the
dispersiontest function in R. If q is bigger than 0, the
data is overdispersed. The results of dispersion tests
for Poisson models showed that the data are over-
dispersed for number of likes (q ¼ 0.81, p < 0.01) and
for number of comments (q ¼ 0.48, p < 0.01),
rejecting the null hypothesis of equidispersion.
Therefore, we use negative binomial regression

for the analysis of our model to overcome the
problem of overdispersed count data with addi-
tional dispersion parameter q. Here, the variance is
larger than the mean as follows:

2 Although automatized method could be preferred for categorizing and extracting cosmetics-related words, this manual process overcomes the limi-
tations and complexities of automatized text analysis, such as entities with multiple meanings, slangs and abbreviations in social media (Berger et al. 2020).
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Var(yik) ¼ E(yik) þ qE(yik)
2,

where yik is the dependent variable (Cameron and
Trivedi 1990, 2013; Cvijikj and Michahelles 2013).
Since yik follows the negative binomial distribution
with mean parameter mik and dispersion parameter
q, it has a conditional probability mass function such
that:

f
�
yik

��mik; r
�¼

�
yik þ r� 1

yik

��
r

mik þ r

�r�
mik

mik þ r

�yik

;

where r is the reciprocal of q.
Thus, the mean parameter mik can be expressed as

follows:

logðmikÞ¼b0 þ b1Followeri þ b2Follower
2
i þ b3Experti

þ b4Followeri*Experti þ b5Follower
2
i *Experti

þ b6Brandk;

where Brandk is the factor variable to control any
fixed effect of seeding brand k that are participating
in the SMCs. The coefficient b2 will test if there is an
inverted U-shape relationship between the number
of followers of the seeded influencer and the user
engagement, and the coefficient b5 will test the
moderation effect of the influencer's expertise.

5. Results

Table 2 and Table 3 present the results of the
different specifications of our models for user
engagement. In particular, Model 1 measures only
the brand effects on user engagement. Model 2

introduces the linear effect of number of followers,
while Model 3 adds the quadratic effect of it. Lastly,
Model 4 includes the effect of an influencer's
expertise and its interaction effects. Considering the
Akaike information criterion (AIC) and the infor-
mation of the log-likelihood of each model, Model 4
fits the data the best, followed by Model 3, 2, and 1.
Regarding the number of likes, the results show

that the coefficient estimate for the linear form of
the variable Followeri is significantly positive
(b1 ¼ 0.0378, p < 0.01). This is not so surprising in
that it is consistent not only with common intuition
but also with extant literature suggesting that
seeding to the influencers with high number of
followers is the best strategy for SMCs (Hinz et al.
2011). However, what we should pay attention to is
the parameter for the quadratic term of Followeri; it
is negative and significant (b2 ¼ �0.0002, p < 0.01).
The negative sign indicates that the relationship
between the number of followers and the user
engagement exists in the inverted U-shape. There-
fore, H1 is accepted for the number of likes.
Similar with the results for the number of likes,

the coefficient estimate for the linear form of the
variable Followeri is significantly positive regarding
the number of comments (b1 ¼ 0.0103, p < 0.01).
However, the parameter for the quadratic term of
Followeri is also negative but with comparatively low
significance for the number of comments (p < 0.15).
It turns out that the relationships between the

number of followers and both the number of likes
and comments draw an inverted U-shape, but only
significantly regarding the number of likes. This
may be because liking the posts requires low

Table 2. Estimation results for number of likes.

Model 1 Model 2 Model 3 Model 4

Intercept 5.7635*** (0.32) 5.2143*** (0.27) 5.0050*** (0.26) 4.9140*** (0.27)
Followeri 0.0192*** (0.00) 0.0336*** (0.00) 0.0378*** (0.00)
Follower2i �0.0001*** (0.00) �0.0002*** (0.00)
Expert i 0.1176 (0.08)
Followeri X Expert i �0.0058 (0.00)
Follower2i X Expert i 0.0001* (0.00)
AIC 14,133.00 13,660.00 13,601.00 13,601.00
2 X log-likelihood �14,001.24 �13,525.88 �13,465.36 �13,459.19

*p < 0.1; **p < 0.05; ***p < 0.01.
Standard errors in parentheses.

