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Abstract
The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the

class probability. However, because it relies on the independent assumption of the predictor, which is rarely
satisfied in real-world problems, its application is limited in practice. In this article, we propose employing
sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier,
which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as
SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced
space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied
the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based
on customers’ face shape, demonstrating its utility in the top-k classification problem.
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1. Introduction

Classification is the most crucial task in contemporary statistical applications such as disease detec-
tion, pattern recognition, recommendation system, information retrieval, etc. In statistical learning,
classifiers can be categorized broadly into two types: hard classification and soft classification (Liu et
al., 2011). The hard classification directly tackles class labels by estimating classification boundaries.
A well-known example in this category is the support vector machine (SVM) (Vapnik, 1996) that
seeks the classification boundary by maximizing the geometric margin of two classes. The hard clas-
sification, including SVM, often shows a promising prediction performance since it directly predicts
the class label without a concrete understanding of the data generating process of the data.

On the other hand, soft classification tries to uncover the data generating process, which natu-
rally yields a sensible classification rule. Namely, for a given pair of p dimensional predictor X and
corresponding class label Y with K classes, the soft classification seeks the class probability defined
as

pk (x) = P (Y = k | X = x) , k = 1, . . . ,K,

which contains complete information about the data generating process of classification problems.
The optimal classification rule based on pk(x) that minimizes misclassification error rate is to classify
an example with X = x to the k∗th class that maximizes the class probability, i.e., k∗ = argmaxk pk(x).
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Unlike the hard classification, the soft classification can not only predict the class label but also mea-
sure the uncertainty of the prediction. A well-known example in this category includes the logistic
regression and the naive Bayes classifier, among many others.

The soft classification is more complicated than the hard one since the class probability is a more
informative and complex target than the class label itself. To make things simple, soft classification
methods often assume rigid assumptions. For example, the logistic regression imposes a linear model
to the logit of the class probability, and the naive Bayes classifier requires statistical independence
among predictor variables.

Hard classification has become more popular recently since many applications mainly focus on
improving prediction accuracy. However, there are various applications for which soft classification
is more desired than hard classification. For example, the soft classification is conceptually more
straightforward to extend from standard classification problem to more complex ones, such as top-k
classification that allows k(≥ 1) predictions and do not penalize as long as the true label belongs to the
set of k predictions. The standard multi-class classification can be regarded as the top-k classification
with k = 1. The top-k classification is quite popular in various applications, including recommending
merchandise. For example, you visit an optical store to purchase eyewear. The optician recommends
several types of frames, and you decide whether to purchase one of them or not.

The top-k classification can be directly solved by estimating pk(x) since the best top-k error (a.k.a
top-k Bayes error) at a given X = x is obtained if and only if

Ŷ ∈
{
Y | pY (x) ≥ p[k] (x) ,Y = 1, 2, . . . ,K

}
,

where Ŷ denotes the prediction of Y given X = x, and p[k](x) denotes the kth largest class proba-
bility, i.e., p[1](x) ≥ p[2](x) · · · ≥ p[K](x) (Lapin et al., 2016). Therefore, the extension to the top-
k classification is straightforward in soft classification that directly estimates the class probabilities
pk(x), k = 1, . . . ,K.

In this article, we consider employing the naive Bayes classifier to solve the top-k classification.
This work is motivated by Coptiq, a Korean start-up company that manufactures and sells person-
alized eyewear based on 3D printing technology. The goal of the company is to build a simple but
accurate recommendation system to suggest the best five eyewear-frames for a customer’s face shape.
Although there are numerous more sophisticated alternatives to this problem, we choose the naive
Bayes classifier to have a scalable algorithm to handle monthly accumulated data sets that grow in
size as the company sells more eyewar.

The naive Bayes classifier is the simplest soft classifier that estimates the class probability under
the statistical independence of X.

Pk(x) =

∏p
j=1 P

(
X j = x j | Y = k

)
P (Y = k)∑L

`=1
∏p

j=1 P
(
X j = x j | Y = `

)
P (Y = `)

.