Table 1. Main variables and descriptive statistics.

Variables Description Mean SD

Engagementik the number of likes of the post uploaded by
influencer i and seeded by brand k

350.10 740.07

the number of comments of the post uploaded
by influencer i and seeded by brand k

7.94 7.12

Followeri the number of followers of influencer i (in
thousands)

24.58 34.61

Experti whether the cosmetics-related word is
included in influencer i's ID or bio

0.53 0.50

Note. SD stands for Standard Deviation.
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involvement with reactive consumption, while
writing comments requires high involvement with
proactive contribution (Oviedo-García et al. 2014;
Tsai and Men 2012, pp. 10e13). According to
Agrawal, Gupta and Yousaf (2018), moreover, liking
is more affected by superficial features than com-
menting which requires much time and effort;
message or posts giving information and socio-
emotional messages in the posts have a significantly
larger impact on the growth of likes compared to
that of comments. Considering an informative trait
of seeded contents, the difference between results of
the number of likes and comments does not seem to
be non-sense at all.
Model 4, which has the best fit to our data among

all other models, analyzes the effect of an expertise
of the seeded influencer and its interaction effects
with the number of followers. What we should pay
attention to in this model is the interaction term of
an expertise and the quadratic form of the number
of followers in order to confirm whether an influ-
encer's expertise alleviates the negative slope of an
inverted U-shape between the number of followers
and the user engagement. For the number of likes,
the coefficient of the interaction term of Follower2i
and Expert i is positive (b5 ¼ 0.0001, p < 0.1).
Therefore, H2 is marginally accepted, indicating
that if the influencer is an expert of the seeded
product, an inverted U-shape relationship between
the number of followers and the number of likes
would be flatter than that of non-expert influ-
encers. Analyzing the number of comments as a
dependent variable, on the other hand, the inter-
action term of Follower2i and Expert i has a positive
but low significant parameter value. However,
Expert i solely has a positive and significant coeffi-
cient estimate in terms of the number of followers
(b3 ¼ 0.3276, p < 0.01) while it is not for the number
of likes, which indicates that whether the seeded
influencer is an expert or not will have positive
association with the number of comments of the
seeded post.

6. General discussion

The goal of this research is to find the relationship
between the influencer's characteristics and the ef-
fects of SMCs. This research explores how the
number of followers, which is the main observable
social metrics on Instagram, interacts with the user
engagement. The dataset that we have collected
consists of over 1000 distinct posts from about 800
influencers that are seeded in September 2020. We
analyzed the user engagement of these posts in the
relation to the number of followers that the influ-
encer has, taking into account the different status of
seeded influencers in terms of the expertise.
The results show the inverted U-shaped rela-

tionship between the number of followers of the
seeded influencer and the number of likes. Also, this
research finds out that the relationship between the
number of followers of the seeded influencer and
the number of comments is inverted U-shape, but
with low significance. This may be due to the high
involvement of writing comments with proactive
contribution, in contrast to the low involvement of
liking the posts with reactive consumption (Oviedo-
García et al. 2014; Tsai and Men 2012, pp. 10e13).
Regarding the moderating effect of the influ-

encer's expertise, whether the seeded influencer is
an expert of the seeded product significantly mod-
erates the inverted U-shaped relationship between
the number of followers and the number of likes but
does not moderate that between the number of
followers and the number of comments. However,
the number of comments is in a positive relation-
ship with the seeded influencer's expertise.

6.1. Theoretical implications

The intrinsic characteristics of social mediamakes it
possible forbothresearchers andmarketers toobserve
the online WOM instances that provide deeper in-
sights into the association between the seeded influ-
encer's characteristics and the effectiveness of WOM

Table 3. Estimation results for number of comments.

Model 1 Model 2 Model 3 Model 4

Intercept 2.1070*** (0.33) 2.0050*** (0.33) 1.9540*** (0.33) 1.7640*** (0.34)
Followeri 0.0038*** (0.00) 0.0070*** (0.00) 0.0103*** (0.00)
Follower2i �0.0000 (0.00) �0.0000 (0.00)
Expert i 0.3276*** (0.10)
Followeri X Expert i �0.0061 (0.00)
Follower2i X Expert i 0.0000 (0.00)
AIC 6621.50 6609.30 6609.30 6601.70
2 X log-likelihood �6489.50 �6475.26 �6473.26 �6459.72

*p < 0.1; **p < 0.05; ***p < 0.01.
Standard errors in parentheses.
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(Adamopoulos, Ghose and Todri 2018; Godes and
Mayzlin 2004; Trusov, Bucklin and Pauwels 2009).
Extant research emphasize the importance of seeding
to the optimal influencers when conducting SMCs,
and this research extends the topic to examining the
deeper relationship between the influencer's charac-
teristics and the user engagement.
This research has theoretical contributions in that

it proposes the new idea that the seeded influencer
with more followers is not always the better option,
which contradicts to many extant literatures that
have asserted that well-connected users are the
optimal seeding influencers (Hinz et al. 2011; Mohr
2014). The negative coefficient estimate for the
quadratic term of the main independent variable
shows that the greater number of followers does not
always lead to higher engagement of the seeded
contents.
Moreover, this research does not only use the

numeric social metrics of the influencer's charac-
teristics but also takes the source credibility model
into account, which has been emphasized in prior
research of traditional celebrity endorsement.
Extending this traditional theory to the newly
created type of endorser in social media, this
research finds out that the influencer's status of
expert mitigates the negative marginal impact of the
number of followers on user engagement. We also
check how some dimensions of source credibility
model interact with the number of followers of the
influencer by conducting a survey experiment,
suggesting how traditional source credibility model
should be combined with social media influencers,
which is the new type of celebrity endorser these
days.
Since Instagram policy prohibits collecting data

from the platform directly, it is hard to collect
massive, detailed data from Instagram even though
it is the primary social media marketing platform.
Due to this limitation, majority of prior research
have studied social media marketing on limited
platforms such as Twitter or Facebook, which seem
quite old-fashioned in the field of SMC. This
research collects and analyzes the data consisting of
more than 1000 distinct posts from about 800 seeded
influencers on Instagram. Detailed data that can be
observed on Instagram including the influencer's
bio, social connectedness, and content texts are also
collected and analyzed in this paper.

6.2. Managerial implications

While many marketers agree that promoting
SMCs is the foremost marketing activity that they
should develop more on, it is not so easy for them to

decide which influencer might fit the best for their
campaigns. There is no particular influencer to seed
who absolutely fits the best with every brand and
every SMC. Just paying a huge amount of their
budget to the influencers with millions of followers
is not always the best plan for the brand. What they
should do is to thoroughly plan to create strategic
partnerships with certain influencers on social
media (Mynatt 2020). This research provides the
guideline for marketers that suggests how to utilize
observable influencer characteristics to decide the
optimal initial influencer when conducting SMCs.
For example, let us consider that Brand A from

our dataset plans their seeded marketing campaign
to get high user engagement. Since likes and com-
ments of the post, which are the main metrics for
user engagement on Instagram, require different
involvements to the users and therefore have
different implications to the firms, the brand should
set their strategies respectively with consideration of
what they aim at. Suppose Brand A tries to get
higher number of likes from the seeded content,
when seeding to influencers with low number of
followers under 27,484, it is better for Brand A to
seed its product to expert influencers to get more
likes. When targeting influencers with followers
between 27,485 and 76,900, seeding to non-expert
influencers rather than experts will produce greater
number of likes. In other words, the number of likes
yielded by non-experts exceeds the number of likes
yielded by experts in some follower range. Howev-
er, if Brand A has affordable budget to seed its
product to influencers holding greater number of
followers than 76,901, they should target experts
again, getting the highest number of likes with the
expert influencer with 160,706 followers, reaching
2669 likes. Fig. 4A illustrates this description
regarding the number of likes.
If Brand A's objective is to get high-involved

engagement, which is comment, it is always better
for the brand to target expert influencers than non-
experts. For non-expert influencers, the number of
comments will start to decrease from the influencer
with 115,921 followers. However, if they choose to
target experts, the number of followers that starts to
reduce the number of comments is bigger, which is
167,596. This non-expert influencer with 167,596
followers will gain the greatest number of com-
ments, which is 14, among all other expert and non-
expert influencers. Fig. 4B illustrates this description
regarding the number of comments.
Besides, not only marketers but also potentially

to-be-seeded influencers, who are so-called influ-
encers on social media, can strategically accept the
suggestions of SMCs by firms, considering their
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number of followers, their expertise and the type of
the product to be seeded in order to gain more
engagement.