Note that both P(X j = x j | Y = k) and P(Y = k) for all j = 1, . . . , p and k = 1, . . . ,K can be
readily estimated from the data in a nonparametric way. The naive Bayes classifier is a simple and
fast algorithm even for a large data set but heavily relies on the statistical independence assumption
among predictors. In addition, its performance also depends on the predictor dimension p. It may
suffer from a large p since the estimation errors from P(X j = x j | Y = k), j = 1, 2, . . . , p are to be
accumulated. In other words, the naive Bayes may not be that naive if the number of predictors is
small and they are all independent.
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Figure 1: Relative Performance of Naive Bayes Classifier: Boxplots depict the relative performance of the naive
Bayes classifier for different values of ρ where cov(Xi, X j) = ρ|i− j|, compared to the logistic regression which can
be regarded as an oracle method in this toy example. The naive Bayes performs very well when low-dimensional

predictors are independent.

In order to illustrate this, we consider a toy example simulated from a logistic regression model.
We first randomly generate a p-dimensional predictor X = (X1, . . . , Xp)T from a mean-zero multivari-
ate normal distribution with a covariance with the autoregressive structure, i.e., cov(Xi, X j) = ρ|i− j|

for a given ρ ∈ [0, 1]. The binary response Y is then generated from Bernoulli distribution with the
success probability p(x) = P(Y = 1 | X = x) being

log
{

p (X)
1 − p (X)

}
= 1 + βT X,

where β = (β1, . . . , βp)T with β j ∼ Uniform(−1, 1), j = 1, . . . , p.
We generate 2,000 observations independently and randomly split them into equal-sized training

and test sets. First, we investigate the performance of the naive Bayes classifier as ρ increases when
p is fixed as 10. Next, we check its performance as p increases under the independence assumption
holds (i.e., ρ = 0). Figure 1 shows the difference in test error rate between the naive Bayes classier
and the logistic regression. We remark that the data are generated from the logistic model, and thus
the naive Bayes cannot beat the logistic regression. However, the naive Bayes classifier is comparable
when ρ is closed to 0, and p is not very large. This simple experiment demonstrates the promising
performance of the naive Bayes classifier when the low dimensional predictors are independent. This
naturally leads us to reduce the predictor dimension before applying the naive Bayes classifier. For
example, the principal component analysis (PCA) can reduce the dimension of X. Moreover, the
principal vectors are orthogonal by construction, and the corresponding scores are independent as
long as X is normally distributed. However, PCA is not the best choice for dimension reduction in
supervised learning such as regression and classification. In this article, we propose to employ the
sufficient dimension reduction (SDR) (Li, 2018) to X that reduces predictor dimension without loss
of information about Y contained X. In this regard, SDR can be viewed as a supervised dimension
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reduction while PCA is an unsupervised one, and thus better suitable for the classification problem.

2. Naive Bayes with sufficient dimension reduction

The SDR is a popular supervised dimension reduction tool that projects X to a lower-dimensional
subspace without loss of classification (or regression) information contained in X. Given a pair of
random variable response Y and p-dimensional predictor X, the SDR seek a matrix B ∈ Rp×d that
satisfies

Y⊥X | BT X, (2.1)

where ⊥ denotes the statistical independence. Under (2.1), once can naturally reduce the predictor by
projecting X to the column space of B, which we call dimension reduction subspace (DRS). However,
B and thus DRS is not unique. If the intersection of all DRS itself is a DRS, it is the DRS with the
smallest dimension (i.e., maximal dimension reduction). We call this central subspace denoted by
SY |X. It is known that SY |X exists under very mild conditions (Yin et al., 2008). In SDR, SY |X is the
final target and it is assumed that span(B) = SY |X.

There are tons of methods to estimate B. The sliced inverse regression (SIR) (Li, 1991) is the
earliest proposal that is still popular in practice due to its simplicity. The sliced averaged variance
estimator (SAVE) (Cook and Weisberg, 1991) and the principal Hessian direction (pHd) (Cook RD,
1998) are also traditional candidate. These methods are available in dr-package in R. More recent
methods include, but not limited to the directional regression (Li and Wang, 2007), cumulative slicing
mean estimation (Zhu et al., 2010), and principal support vector machine (Li et al., 2011). Since SDR
is firstly developed under the regression context with contiuous Y . It suffers when Y is categorical.
In particular, all aforementioned methods fails to identify B when d = dim(SY |X) > K if Y is K-
class response. The problem is indeed serious in binary classification with K = 2. Recently, several
methods are developed to tack this issue in binary classification. See Shin et al. (2014) and Shin et al.
(2017) for example.

The SDR assumption (2.1) implies

pk(x) = P
(
Y = k | BT X = BT x

)
.

Assuming B = (b1, . . . ,bd) is orthonormal basis of SY |X without loss of generality, BT X = (bT
1 X, . . . ,

bT
d X) called sufficient predictors, i.e., predictors projected on SY |X, are always uncorrelated as Cov

(bT
i X,bT

j X) = trace{Cov(X) · bT
i b j} = 0, ∀i , j. Therefore the original predictors X are normally

distributed, and the sufficient predictors BT X are independent. We remark that the normality of X
seems very strong in theory but not in practice since it does not assume anything about the relationship
between Y and X, but the marginal distribution of X only.

Now, it is natural to consider a Naive Bayes classifier using the sufficient predictor under (2.1) as
follows:

P
(
Y = k | BT X = BT x

)
=

∏p
j=1 P

(
bT

j X j = bT
j x j | Y = k

)
P (Y = k)∑L

`=1
∏p

j=1 P
(
b jX = b jx | Y = `

)
P (Y = `)

,

which is equivalent to pk(x) under (2.1).
We remark that SDR boosts its practical utility and enhances classification performance by clev-

erly mitigating significant drawbacks of the naive Bayes classifier. This leads us to employ the naive
Bayes classifier after the SDR to solve the soft classification problem and then apply it to the top-k
classification problem motivated by the eyewear company, Coptiq.
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3. Simulation study

We conduct a simulation study in order to demonstrate the performance of the naive Bayes classifier
with SDR. We first generate p-dimensional predictors from xi ∼ Np(0,Σ), i = 1, . . . , n for three
different covariance structure Σ = {σi j}

p
i j=1 as follows: σii = 1 for all i = 1, . . . , n and

1. Independent: σi j = 0,

2. Auto-Regressive: σi j = ρ|i− j| with ρ = 0.7,

3. Compound Symmetry: σi j = ρ with ρ = 0.7

for i , j. The naive Bayes classifier deteriorates as the dependency among predictors gets stronger and
thus we expect that it becomes inefficient under the auto-regressive or compound symmetry covariance
structure. We set n = 500 with p ∈ {10, 20, 30}.

Next, we consider the logistic regression model to generate yi given xi

yi | xi ∼ Multinomial {1, p1(xi), . . . , pK(xi)} ,

subject to
∑K

k=1 pk(x) = 1, where

log
(

pk(xi)
1 − pK(xi)

)
= f

(
βT

k xi

)
, k = 1, . . . ,K − 1. (3.1)

That is, the true central subspace SY |X is span{β1, . . . ,βK−1} under (3.1).
We consider two scenarios for the classification function f : f (u) = u and f (u) = (u − 1)2 − 1 to

represent linear and nonlinear ones, respectively. Note that the linear f yields the conventional logistic
regression model where the logistic regression outperforms all others. On the other hand, when f is
nonlinear it suffers from model misspecification as we will see in the following. We consider both
binary (i.e. K = 2) and multi-class problems with K = 3, and set β1 = (1, 1, 0T

p−2)T for the binary
case, and β1 = (1, 0T

p−1)T and β2 = (−1, 0T
p−1)T for the multiclass case.