6.3. Limitations and future research

This research contains some areas that can be
furthered by future research. In this research, we
analyzed only one product category, which is
lipstick. It is true that SMCs on Instagram are
especially conducted within fashion and cosmetics
industries due to its visual nature (Statista 2020b).

Nevertheless, extending the analysis to the various
product categories will be contributing to generalize
the models and the results proposed in this paper.
In addition, this research conducts a cross-

sectional study. However, considering the dynamic
feature of the social metrics on social media, the
extension of the models with time dynamic vari-
ables might help researchers and marketers gain
deeper insight of dynamic online WOM effects on
social media. Also, the results suggest that the
number of likes and comments have different
weights in terms of the role of user engagement.

Fig. 4. Number of followers and user engagement.
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Extending the model with different weights of
dependent variables will contribute to both aca-
demic and managerial field of marketing.
Moreover, our analysis does not account for some

variables related to the text content. We did not add
WOM valence as a control variable because reliable
sentiment analysis algorithms are not available for
the Korean language, and scoring it manually seems
infeasible given the amount of data (Chae et al.
2017). Also, considering the purpose of seeded
contents, we thought there would be no significant
variation in valence across our data. In order to
check the likelihood, we asked a coder who is a
native Korean speaker working in the marketing
field to manually read the posts and judge their
valence as described in the research from Chae et al.
(2017), providing 100 posts randomly sampled from
our 1062 posts. The coder found most of the posts
were “positive” (94%); posts judged as “mixed/
neutral” were only 6% and none of the posts were
judged as “negative”.
The amount of information in the post could also

be taken into the model. However, Li and Xie (2020)
have found out that text content including the
length of the post does not affect engagement on
Instagram. To check the applicableness of this
finding, we analyzed our model adding the length
variable, which we define as the number of char-
acters in the post, with randomly sampled 100 posts.
The result showed that it does not have any signif-
icant effect on the number of likes and comments
(p > 0.1). Finally, it would be an interesting pre-
scriptive study to develop an algorithm to find an
optimal influencer to seed with the optimal number
of followers among the candidates.
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Appendix.

Appendix A. Number of followers, perceived attrac-
tiveness and trustworthiness

To check the interactions assumed in the hypoth-
eses, we conducted an experiment with female
MTurk panel workers on CloudResearch, which is an
advanced participant-sourcing platform with
selected workers. We employed female workers from
age 18 to 34 because the experiment provides Insta-
gram post about sponsored lipstick, which is same as
our main data, and this age group is the dominant

users of Instagram among other ages (Statista 2021).
Also, it is in accordance with extant research to focus
on female participants who use Instagram (Lee and
Eastin 2020; Pittman and Abell 2021).
We investigated the effects of seeded influencer's

number of followers on perceived attractiveness and
trustworthiness and compared the results between
expert seeded influencers and non-expert influ-
encers. We manipulated whether the influencer is
perceived as an expert (yes vs. no) by giving influ-
encer's Instagram bio including cosmetics-related
keywords and the bio including none of them.