To implement the proposed method, we first apply SIR to estimate SY |X, and then the naive Bayes
classifier is trained on the estimated SY |X. We denote this with NB-SDR in upcoming figures. As com-
peting methods against NB-SDR, we consider five popular classification tools: naive Bayes without
SDR, logistic regression, SVM (with Gaussian kernel), random forest, and gradient (logit-) boost-
ing. Tuning parameters for SVM, random forest and gradient boosting are chosen by five-fold cross-
validation. The classification performance is measured by the error rate for the test set with a sample
size of 5,000, independent of the training set. Figure 2 depicts the performance of the classifiers for
different scenarios with p = 10. Under the linear cases, all methods perform quite well. It is not sur-
prising that the logistic regression performs the best. The naive Bayes classifier is not a good choice
when predictors are not independent. However, the proposed NB-SDR shows promising performance
even with the strongly correlated predictors. Compared to the popular black-box type method, the
NB-SDR is still promising. The logistic regression fails for nonlinear cases, while other methods
seem okay due to their flexibility. Again, we observe similar patterns as seen in the linear cases. The
proposed NB-SDR outperforms existing methods, demonstrating the SDR’s dramatic effect on the
naive Bayes classifier. We observe nearly identical patterns for p = 20 and 30 and thus omitted them
to avoid redundancy.
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Figure 2: Simulation Results: The proposed NB-SDR shows promising performance for all scenarios. This
clearly demonstrates the dramatic effect of the SDR on the naive Bayes classifier.
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Figure 3: Captured image of Face Ruler, the software developed by Coptiq to measure the face shape of a
customer.

4. Application to eyewear-frame recommendation

Coptiq is a Korean start-up company that manufactures and sells personalized eyewear based on 3D
printing technology. The company developed software (called Face Ruler) that scans customers’ faces
directly by using a true-depth camera. The facial information is stored as 1221 points in 3-dimensional
space, as shown in Figure 3.

The raw data collected from the scanned image is processed and translated into the nineteen fea-
tures listed below, which are based on the knowledge and expertise of optical technicians. For exam-
ple, “Face Width” is the distance between the right and left cheek ends when looking straight at the
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Table 1: List of predictors, and their normality test results and transformations applied if necessary

Type Variable Name Skewness p-value Transformation
Base Age 0.4441 0.0000* Square Root

Size

Face Width −0.5402 0.0000* Yeo-Johnson
Eye Gap (Center) −0.1950 0.0081* Yeo-Johnson
Eye Gap (Outer) −0.1462 0.2272
Eye Gap (Inner) −0.0568 0.0389

Shape

Cheekbone size −0.4069 0.0000* Yeo-Johnson
Mandibular size −0.4987 0.0000* Yeo-Johnson
Vertical Face −0.7814 0.0000* Ordered Quantile
Forehead −0.2619 0.0000* Box-Cox
Forehead-Nose Gap −0.0567 0.3105

Ratio
Face-Width/Face-Length −0.0735 0.5743
Mandibular-Size/Face-Width 0.1787 0.0588
Face-Width/Cheekbone-Size −0.8850 0.0517

Nose

Width (Bridge) 0.1468 0.3483
Width (Tip) −0.1341 0.0371
Height (Bridge) 0.1757 0.0942
Height (Tip) −0.0723 0.0887
Length −0.0479 0.9645
Angle −0.0271 0.9396

face, and “Face Length” is the distance between the tip of the brow and the lower end of the face.
The data set contains the face information of customers who purchased eyewear in the store run by

Coptiq for the last three years, from January 2018 to January 2021. The company received informed
consent from all customers when purchasing the eyewear. The processed data used for the analysis
does not contain any information identifying individuals.

The company produces 67 types of frames, that are too many, and we restrict our attention to 27
types with a sufficient purchase history. We also exclude missing observations and very few customers
who bought extreme-sized frames (e.g., XXS or XXXL). Finally, 5,069 customers are included in the
analysis. The company wants to develop a recommendation model for recommending top-five frame
types that best fit the customer based on the features obtained from the scanned face image. This can
be viewed as a standard example of top-k classification problem. Toward this, we need to estimate
class probabilities pk(x) for a given x, i.e., facial information measured by the Face Ruler.

To apply NB-SDR, we first need to check the marginal normality of the predictors. We admit that,
in theory, the marginal normality does not necessarily imply the joint normality. Still, we presume
that the marginal normality is sufficient to assume joint normality in the application for technical
simplicity. For the normality check, We conduct the Kolmogorov test and have that some variables
are not normally distributed under the significance level α = 0.01. We remark that we use quite small
α since the sample size is large. As reported in Table 1, age, face-width, eye-gap (center), eye-gap
(inner), cheekbone size, mandibular size, vertical face-length, and forehead length turn out to be non-
normal, and we applied various transformation methods, including Box-Cox transformation(Box and
Cox, 1964), Yeo-Johnson transformation (Yeo and Johnson, 2000), Ordered Quantile transformation
(Beasley et al., 2009) all available in bestNormalize package in R. After the proper transformation,
we confirmed that all variables follow normal distributions.

We then apply SIR to reduce the predictor dimension. We estimate the structure dimension from
the sequential χ2 test which given d = 3. Figure 4 display the estimated biases of SY |X by SIR.
We observe that three variables related to the nose shape (Nose-Angle, Nose-Length, Nose-Bridge
Height) are the most informative for frame type choice. After the dimension reduction, one can train
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Figure 4: The estimated directions of the central subspace by SIR for the Coptiq Data.

Table 2: Test top-five accuracy and computing times of different models applied to Coptiq Data

NB NB-SDR SVM MLR RF GBM
Accuracy 0.556 0.631 0.613 0.630 0.612 0.636
Computing Time (in sec.) 0.018 1.973 377.725 1.617 3.784 100.996

the naive Bayes classifier.
To compare the performance of the proposed method, we split the data into training and test sets

as follows. The customers who purchase the eyewear before October 2020 are used as a training
set and the ones after October 2020 are used as a test set. We compared the test performance of
naive Bayes with sufficient dimension reduction (NB-SDR) to the following five popular classification
methods considered in Section 3: naive Bayes classifier (NB), support vector machine (SVM) with
the Gaussian kernel, multinomial logistic regression (MLR), random forest(RF), and gradient boosting
machine (GBM). Both SVM and GBM are tuned via cross-validation to optimize the cross-validated
top-five error.

First, we compare the top-k classification performance for different methods. Table 2 shows the
test top-5 accuracy that counts the case when the purchased frame type is included in the recom-
mended five types. We also report the computing time (in seconds) to illustrate the computational
efficiency of the proposed method. One can observe that the gradient boosting machine shows the
best performance while the proposed NB-SDR and multinomial logistic regression are also compara-
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Figure 5: Bar charts of the recommendation scores for different methods including NB-SDR and five competitors,
NB, SVM, MLR, RF and GBM.

ble. One drawback of GBM is its computational complexity. Both GBM and SVM take much longer
than others since they involve additional tuning steps. This is not a minor issue since the size of data
will increase as more eyewear are sold. Second, we also compare the results in terms of the diversity
of the recommendation. The diversity of the prediction is another important aspect of the recom-
mendation system since it is not desirable to recommend always the most popular models. In fact, the
top-k accuracy is often maximized in practice when recommending simply the best-selling models. To
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check the diversity of the recommendation, we calculate a recommendation score for each model and
compare its distribution. The score is computed as follows. Five points to the firstly recommended
frame, which has the highest probability (or score), four points to the frame with the second-highest
probability, three points to the third, two points to the fourth, and one point for the fifth, and combined
the scores for each frame type.

Figure 5 depicts the bar chart (i.e., distribution) of the recommendation score for different meth-
ods. One can compare the diversity of the recommendation results for different methods by checking
the spread of the distribution. We note that the five best-selling models are 01 Boston C, TH ROUND
R, 01 SQUARE N2, 01 ROUND R, and 01 ROUND N2, and the SVM tends to recommend only
the five best-selling models. On the other hand, NB shows the most diverse recommendation results,
but its accuracy is too poor (See Table2). Again, GBM, MLR, and the proposed NB-SDR show a
similar diversity with relatively good accuracy; these three methods are all reasonable choices for this
particular application. However, MLR and proposed NB-SDR would be a better choice than GBM for
large-scale data sets like the Coptiq data, considering the computational complexity.

5. Concluding summary

This article proposes a simple and effective classification tool by combining two popular ideas in
statistical learning: the naive Bayes classifier and sufficient dimension reduction. We observe that
sufficient dimension reduction can significantly improve the naive Bayes classifier from both simu-
lated and real data analysis. The proposed method is desirable when soft classification is preferred,
such as top-k classification, as demonstrated in this article.
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