A.1 Procedure
At the very first question, we asked the familiarity

of Instagram on a 7-point Likert-scale and those
who answered that they are familiar (greater point
than 3) could proceed with the rest of the survey.
After removing responds from the participants who
have failed the attention check, responses from 216
female participants (Mage ¼ 29) were collected in
total. Study had a 3 (number of followers: low vs.
middle vs. high) x 2 (expert: yes vs. no) between-
factorial design. Participants were randomly
assigned to one of the six cells.
Next, we showed participants an image of virtual

seeded influencer's Instagram profile. The profile
includes ID, the number of posts, followers and
followings, and bio. The number of followers for
low condition was 559, for middle 51k (51,000) and
for high 4.2m (4,200,000). These numbers were
chosen based on the general guide to the types of
influencers and the abbreviation k and m that
Instagram uses for thousand and million (Influ-
encer Marketing Hub 2021). Then the participants
were asked to choose the correct number of fol-
lowers for the attention check, considering the
purpose of the study. As a manipulation check,
those who succeeded attention check were asked to
answer how they perceive the seeded influencer as
an expert: “I think this Instagram user would be
expert/experienced/knowledgeable in the cos-
metics field.” (1 ¼ Strongly Disagree, 7 ¼ Strongly
Agree).
Next, we showed them the image of seeded Insta-

gram post endorsing a lipstick, stating that it is
sponsored by the brand with hashtag #sponsored.
The number of likes and commentswere deliberately
removed (Pittman and Abell 2021). Then the partici-
pants were asked to answer how attractive and
trustworthy they perceive the influencer: “I think this
Instagram user would be attractive/stylish/classy.”
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(1 ¼ Strongly Disagree, 7 ¼ Strongly Agree); “I think
this Instagram user would be trustworthy/reliable/
honest.” (1¼ Strongly Disagree, 7¼ Strongly Agree).
The survey items were referred by previous research
(Djafarova and Trofimenko 2019; Ohanian 1990, 1991;
Poyry et al. 2019; Veirman et al. 2017). Table A1 shows
the survey constructs and items with their scale reli-
ability.

A.2 Results
The expert influencer's profile was perceived as

significantly more expert than the non-expert
influencers (Mexpert ¼ 5.05 vs. Mnon¼expert ¼ 3.74,
p ¼ 0.00). Therefore, the manipulation has been
successfully checked.
We conducted one-way ANOVA with perceived

attractiveness as a dependent variable and the
number of followers as an independent variable for
both expert and non-expert influencers. For non-
expert influencers, there were significant difference
between the follower groups: low vs. middle
(p ¼ 0.00); low vs. high (p < 0.02); middle vs. high
(p < 0.12). For expert influencers, the differences of
the follower groups were as follows: low vs. middle
(p < 0.02); low vs. high (p < 0.21); middle vs. high
(p < 0.62). Specifically, perceived attractiveness for
experts increased from low-level followers to mid-
dle-level followers, but decreased from middle to
high (MLow x Nonexpert ¼ 3.81, MMiddle x Nonexpert ¼ 5.21,
MHigh x Nonexpert ¼ 4.63). This pattern was shown the

same for the non-experts but with slighter amount
of decrease (MLow x Expert ¼ 4.45, MMiddle x Expert ¼ 5.28,
MHigh x Expert ¼ 4.99). Accordingly, it shows that the
perceived attractiveness starts to get negative
returns to scale from the certain point, not always
increasing.
Again, one-way ANOVA was conducted with

perceived trustworthiness as a dependent variable

and the number of followers as an independent
variable for both expert and non-expert influencers.
For non-expert influencers, the difference between
the low-level and the middle-level follower group
were significant and the difference from low vs. high
and middle vs. high-level follower groups were
marginally significant: low vs. middle (p < 0.04); low
vs. high (p < 0.14); middle vs. high (p < 0.87). For
expert influencers, the differences of the follower
groups had low significance: low vs. middle
(p < 0.6); low vs. high (p < 0.88); middle vs. high
(p < 0.89). Perceived trustworthiness for the experts
increased from low-level followers to middle-level
followers, but decreased from middle to high
(MLow x Nonexpert ¼ 3.36, MMiddle x Nonexpert ¼ 4.14,
MHigh x Nonexpert ¼ 3.98). This pattern was shown the
same for the non-experts (MLow x Expert ¼ 4.14,
MMiddle x Expert ¼ 4.47, MHigh x Expert ¼ 4.31). In conclu-
sion, it suggests that the perceived trustworthiness
not always increases, but declines at the certain
point.

Table A1. Survey constructs and items.
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